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What are averaging operators?

Finite averages

ANf :=
1
N

∑︀N
k=1 Tkf; N ∈ N

Assumptions: X normed space, Tk : X→ X isometries
Obvious property: ‖AN‖X→X ≤ 1

More general assumptions: X, Y normed spaces, Tk : X→ Y, ‖Tk‖X→Y = 1
Again: ‖AN‖X→Y ≤ 1

Can the constant 1 be improved? Sometimes
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Norm-improving property

Finite averages

ANf :=
1
N

∑︀N
k=1 Tkf; N ∈ N

Occasional additional property

‖AN‖X→Y ≤ c(N) < 1, c(N)→ 0 as N→∞

Appreciated in harmonic analysis, ergodic theory, etc.

We might want to find the optimal asymptotics of c(N)

All depends on the choice of Tk
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Example: Translations on Z

1 ≤ p ≤ q ≤∞, ak ∈ Z
Tk : ℓp(Z)→ ℓq(Z), (Tkf)(m) := f(m+ ak)

Finite averages on Z

(ANf)(m) =
1
N

∑︀N
k=1 f(m+ ak); N ∈ N,m ∈ Z

Norm-improving property now depends on the choice of numbers ak

Several features comes into play, coming from the Fourier analysis, number theory, etc.
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Discrete polynomial averages

P : Z→ Z polynomial with integer coefficients of degree d ≥ 2

Polynomial averages on Z

(ANf)(m) =
1
N

∑︀N
k=1 f(m+ P(k)); N ∈ N,m ∈ Z

Theorem (R. Han, V. K., M. T. Lacey, J. Madrid, F. Yang (2019))

‖ANf‖ℓq(Z) ≤ C(P, p, q)N−d(
1
p−

1
q ) ‖f‖ℓp(Z)

in a certain range of exponents 1 ≤ p ≤ q ≤∞

Previously only the case P(x) = x2 was known — R. Han, M. T. Lacey, F. Yang (2019)
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Trying out easy examples

Theorem

(ANf)(m) =
1
N

∑︀N
k=1 f(m+ P(k))

‖ANf‖ℓq(Z) ≤ C(P, p, q)N−d(
1
p−

1
q ) ‖f‖ℓp(Z)

Take f = 1{1,2,3,...,2P(N)} =⇒ optimality of the decay N−d(
1
p−

1
q )

Take f = 1{P(1),P(2),...,P(N)} =⇒ necessary condition d
q ≥

d−1
p

Take f = 1{0} =⇒ necessary condition d−1
q ≥

d
p − 1
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Range of exponents

Case d = 2
The theorem holds for

{︀
(p, q) : 1

q ≤
1
p ,

2
q >

1
p ,

1
q >

2
p − 1

}︀
When q = p′ the range specializes to 3

2 < p ≤ 2
The range in optimal modulo its boundary

Case d ≥ 3
The theorem holds for

{︀
(p, q) : 1

q ≤
1
p ,

d2+d+1
q >

d2+d−1
p ,

d2+d−1
q >

d2+d+1
p − 2

}︀
When q = p′ the range specializes to 2− 2

d2+d+1 < p ≤ 2

No estimates outside the range
{︀
(p, q) : 1

q ≤
1
p ,

d
q ≥

d−1
p ,

d−1
q ≥

d
p − 1

}︀
When q = p′ this specializes to 2− 1

d ≤ p ≤ 2
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Range of exponents

(ANf)(m) =
1
N

∑︀N
k=1 f(m+ P(k))

‖ANf‖ℓq(Z) ≤ C(P, p, q)N−d(
1
p−

1
q ) ‖f‖ℓp(Z)

Best explained visually
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Sketch of the proof in the case d ≥ 3

Regard AN as “projections” of

Higher-dimensional “universal” polynomial averages

(̃︀ANf)(m1,m2, . . . ,md) :=
1
N

∑︀N
k=1 f(m1 + k,m2 + k2, . . . ,md + kd);

N ∈ N, (m1,m2, . . . ,md) ∈ Zd

We turn to proving

Theorem

‖̃︀ANf‖ℓq(Zd) .d,p,q N−
d(d+1)

2 ( 1p−
1
q ) ‖f‖ℓp(Zd)
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Sketch of the proof in the case d ≥ 3

Write (̃︀ANf)(m1,m2, . . . ,md) as

1

N

N∑︁
k=1

∫︁
Td

̂︀f(t1, t2, . . . , td)e2πi((m1+k)t1+(m2+k2)t2+···+(md+kd)td)dt1dt2 · · · dtd

=
∫︁
Td

̂︀f(t1, t2, . . . , td)SN(t1, t2, . . . , td)e2πi(m1t1+m2t2+···+mdtd)dt1dt2 · · · dtd,

where
SN(t1, t2, . . . , td) :=

1
N

∑︀N
k=1 e

2πi(kt1+k2t2+···+kdtd); (t1, t2, . . . , td) ∈ Td = (R/Z)d are
the normalized exponential sums
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Sketch of the proof in the case d ≥ 3

Take q = p′

Apply the Hausdorff–Young inequality twice to ̃︀ANf = F −1(︀(F f)SN
)︀
:

‖̃︀ANf‖ℓp′ (Zd) ≤ ‖̂︀fSN‖Lp(Td) ≤ ‖̂︀f‖Lp′ (Td)‖SN‖Ls(Td) ≤ ‖f‖ℓp(Zd)‖SN‖Ls(Td),

where 1
s =

1
p −

1
p′ =

2
p − 1

Theorem (Vinogradov’s mean value conj. – J. Bourgain, C. Demeter, L. Guth (2016))

‖SN‖Ls(Td) ≤ C(d, s)N−
d(d+1)

2s for d ≥ 3 and s > d(d+ 1)
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Thank you for your attention!
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