Improving estimates for discrete polynomial averaging operators

Vjekoslav Kovač (U. of Zagreb)
Joint work with
R. Han, M. T. Lacey, F. Yang (Georgia Tech), J. Madrid (UCLA)

Foundation
Supported by HRZZ UIP-2017-05-4129 (MUNHANAP)
Zagreb Workshop on Operator Theory, Zagreb, June 29-30, 2020

What are averaging operators?

Finite averages

$A_{N} f:=\frac{1}{N} \sum_{k=1}^{N} T_{k} f ; \quad N \in \mathbb{N}$

Assumptions: X normed space, $T_{k}: X \rightarrow X$ isometries
Obvious property: $\left\|A_{N}\right\|_{X \rightarrow X} \leq 1$

More general assumptions: X, Y normed spaces, $T_{k}: X \rightarrow Y,\left\|T_{k}\right\|_{X \rightarrow Y}=1$
Again: $\left\|A_{N}\right\|_{X \rightarrow Y} \leq 1$

Can the constant 1 be improved? Sometimes

Norm-improving property

Finite averages

$$
A_{N} f:=\frac{1}{N} \sum_{k=1}^{N} T_{k} f ; \quad N \in \mathbb{N}
$$

Occasional additional property

$\left\|A_{N}\right\|_{X \rightarrow Y} \leq c(N)<1, \quad c(N) \rightarrow 0$ as $N \rightarrow \infty$
Appreciated in harmonic analysis, ergodic theory, etc.
We might want to find the optimal asymptotics of $c(N)$
All depends on the choice of T_{k}

Example: Translations on \mathbb{Z}

$1 \leq p \leq q \leq \infty, \quad a_{k} \in \mathbb{Z}$
$T_{k}: \ell^{p}(\mathbb{Z}) \rightarrow \ell^{q}(\mathbb{Z}), \quad\left(T_{k} f\right)(m):=f\left(m+a_{k}\right)$

Finite averages on \mathbb{Z}

$\left(A_{N} f\right)(m)=\frac{1}{N} \sum_{k=1}^{N} f\left(m+a_{k}\right) ; \quad N \in \mathbb{N}, m \in \mathbb{Z}$

Norm-improving property now depends on the choice of numbers a_{k}

Several features comes into play, coming from the Fourier analysis, number theory, etc.

Discrete polynomial averages

$P: \mathbb{Z} \rightarrow \mathbb{Z}$ polynomial with integer coefficients of degree $d \geq 2$

Polynomial averages on \mathbb{Z}

$\left(A_{N} f\right)(m)=\frac{1}{N} \sum_{k=1}^{N} f(m+P(k)) ; \quad N \in \mathbb{N}, m \in \mathbb{Z}$

Theorem (R. Han, V. K., M. T. Lacey, J. Madrid, F. Yang (2019))
$\left\|A_{N} f\right\|_{\ell^{q}(\mathbb{Z})} \leq C(P, p, q) N^{-d\left(\frac{1}{p}-\frac{1}{q}\right)}\|f\|_{\ell^{p}(\mathbb{Z})}$
in a certain range of exponents $1 \leq p \leq q \leq \infty$

Previously only the case $P(x)=x^{2}$ was known - R. Han, M. T. Lacey, F. Yang (2019)

Trying out easy examples

Theorem

$\left(A_{N} f\right)(m)=\frac{1}{N} \sum_{k=1}^{N} f(m+P(k))$ $\left\|A_{N} f\right\|_{\ell^{q}(\mathbb{Z})} \leq C(P, p, q) N^{-d\left(\frac{1}{p}-\frac{1}{q}\right)}\|f\|_{\ell^{p}(\mathbb{Z})}$

Take $f=\mathbb{1}_{\{1,2,3, \ldots, 2 P(N)\}} \Longrightarrow$ optimality of the decay $N^{-d\left(\frac{1}{p}-\frac{1}{q}\right)}$
Take $f=\mathbb{1}_{\{P(1), P(2), \ldots, P(N)\}} \Longrightarrow$ necessary condition $\frac{d}{q} \geq \frac{d-1}{p}$
Take $f=\mathbb{1}_{\{0\}} \Longrightarrow$ necessary condition $\frac{d-1}{q} \geq \frac{d}{p}-1$

Range of exponents

Case $d=2$
The theorem holds for $\left\{(p, q): \frac{1}{q} \leq \frac{1}{p}, \frac{2}{q}>\frac{1}{p}, \frac{1}{q}>\frac{2}{p}-1\right\}$
When $q=p^{\prime}$ the range specializes to $\frac{3}{2}<p \leq 2$
The range in optimal modulo its boundary
Case $d \geq 3$
The theorem holds for $\left\{(p, q): \frac{1}{q} \leq \frac{1}{p}, \frac{d^{2}+d+1}{q}>\frac{d^{2}+d-1}{p}, \frac{d^{2}+d-1}{q}>\frac{d^{2}+d+1}{p}-2\right\}$
When $q=p^{\prime}$ the range specializes to $2-\frac{2}{d^{2}+d+1}<p \leq 2$
No estimates outside the range $\left\{(p, q): \frac{1}{q} \leq \frac{1}{p}, \frac{d}{q} \geq \frac{d-1}{p}, \frac{d-1}{q} \geq \frac{d}{p}-1\right\}$
When $q=p^{\prime}$ this specializes to $2-\frac{1}{d} \leq p \leq 2$

Range of exponents

$$
\begin{aligned}
& \left(A_{N} f\right)(m)=\frac{1}{N} \sum_{k=1}^{N} f(m+P(k)) \\
& \left\|A_{N} f\right\|_{Q^{q}(\mathbb{Z})} \leq C(P, p, q) N^{-d\left(\frac{1}{p}-\frac{1}{q}\right)}\|f\|_{\ell^{\rho}(\mathbb{Z})}
\end{aligned}
$$

Best explained visually

Sketch of the proof in the case $d \geq 3$

Regard A_{N} as "projections" of
Higher-dimensional "universal" polynomial averages
$\left(\widetilde{A}_{N} f\right)\left(m_{1}, m_{2}, \ldots, m_{d}\right):=\frac{1}{N} \sum_{k=1}^{N} f\left(m_{1}+k, m_{2}+k^{2}, \ldots, m_{d}+k^{d}\right) ;$

$$
N \in \mathbb{N},\left(m_{1}, m_{2}, \ldots, m_{d}\right) \in \mathbb{Z}^{d}
$$

We turn to proving

Theorem

$\left\|\widetilde{A}_{N} f\right\|_{\ell^{q}\left(\mathbb{Z}^{d}\right)} \lesssim_{d, p, q} N^{-\frac{d(d+1)}{2}\left(\frac{1}{p}-\frac{1}{q}\right)}\|f\|_{\ell^{p}\left(\mathbb{Z}^{d}\right)}$

Sketch of the proof in the case $d \geq 3$

Write $\left(\tilde{A}_{N} f\right)\left(m_{1}, m_{2}, \ldots, m_{d}\right)$ as

$$
\begin{aligned}
& \frac{1}{N} \sum_{k=1}^{N} \int_{\mathbb{T}^{d}} \widehat{f}\left(t_{1}, t_{2}, \ldots, t_{d}\right) e^{2 \pi i\left(\left(m_{1}+k\right) t_{1}+\left(m_{2}+k^{2}\right) t_{2}+\cdots+\left(m_{d}+k^{d}\right) t_{d}\right)} d t_{1} d t_{2} \cdots d t_{d} \\
& =\int_{\mathbb{T}^{d}} \widehat{f}\left(t_{1}, t_{2}, \ldots, t_{d}\right) s_{N}\left(t_{1}, t_{2}, \ldots, t_{d}\right) e^{2 \pi i\left(m_{1} t_{1}+m_{2} t_{2}+\cdots+m_{d} t_{d}\right)} d t_{1} d t_{2} \cdots d t_{d}
\end{aligned}
$$

where

$$
S_{N}\left(t_{1}, t_{2}, \ldots, t_{d}\right):=\frac{1}{N} \sum_{k=1}^{N} e^{2 \pi i\left(k t_{1}+k^{2} t_{2}+\cdots+k^{d} t_{d}\right)} ; \quad\left(t_{1}, t_{2}, \ldots, t_{d}\right) \in \mathbb{T}^{d}=(\mathbb{R} / \mathbb{Z})^{d} \text { are }
$$ the normalized exponential sums

Sketch of the proof in the case $d \geq 3$

Take $q=p^{\prime}$
Apply the Hausdorff-Young inequality twice to $\widetilde{A}_{N} f=\mathscr{F}^{-1}\left((\mathscr{F} f) S_{N}\right)$:

$$
\left\|\tilde{A}_{N} f\right\|_{\ell^{p^{\prime}}\left(\mathbb{Z}^{d}\right)} \leq\left\|\widehat{f} S_{N}\right\|_{L^{p}\left(\mathbb{T}^{d}\right)} \leq\|\widehat{f}\|_{L^{p^{\prime}}\left(\mathbb{T}^{d}\right)}\left\|S_{N}\right\|_{L^{s}\left(\mathbb{T}^{d}\right)} \leq\|f\|_{\ell^{p}\left(\mathbb{Z}^{d}\right)}\left\|S_{N}\right\|_{L^{s}\left(\mathbb{T}^{d}\right)}
$$

where $\frac{1}{s}=\frac{1}{p}-\frac{1}{p^{\prime}}=\frac{2}{p}-1$

Theorem (Vinogradov's mean value conj. - J. Bourgain, C. Demeter, L. Guth (2016))
$\left\|S_{N}\right\|_{L^{s}\left(\mathbb{T}^{d}\right)} \leq C(d, s) N^{-\frac{d(d+1)}{2 s}}$ for $d \geq 3$ and $s>d(d+1)$

Thank you for your attention!

