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Where does the topic belong? −51

At the intersection of:

combinatorics

geometry

analysis



(Euclidean) coloring theorems −50

Coloring theorems are a part of the Euclidean Ramsey theory,

which identifies monochromatic configurations present in every
finite coloring of Rn

Systematic study initiated by Erdős, Graham, Montgomery,
Rothschild, Spencer, and Straus (1970s)



Coloring theorems −49

A finite coloring of S ⊆ Rn

= any partition of S into finitely many color-classes C1, . . . ,Cr

A coloring is measurable if Cj are Lebesgue-measurable

A coloring is Jordan-measurable if Cj have boundaries of measure 0



Coloring theorems — Types of desired results −48

We search for (congruent) monochromatic copies of a configuration
(= pattern) from a given family:

P = {Pλ : λ ∈ Λ}, Λ ⊆ (0,∞)

Common types of results:

• An arbitrary coloring of Rn or [0,R]n contains a monochromatic
copy of Pλ for some parameter λ

• An arbitrary coloring of Rn or [0,R]n contains monochromatic
copies of Pλ for all values of λ



Coloring theorems — Example −47

A question by Rosenfeld (1994), popularized by Erdős
Does every finite coloring of R2 contain a pair of equally colored
points at an odd distance from each other?

λ ∈ 2N− 1

Answered affirmatively by James Davies (2022)

Still open when 2N− 1 is replaced with

• either {n! : n ∈ N} (Kahle),
• or {2n : n ∈ N} (Soifer)



(Euclidean) density theorems −46

Density theorems are a part of geometric measure theory,

which identifies configurations present in every “large” subset of Rn

Initiated by Erdős, Székely, Bourgain, Falconer, etc. (1980s)



Density theorems — What is a “large” set? −45

A measurable set A ⊆ [0, 1]n is considered large if its Lebesgue
measure is positive:

|A| > 0

A measurable set A ⊆ [0,R]n is considered large if its density is

δ =
|A|
Rn ≳ 1



Density theorems — What is a “large” set? −44

A measurable set A ⊆ Rn is considered large if its upper den-
sity is positive:

dn(A) := lim sup
R→∞

|A ∩ ([−R/2,R/2]n)|
Rn > 0,

or if its upper Banach density is positive:

δn(A) := lim
R→∞ sup

x∈Rn

|A ∩ (x + [0,R]n)|
Rn > 0



Density theorems — Types of desired results −43

A family of configurations (= patterns):

P = {Pλ : λ ∈ Λ}, Λ ⊆ (0,∞)

Other common types of results:

• A large A ⊆ Rn contains copies of Pλ for all sufficiently large
parameters λ

• A large A ⊆ [0, 1]n contains copies of Pλ for an interval I ⊆ Λ of
parameters λ, with a bound on the length of I depending on |A|



Density theorems — Example −42

A question by Székely (1982), popularized by Erdős
Does every set A ⊆ R2 of positive upper density realize all sufficiently
large distances between pairs of its points?

Answered affirmatively by:

• Furstenberg, Katznelson, and Weiss (1980s),
• Falconer and Marstrand (1986),
• Bourgain (1986)



Coloring vs. density −41

Connections between the two worlds
a positive density result =⇒ a positive measurable coloring result
a negative measurable coloring result =⇒ a negative density result

C1, . . . ,Cr a measurable coloring of Rn

=⇒ δn(C1) + · · ·+ δn(Cr) ⩾ δn(Rn) = 1

=⇒ δn(Cj) ⩾
1
r
> 0 for at least one index 1 ⩽ j ⩽ r



Techniques (in this talk) −40

Techniques for positive results
use real (linear and multilinear) harmonic analysis to prove density
theorems

Techniques for negative results
are typically funny colorings



Biased selection of previously studied problems −39

Vertex-sets of simplices
Pioneering work by Bourgain (1986)

• Uses Littlewood–Paley theory, i.e., square function estimates:

(Sf)(x) :=
(∑

k∈Z

∣∣(f ∗ψk)(x)
∣∣2
)1/2



Biased selection of previously studied problems −38

Anisotropically scaled simplices
K. (2020)

• Uses anisotropic multilinear C–Z operators:

Λ(f0, . . . , fn) :=

∫
(Rd)n+1

K(x1 − x0, . . . , xn − x0)
( n∏

k=0

fk(xk) dxk

)
• Coifman and Meyer (1970s), Grafakos and Torres (2002) meet

Stein and Wainger (1978)



Biased selection of previously studied problems −37

Arithmetic progressions in ℓp-norms
Cook, Magyar, and Pramanik (2015)
Durcik and K. (2020)

• Uses (dualized and truncated) multilinear Hilbert transforms:

Λ(f0, . . . , fn) =

∫
R

∫
[−R,−r]∪[r,R]

n∏
k=0

fk(x + kt)
dt
t

dx

• Tao (2016) showed o(log(R/r)), Zorin-Kranich (2016)
• Durcik, K., and Thiele (2016) showed O((log(R/r))1−ε)



Biased selection of previously studied problems −36

(Non-rotated) corners in ℓp-norms
Durcik, K., and Rimanić (2016)

• Uses the 2D bilinear square function:

S(f , g)(x, y) :=
(∑

k∈Z

( ∫
R

f(x + t, y)g(x, y + t)ψk(t) dt
)2

)1/2

• Durcik, K., Škreb, and Thiele (2016)



Biased selection of previously studied problems −35

Progression-extended boxes in ℓp-norms
Durcik and K. (2018)

• Uses some hybrid singular integral forms



Biased selection of previously studied problems −34

Pairs of points along a parabola (or a beam of parabolae)
Kuca, Orponen, and Sahlsten (2021)
Durcik, K., and Stipčić (2023)

• Uses Bourgain’s generalized circular maximal function (1986):

(Mf)(x) := sup
t∈(0,∞)

∣∣(f ∗ σt)(x)
∣∣



Biased selection of previously studied problems −33

Similar copies of arbitrary finite configurations in very dense sets
Falconer, K., and Yavicoli (2020)

• Uses the method of rotations + Diophantine approximations:
quantitative equidistribution of quadratic sequences modulo 1



Configurations of a given area/volume −32

We will discuss:

triangles and simplices

rectangles and rectangular boxes

parallelograms and parallelotopes



Triangles and simplices −31

m, n ∈ N, 2 ⩽ m ⩽ n

Graham (1979)
For all finite colorings of Rn some color-class contains vertices of a
right-angled m-dimensional simplex of unit volume

It is sufficient to color a “large” cube [0,R]n in r colors

Open problem (essentially Graham, 1979)
Is there a reasonable lower bound (i.e., not of the Ackermann type)
on the number R = R(r)?



Triangles and simplices −30

m ⩾ 2, n ⩾ m + 1

Theorem (K., 2024)

(a) R > 1, A ⊆ [0,R]n, δ = |A|
Rn ⩾

( Cm
log R

)1/(9m2)

=⇒ A contains m + 1 vertices of a right-angled
m-dimensional simplex of unit volume

(b) R ⩾ exp(Cmr9m2
), [0,R]n is measurably colored in r colors

=⇒ there exists a right-angled m-dimensional simplex of unit
volume with monochromatic vertices



Triangles and simplices −29

Assume n = m + 1

E.g., m = 2, n = 3



Triangles and simplices — Proof of the theorem −28

θ = m−12−m2−m−1δm+1, λ > 0 a certain (aspect ratio) parameter

Configuration-counting form:

N0
λ(A;R) :=∫
Rm−1

∫
R2

∫
Rm−1

∫
R2
1A(x, y)

( m−1∏
k=1

1A(x + ukek, y)
)
1A(x, y + v)

dσm!|u1···um−1|−1(v) λ−m+1
( m−1∏

k=1

1[−λ,−θλ]∪[θλ,λ](uk)
)

du R−m−1 dy dx

σ = the normalized circle measure on S1 ⊆ R2

N0
λ(A;R) = a certain density of a subcollection of axes-aligned

right-simplices inside A



Triangles and simplices — Proof of the theorem −27

A great idea developed by
Bourgain (1986), . . . , Cook, Magyar, and Pramanik (2015)

is a smoothed counting form defined for ε ∈ (0, 1]:

Nε
λ(A;R) :=∫
Rm−1

∫
R2

∫
Rm−1

∫
R2
1A(x, y)

( m−1∏
k=1

1A(x + ukek, y)
)
1A(x, y + v)

(σ ∗ gε)m!|u1···um−1|−1(v)λ−m+1
( m−1∏

k=1

1[−λ,−θλ]∪[θλ,λ](uk)
)

dvdu R−m−1dydx

We use the normalized Gaussian g for this purpose to apply the
heat equation (Durcik and K., 2020)



Interlude — A general scheme −26

N0
λ(A;R) = lim

ε→0+
Nε

λ(A;R)

N0
λ(A;R)︸ ︷︷ ︸

we want >0

= N1
λ(A;R)︸ ︷︷ ︸

structured part

+
(
Nε

λ(A;R) −N1
λ(A;R)︸ ︷︷ ︸

error part

)
+
(
N0

λ(A;R) −Nε
λ(A;R)︸ ︷︷ ︸

uniform part

)
dominant term small for all small ε

⩾ c(δ) uniformly in λ

small for some λ



Interlude — A general scheme −25

For the structured part N1
λ we need a lower bound

N1
λ ⩾ c(δ)

that is uniform in λ, but this should be a simpler/smoother problem

For the uniform part N0
λ −Nε

λ we want
lim
ε→0

∣∣N0
λ −Nε

λ

∣∣ = 0

uniformly in λ; this usually leads to some oscillatory integrals

For the error part Nε
λ −N1

λ one tries to prove
J∑

j=1

∣∣Nε
λj
−N1

λj

∣∣ ⩽ C(ε)o(J)

for lacunary scales λ1 < · · · < λJ; this usually leads to some
multilinear singular integrals



Triangles and simplices — Proof: structured part −24

Lemma
R, λ ∈ (0,∞), R−1/(m−1) ⩽ λ ⩽ R, A ⊆ [0,R]m+1, δ = |A|/Rm+1

=⇒ N1
λ(A;R) ≳ δ(m+1)(2m−1)

Estimated by cutting [0,R]m+1 into pieces of size

λ× · · · × λ× λ−m+1 × λ−m+1

and using basic enumerative combinatorics



Triangles and simplices — Proof: uniform part −23

Lemma
λ,R ∈ (0,∞), ε ∈ (0, 1], A ⊆ [0,R]m+1

=⇒
∣∣N0

λ(A;R) −Nε
λ(A;R)

∣∣ ≲ ε1/2

Estimated using the Fourier decay of σ:

|σ̂(ξ)| ≲ (1 + |ξ|)−1/2



Triangles and simplices — Proof: uniform part −22

f(x, y; u) := 1A(x, y)
m−1∏
k=1

1A(x + ukek, y)

g(x) := e−π|x|2 , k := ∆g

The heat equation:

(σ ∗ gτ)(v) − (σ ∗ gε)(v) = −

∫ε
τ

(σ ∗ kt)(v)
dt

2πt

Nτ
λ(A;R) −Nε

λ(A;R)

= −

∫ε
τ

∫
Rm−1

∫
Rm−1

∫
R2

∫
R2

f(x, y; u)1A(x, y + v)R−m−1λ−m+1

(σ ∗ kt)m!|u1···um−1|−1(v)
( m−1∏

k=1

1[−λ,−θλ]∪[θλ,λ](uk)
)

dv dy du dx
dt

2πt



Triangles and simplices — Proof: uniform part −21

∣∣∣∣ ∫
R2

∫
R2

f(x, y; u)1A(x, y + v)(σ ∗ kt)a(v) dv dy
∣∣∣∣

=

∣∣∣∣ ∫
R2
1̂A(x, ξ) f̂(x, ξ; u) σ̂(aξ) k̂(taξ) dξ

∣∣∣∣
≲ t1/2

( ∫
R2

∣∣1̂A(x, ξ)
∣∣2 dξ

)1/2( ∫
R2

∣∣̂f(x, ξ; u)
∣∣2 dξ

)1/2

= t1/2
( ∫

R2
1A(x, y)2 dy

)1/2( ∫
R2

f(x, y; u)2 dy
)1/2

⩽ t1/2R2.

∣∣Nτ
λ(A;R) −Nε

λ(A;R)
∣∣ ≲ ∫ε

τ

t−1/2 dt ≲ ε1/2

Let τ→ 0 □



Triangles and simplices — Proof: error part −20

Lemma
R ∈ (0,∞), ε ∈ (0, 1], A ⊆ [0,R]m+1

=⇒
∫∞

0

(
Nε

λ(A;R) −N1
λ(A;R)

)2 dλ
λ

≲ θ−4(m−1)
(
log

1
ε

)2

Estimated using basic Littlewood–Paley theory

Pigeonholing gives an appropriate parameter λ



Triangles and simplices — Proof: error part −19

Nε
λ(A;R) −N1

λ(A;R) = −

∫ 1

ε

∫ tλ−m+1

e−1tλ−m+1

∫
Rm−1

∫
Rm−1

∫
R2

∫
R2

f(x, y; u)1A(x, y + v)

R−m−1λ−m+1(σ ∗ kt)a(v)
( m−1∏

k=1

1[−λ,−θλ]∪[θλ,λ](uk)
)

dv dy du dx
ds
s

dt
2πt

A few L–P tricks and Cauchy–Schwarz reduce:∫
R

(
Nε

eα(A;R) −N1
eα(A;R)

)2 dα ≲ θ−4m+4R−m−1
(
log

1
ε

)
∫ 1

ε

∫
R

∫ te−(m−1)α

te−(m−1)α−1

∫
Rm−1

∫
R2

∣∣1̂A(x, ξ)
∣∣2e−2πs2|ξ|2 |ξ|2 dξdx s ds dα︸ ︷︷ ︸

≲R m+1

dt
t

□



Triangles and simplices — More open problems −18

Erdős
A measurable set A ⊆ R2 of infinite area (and even an unbounded
set of positive area) necessarily contains the vertices of a triangle of
area 1.
Open problem (Erdős, 1983)
Must a measurable set A ⊆ R2 with infinite area contain the vertices
of a right triangle of area 1?

Open problem (Erdős, 1978)
Is it true that there is an absolute constant C so that, if A ⊆ R2 has
area> C, then A contains the vertices of a triangle of area 1?



Rectangles and rectangular boxes −17

Problem (Erdős and Graham, 1979)
The question is: Is this also true for rectangles?

Ad: T. Bloom, Erdős Problems
www.erdosproblems.com

Theorem (K., 2024)
There exists a Jordan-measurable coloring of the plane in 25 colors
such that no color-class contains the vertices of a rectangle of area 1



Rectangles — Proof of the theorem −16

Relax a rectangle of area 1 to a parallelogram P with |AB| · |AD| = 1

Define a complex “invariant” quantity:

I (P) := z2
A − z2

B + z2
C − z2

D = 2uv



Rectangles — Proof of the theorem −15

On the one hand, for a parallelogram with |AB| · |AD| = 1,

|I (P)| = 2|u||v| = 2

For each pair (j, k) ∈ {0, 1, 2, 3, 4}2 define a color-class Cj,k as

Cj,k :=

{
z ∈ C : z2 ∈ 10

3

(
Z+ iZ+

j + ik
5

+
[

0,
1
5

)
+ i

[
0,

1
5

))}

One the other hand, for a monochromatic parallelogram,

I (P) ∈ 10
3

(
Z+ iZ+

(
−

2
5
,

2
5

)
+ i

(
−

2
5
,

2
5

))
,

which is never = 2 in the absolute value □



Rectangles — Proof of the theorem −14

The coloring (Cj,k) of R2:



Rectangular boxes −13

A higher-dimensional generalization

Theorem (K., 2024)
For every n ∈ N ∃ a finite Jordan-measurable coloring of Rn s.t.,
∀m ⩽ n, there is no m-dimensional rectangular box of m-volume
equal to 1 with all 2m vertices colored the same



Rectangular boxes — Proof of the theorem −12

Proof idea. A real-valued quantity invariant for slightly tilted boxes:

J (R) :=
∑

x=(x1,...,xn) is a vertex of R

(−1)m−parity(x) x1 · · · xm



Rectangular boxes −11

n ⩾ m + 1 & the coloring is measurable
=⇒ all sufficiently large volumes are attained

Theorem (K., 2024)

(a) A ⊆ Rn, δn(A) > 0
=⇒ ∃V0 = V0(A) > 0 ∀V ⩾ V0 ∃ m-dimensional rectangular

box of m-volume V with all 2m vertices in A
(b) For every finite measurable coloring of Rn ∃ a color-class C

∃V0 > 0 ∀V ⩾ V0 ∃ an m-dimensional rectangular box of
m-volume V with all vertices in C

• Previously known for
◦ n ⩾ 5m (Durcik and K., 2018)
◦ n ⩾ 2m (Lyall and Magyar, 2019)

• Still open for n = m



Rectangular boxes — Proof of the theorem −10

Configuration-counting form: θ = m−12−2mnδ2m , λ > 0

N0
λ(A;R) :=

∫
Rm−1

∫
Rn−m+1

∫
Rm−1

∫
Rn−m+1( ∏

(r1,...,rm)∈{0,1}m

1A(x1 + r1u1, . . . , xm−1 + rm−1um−1, y + rmv)
)

dσλm|u1···um−1|−1(v) λ−m+1
( m−1∏

k=1

1[−λ,−θλ]∪[θλ,λ](uk)
)

du R−n dy dx

Smoothed configuration-counting form: ε ∈ (0, 1]

Nε
λ(A;R) :=

∫
Rm−1

∫
Rn−m+1

∫
Rm−1

∫
Rn−m+1( ∏

(r1,...,rm)∈{0,1}m

1A(x1 + r1u1, . . . , xm−1 + rm−1um−1, y + rmv)
)

(σ ∗ gε)λm|u1···um−1|−1(v) dv λ−m+1
( m−1∏

k=1

1[−λ,−θλ]∪[θλ,λ](uk)
)

du R−n dy dx



Rectangular boxes — Proof: structured part −9

Lemma
0 < λ ⩽ R, A ⊆ [0,R]n, δ = |A|/Rn

=⇒ N1
λ(A;R) ≳δ 1

Estimated by cutting [0,R]n into cubes of size

λ× · · · × λ

and using inequalities for the so-called box-Gowers norms



Rectangular boxes — Proof: uniform part −8

Lemma
λ,R ∈ (0,∞), ε ∈ (0, 1], A ⊆ [0,R]n

=⇒
∣∣N0

λ(A;R) −Nε
λ(A;R)

∣∣ ≲ ε1/2

Very similar to the lemma for simplices



Rectangular boxes — Proof: error part −7

Lemma
R ∈ (0,∞), ε ∈ (0, 1], (λj)1⩽j⩽J satisfying λj+1 ⩾ 2λj, A ⊆ [0,R]n

=⇒
J∑

j=1

∣∣Nε
λj
(A;R) −N1

λj
(A;R)

∣∣ ≲δ,ε 1

Estimated using superpositions of

• entangled singular integral forms — K. (2010, 2011), Durcik
(2014, 2015), Durcik, K., Škreb, Thiele (2016),

• recently a.k.a. singular Brascamp–Lieb estimates — Durcik,
Thiele (2018, 2019), Durcik, Slavíková, Thiele (2021, 2023)

Pigeonholing gives an appropriate parameter λj, 1 ⩽ j ⩽ J



Parallelograms and parallelotopes −6

Open problem (Erdős and Graham, 1979)
Or perhaps parallelograms?

Here we only give a partial answer

Theorem (K., 2024)
Suppose that we are given lines ℓ1, . . . , ℓm ⊂ R2 and ε > 0
There exists a Jordan-measurable coloring of the plane s.t. there is
no parallelogram of area 1 with monochromatic vertices that, ad-
ditionally, has one side parallel to some line ℓi or it has all angles
greater than ε

=⇒ Possible counterexamples are almost degenerate parallelograms
and infinitely many directions should be considered



Parallelograms and parallelotopes −5

n ⩾ 2, ε > 0

Theorem (K., 2024)
There exists a Jordan-measurable set A ⊆ Rn of infinite volume such
that every n-dimensional parallelotope with all 2n vertices in A has
volume less than ε

Taking ε = 1 we guarantee that parallelotopes with vertices in A
cannot have volume 1

Case n = 2 previously claimed by Erdős and Mauldin (1983)

Proof idea. This result is much easier:{
(x1, x2, . . . , xn) ∈ (0,∞)n : x1x2 · · · xn ⩽

ε

n!

}



Harmonic analyst’s point of view −4

How are area 1 rectangles (density results impossible)
different from area 1 right-angled triangles (density results
possible in dimensions n ⩾ 3)?



Harmonic analyst’s point of view — rectangles −3

φ,ψ ∈ S(R), 0 ̸∈ supp(φ̂) or 0 ̸∈ supp(ψ̂)

(p1, p2, p3, p4) ∈ [1,∞]4,
∑4

k=1
1

pk
= 1, 0 < r < R

Let Cr,R be the best constant in:∣∣∣∣ ∫R

r

∫
R4

f1(x, y)f2(x, y ′)f3(x ′, y)f4(x ′, y ′)

φt(x − x ′)ψ1/t(y − y ′) dy dy ′ dx dx ′ dt
t

∣∣∣∣
⩽ Cr,R

4∏
k=1

∥fk∥Lpk(R2)

We claim: Cr,R ∼ log(R/r) as R/r → ∞
(Not any better than the trivial estimate obtained from Hölder)



Harmonic analyst’s point of view — rectangles −2

M > 0, g(x) := e−πx2

f1(x, y) := e2πixyg
( x

M

)
g
( y

M

)
f2 := f1, f3 := f1, f4 := f1

RHS ∼ Cr,RM2

lim
M→∞ 1

M2 LHS = lim
M→∞ 1

M2

∫R

r

∫
R4

f1(x, y)f2(x, y ′)f3(x ′, y)f4(x ′, y ′)

φt(x − x ′)ψ1/t(y − y ′) d(x, x ′, y, y ′)
dt
t

[substitute u = x − x ′, v = y − y ′]

= lim
M→∞ 1

4

∫R

r

∫
R2

e2πiuvφt(u)ψ1/t(v)g
( u

M

)
g
( v

M

)
d(u, v)

dt
t

=
1
4

(
log

R
r

) ∫
R
φ̂(−v)ψ(v) dv



Harmonic analyst’s point of view — triangles −1

Let C ′
r,R be the best constant in: (p4 = ∞)∣∣∣∣ ∫R

r

∫
R4

f1(x, y)f2(x, y ′)f3(x ′, y)φt(x − x ′)ψ1/t(y − y ′) dy dy ′ dx dx ′ dt
t

∣∣∣∣
⩽ C ′

r,R

3∏
k=1

∥fk∥Lpk(R2)

A single Cauchy–Schwarz + a square function estimate:

C ′
r,R = O((log(R/r))1/2)

It could be interesting to study boundedness/cancellation of
“volume-preserving” or “time reversed” multilinear singular
integral operators



¡Gracias! 0

Thank you for your attention!


