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A C 77 finite set
Additive energy [Tao and Vu (2006)]:
Ex(A) == [{(a1,02,03,04) € A* : a1 — a; = a3 — a4}
Generalizations by Schoen and Shkredov (2013), Shkredov (2014),
de Dios Pont, Greenfeld, Ivanisvili, and Madrid (2021).
Higher energies:
Ek(A) = ‘{(01, ay, ..., 0o 1,02) € A 01—0y = -+ = sz—l—azkH
k-additive energies:
Ex(A):= |{(a1,....ax) €A a1+ - +ak = agy1 + - + ayl
Counting k-parallelotopes in A [Shkredov (2014)]:
Pe(A) = |{(a,hy,..., he) € (Z9YFt a4+ ethy +--- + exhy €A
forevery (e, ..., ex) € {0, 1)}
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What can be said if additionally

AcC{o,1)9 czh

Kane and Tao (2017):
E2(A) < |A°E2°,
De Dios Pont, Greenfeld, Ivanisvili, and Madrid (2021):
Ei(A) < |AlPe22 42 fork > 2.
De Dios Pont, Greenfeld, Ivanisvili, and Madrid (2021), k. (2022):
E(A) < A8 (K)  fork > 2.

All these exponents are seen to be sharp by taking A = {0, 1}9.
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What can be said if

AC{0,1,2,..., n—1)9 cz%

Already for n = 3 the sharp estimate is
Ez(A) < |A|2.7207109973...

and the exponent is just some strange number.

Shao (2024) studied the optimal exponent t,, in
AC{01,....n—1F = E(A) <A

and showed

3Iog23—4< . c

3—(1+0"7(1 <t, <
( ()) 2log, n " log, n
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We study the gen. energies Py. Let t, , be the optimal exponentin
AC{0,1,...,n—1)9 = P(A) < |A*n
Three theorems. [Beker, Crmarié, and K. (2024)]:
| ty2 = log,(2k +2)
Forafixed k > 2and n — oo:

k+1)I k+1)—2k
(k+1)log,(k+1) tn < kbl o

k+1— (14071
+ ( o )) 2log, n log, n

Forafixedn > 2and k — oo:

(n—1)log,(2k) — log,(n — 1)!
Hn—l

where Hp, := — Zj’lo (zf—m) log, (#m) is the entropy of B(m, 1/2).

tin = +057%(1),
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Numerous sharp inequalities in analysis are known for
f: 79 - C.
(Think of Hausdorff-Young, Young’s convolution ineq., etc.)
What changes if
suppfg{O,l,Z,...,n—l}d?

Can they be refined?
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Example.

Sharp Hausdorff-Young on Z:

IFllie ey < fllgarzz)

Shao (2024):
suppf €{0,1,..., n—1} = |fllsm < [Iflleam(z),

where
B 4 J4
qn_3—c/log2n 3
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Gowers uniformity norms [Gowers (2001)]:

1/2k
L[ ::( Z I e€1+---+€kf(a+elh1+---+ekhk)>

..... i (e1,....ex) €{0,1}¢

where C: z — Z.
Note: ;
P(A) = || Lall
Sharp estimate:
HfHuk(zd) < HfHePk(Zd)

forp, =25/ (k + 1).
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Let py , be the optimal exponent in

suppf €{0,1,..., n—1¢ = 1Fllurzey < [1Fllepwn (2

We will see that
pk,ntk,n - 2k-
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Proposition. [Beker, Crmari¢, and K. (2024)] k,n > 2, p,t > 0,
pt = 2k, The following are equivalent.

[|f][yx < ||f][er holds for every f: Z — [0, co) supported in
{0,1,...,n—1}

|||y« < |If||er holds for every d > 0 and every f: Z¢ — C
supportedin{0,1,...,n— 1)

Py(A) < |Al* holds for every d > 0 and every
AC{o,1,..., n—1).

There exists C € (0, 0o) such that P, (A) < CIA| holds for every
d>0andeveryAC{0,1,...,n—1}.

We are essentially imitating the proof by de Dios Pont, Greenfeld,
Ivanisvili, and Madrid (2021), who studied £ and || £ * f - -- % f [|7,.
| S —

k times
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The assumption (1) is: forg: Z — [0, c0), suppg € {0, 1, ..., n—1}

Z H glb+eilh + -+ eli) < (Zg (b) p) 2

€1,....€x)E{0,1}K

We prove the claim (2) by the induction on d.
Induction step: for each b € Z define

fo: 2971 = C, fy(a) :=f(a,b).
From the induction hypothesis:
follye < follen

Write the LHS as the Gowers inner product:

||fHUk - Z <(fb+€111+---+€k/k)(€1 ----- €k)€{0,1}k>Uk
bly,...[kEZ



Proof of (1) =— (2)

The Gowers-Cauchy-Schwarz inequality yields

k
g < > IT e reulu

b,li,...kEZ (e,,...,e,)€{0,1}K

< ) IT  lfremsredle

b,li,...kEZ (ey,...,e,)E{0,1}K

It remains to apply

n—1 2k/p
Z H glb+erli +-- -+ exly) < (Zg(b)f’)
bil1,..lkEZ (e,...,ex) €{0,1}K b=0

g(b) = [|fp][er
to conclude

n—1 k
K 2%/p K
A < (D Ihlif )™ = I
b=0



Proof of (4) — (1)

The assumption (4) can be restated:

k
AC{0,1,....,n—1} = |[Lally < DIAI"?" = D||1aller

Decompose a general f: Z9 — [0, 00), suppf € {0,1,...,n—1}%as
N
M /
=0 "~~~

f
where M = ||f|[¢=, N = [dlog, n],and 0 < f’ < 2~NM. From

M M
fillye = Sl Lallye < D5 lILallee = Dllfillee < DI|fler

1/ lge < M) D21 < I,

we get
N

Fllye < ZHfHukJer lye < D(3 + dlogy n)|fler-



Proof of (4) — (1)

We remove the constant using the tensor power trick:
flay, @z, ..., a4) = g(a1)g(az) - - - g(aqg)
= |l =lgllg  Ifle = llgllf
= llglly < (03 +dlogo ) “gles
Letting d — oo we obtain

Igllye < ligllee-



Proof of the formula for ¢y , 1531

One only needs to prove

1

2 I[I  glb+en+ - +edd < (Zg(b)zk/f)t

b,l,..., IKEZ (€1,0ems €k)€{0,1}k b=0
forg: Z — [0, ), suppg C {0, 1} and
t =log,(2k + 2).

Denoting

2K/t

x=g(02t, y=g(1)*/t

this simplifies as

X,y €0,00) = xt+yl+2kx/2y2 < (x +y)t

A nice calculus exercise!
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The lower bound

k+1) log, (k +1) — 2k
k41— (1+0p7=(1))" );gli(g - =2 .,
2

means

+1
2

k
Iirlinf((tk,,,—k—l) log,n) > — log, (k + 1) + k.
n—o0
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The Gowers norms on R:

® (e1,....ex)€{0,1}K 12k
dxdhy--- dhk>

Eisner and Tao (2012):

HgHU"(R) < Cngusz/(kﬂl(R)

with
2k/2k

(k + 1)(k+1)/2k+1

Gy =

and the equality is attained for Gaussians (among other extremizers).
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o (m) exp (—4M? (2 — %)2) forme{0,1,2,...,n—1},
M0 otherwise

is plugged into
1fu.nllye < (lfwnll eoin -

Denoting g(x) := e we get

li 1 1 2k
nL}mOO nk—|—1 || M,nHUk = WHQR[*M'M]HUI((R)
1 ok
||m SUP || Mn”gpkn < (ZM k+l Hg M'M]Hsz/(kJrl)(R)'

so take logarithms, subtract, and let M — co:

1911k r)

= 2k log, Cx
”gHLZk/(k+1) (R)

. k
Ilnrllcgf((tk'” —k—1)log, n) > 2% log,
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The upper bound

C
tk,n<k+l—

log, n

will follow from Shao’s result (2024) and
tk+1,n < tk,n T ke

This is an easy consequence of a recursive formula

1A = 5 ([FC+ e |3
hezd

and Young’s convolution inequality.
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Recall that the Shannon entropy of
XN(... 0O 1 2 --- n—1 )
** Qo 91 G2 -+ Qpn-1 -
H(X) = —Z C]j |Og2 qj
J

We denoted

Hm = H(B(m, 1/2)).
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For the lower bound

>0

n —1)log,(2k) — log,(n — 1)!)

Iiminf(tk,,, — ( r
n—1

k—00

start with

> [T flatehm+ +ehd < <Zf(/ Zk/f)

a,hy,....hk€7Z (ey,...,e,)€{0,1}k

fort = tx , and only observe the mutually equal terms obtained by
taking:

aec{0,1,..., n — 1} arbitrary,

precisely a of the numbers hy, . . ., hy equal —

precisely n — 1 — g of the numbers hy, ..., h equal 1,

precisely k —n + 1 of the numbers hy, . . ., hy equal 0.
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Kk n—1 1)k L n—1 tn
(,, N 1)2”‘1Hfm( TR (mezk/%)
j=0 j=0
Now take
(" tin/ 28
0= (32)
(n

= < _1>2” 1H< )> S 1< (E(g?)%zl.

J=0

Taking logarithms,

n—2 n—1 (n l)tkn (nf_l)
Zlogz(k—j) —Iogz(n—l)!+(n—l)+z én T log, 2njil
=0 j=0

<0

(n—1) log, k+0k— (1) —Hn—1tin
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For the upper bound
-1l 2k) —1 —1)!
“msup(tkyn_ (n — 1) log,(2k) — log,(n )><0
k—o00 Hn—1

split the same inequality as

) }
Zf(/ +Z > (1> fla+ exhy + -+ efh)?”
= (Ghl ..... h[)eTnI =1l t
< (Zf(j)2k/f> ,

j=0

Tos=1{(ahy,....h) €Z x (Z\{o}) :
0<a+eh+---+eh<n—-1

forevery (e1,..., e) €{0,1}'}.
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Substituting g(j) = (j)2*/t we reduce the inequality to
k
ZQU +Z Z <1> H glarelhi T e h)i A<l
=1 (a,hy,....h)) €Ty (e1,....er)€{0,1}
foreveryg: {0,1,..., n—1} — [0, 00) such that 3 7—5 g(j) = 1.
We are going to prove this for any given 0 < 6 < 1,

(n—1)log,(2k) —log,(n — 1)!
Hn—l

t =

+6,

and sufficiently large k.
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The terms g(j)¢ are handled separately, by splitting into 2 cases, etc.
Every other (more interesting) term is of the form

(5) (g(O)qu(l)ql oog(n— 1)‘7n—1)t’

where (qo, g1, . . ., gn_1) isthedistribution ontheset{0, 1, ..., n—1}
of
hiX1 + -+« + hX,,

where X1, X, X3, ... are independent symmetric Bernoulli trials.

n—1 5 o
, g9()) gine  TT 99
1=) a)> ) g7 -> ] (*) =T
j=0 oji<n—1 ogj<n—1 ~ ¥ [Ti=o q;
;70 q;#0
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That way we have obtained

n—1
Hg(j)q/' < 2—H(go,.., q,H)v
j=0

o)

k
<l[(> (g(o)qu(l)ql oo g(n — l)qn—l)t < <[>2—H(h1X1+...+h[X/)t

for (a,hy, ..., h) € Ty

The RHS is at most

Oﬁ_)oo (k[—(n—l)H(h1X1+"'+h/X[]/Hn,1) for 1 < | <n-—2.

{2”+l o 2 flnaid for [=n—1,
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Summingover T, p—1:

k n—1 —
> (n—l) [T glatesm+-+en 1hy 1)/* " <2728
(a,hy,....hn—1)ETpn—1 (e1,....€n—1)€{0,1}7 1 <1

SummingoverT,,, 1 <[<n—2:

Z > <11(> [T gle+em+---+ ei)/? = of7>(1)

(a,hy,...h))ETyy (eq,....,/)€{0,1}
as soon as o by
+ c oo +
I (i — 11)<0
Hn—1

H(hiX1 + -+ hX) - Hn_1
[ n—1
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Lemma.
Forn>2,1<[<n—1,hy, ..., h; € Z\{0}s.t. |hy|+- - -+]h] < n—1
we have
H(hiX1 + - -+ hiX) - Hn—1
[ “n—-1
with eq. attained only whenl/=n—1and|h;|=--- =|h,_1| = 1.

Sketch of the proof. From the precise bounds by Adell, Lekuona, and

Yu (2010),
1I ertm 1 < H <lI e7'rm+ 1
—log, —— — — = log, —— + —,
29827 T4y s % T T oy,
one easily gets
H Hy—
l<n—1— -5 7L
[ n—1

so one can maximize the LHS with a fixed number of terms /.
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Lemma.
FormeN, hy,..., hy € Z\ {0} we have

H(hiX1 + -+ hmXm) = Hm,
with equality attained only when |h1| = - - - = |hpy].

Sketch of the proof. First reduce to the case when hy, . . ., hm > 0.
X=hX1+ ...+ hpXm, Y ~B(m, 1/2), X £Y

px, py their probability mass functions

p)i(, p$ their decreasing rearrangements

Karamata’s inequality (1932) applies to the strictly concave function

00,1 SR, xe —x log, x  forx >0,
] ’ 0

forx =0

and makes it is enough to see that pi majorizes pf( and pf( # pi.
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Note that

Az::{Ag{l,z ..... m}:Zhj:z}
jeA

is an antichain for every z € Z.

By Erdds’ generalization of Sperner’s theorem (1945) or by the
Yamamoto-Bollobas-Lubell-Meshalkin inequality (1954, ..., 1966)
we have

‘-Azl‘ + |‘AZZ| qpooogF “AZN|
< maximal size of N disjoint antichains in P({1, 2, ..., m})

= (LmIZzJ) + ([m/rgJJrl) + (Lm/rgjfl) + (Lm/rgJJrZ) +-
N

forN=1,2,.... Dividing by 2™ we getpf( = pi.
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Thank you for your attention!



