

Coloring and density theorems for configurations of a given volume

Supported in part by HRZZ IP-2022-10-5116 (FANAP)

Thursday, July 11, 2024

Vjekoslav Kovač (University of Zagreb, Faculty of Science)

Recent advances in Harmonic Analysis, Malaga

At the intersection of: combinatorics geometry analysis

Coloring theorems are a part of the Euclidean Ramsey theory,

which identifies monochromatic configurations present in every finite coloring of \mathbb{R}^n

Systematic study initiated by Erdős, Graham, Montgomery, Rothschild, Spencer, and Straus (1970s)

A finite coloring of $\mathsf{S}\subseteq\mathbb{R}^n$ = any partition of S into finitely many color-classes $\mathscr{C}_1, \ldots, \mathscr{C}_r$

A coloring is *measurable* if \mathcal{C}_i are Lebesgue-measurable A coloring is Jordan-measurable if \mathcal{C}_i have boundaries of measure 0 We search for (congruent) monochromatic copies of a configuration (= pattern) from a given family:

$$
\mathscr{P} = \{P_{\lambda} : \lambda \in \Lambda\}, \qquad \Lambda \subseteq (0, \infty)
$$

Common types of results:

- An arbitrary coloring of \mathbb{R}^n or $[0, R]^n$ contains a monochromatic copy of P_{λ} for some parameter λ
- An arbitrary coloring of \mathbb{R}^n or $[0, R]^n$ contains monochromatic copies of P_λ for all values of λ

A question by Rosenfeld (1994), popularized by Erdős

Does every finite coloring of \mathbb{R}^2 contain a pair of equally colored points at an odd distance from each other?

$\lambda \in 2\mathbb{N} - 1$

Answered affirmatively by James Davies (2022)

Still open when $2N - 1$ is replaced with

- either $\{n! : n \in \mathbb{N}\}$ (Kahle),
- or $\{2^n : n \in \mathbb{N}\}$ (Soifer)

Density theorems are a part of geometric measure theory,

which identifies configurations present in every "large" subset of \mathbb{R}^n

Initiated by Erdős, Székely, Bourgain, Falconer, etc. (1980s)

A measurable set $A \subseteq [0,1]^n$ is considered *large* if its Lebesgue measure is positive:

 $|A| > 0$

A measurable set $A \subseteq [0,R]^n$ is considered *large* if its *density* is

$$
\delta=\frac{|A|}{R^n}\gtrsim 1
$$

$$
\left| \cdot \right\rangle
$$

Density theorems $-$ What is a "large" set?

A measurable set $A \subseteq \mathbb{R}^n$ is considered *large* if its *upper den*sity is positive:

$$
\overline{d}_n(A):=\limsup_{R\to\infty}\frac{|A\cap([-R/2,R/2]^n)|}{R^n}>0,
$$

or if its upper Banach density is positive:

$$
\overline{\delta}_n(A) := \lim_{R \to \infty} \sup_{x \in \mathbb{R}^n} \frac{|A \cap (x + [0, R]^n)|}{R^n} > 0
$$

A family of configurations (= patterns):

$$
\mathscr{P} = \{P_{\lambda} : \lambda \in \Lambda\}, \qquad \Lambda \subseteq (0, \infty)
$$

Other common types of results:

- A large $A \subseteq \mathbb{R}^n$ contains copies of P_λ for all sufficiently large parameters λ
- A large $A\subseteq [0,1]^n$ contains copies of P_λ for an interval $I\subseteq \Lambda$ of parameters λ , with a bound on the length of *I* depending on |A|

A question by Székely (1982), popularized by Erdős

Does every set $A \subseteq \mathbb{R}^2$ of positive upper density realize all sufficiently large distances between pairs of its points?

Answered affirmatively by:

- Furstenberg, Katznelson, and Weiss (1980s),
- Falconer and Marstrand (1986),
- Bourgain (1986)

Connections between the two worlds

a positive density result \implies a positive measurable coloring result a negative measurable coloring result \implies a negative density result

 $\mathscr{C}_1, \ldots, \mathscr{C}_r$ a measurable coloring of \mathbb{R}^n

$$
\implies \qquad \overline{\delta}_n(\mathscr{C}_1) + \dots + \overline{\delta}_n(\mathscr{C}_r) \geq \overline{\delta}_n(\mathbb{R}^n) = 1
$$

$$
\implies \overline{\delta}_n(\mathscr{C}_j) \geq \frac{1}{r} > 0 \quad \text{for at least one index } 1 \leq j \leq r
$$

Techniques for positive results

use real (linear and multilinear) harmonic analysis to prove density theorems

Techniques for negative results are typically funny colorings

Vertex-sets of simplices

Pioneering work by Bourgain (1986)

• Uses Littlewood–Paley theory, i.e., square function estimates:

$$
(Sf)(x) := \left(\sum_{k \in \mathbb{Z}} \left| (f * \psi_k)(x) \right|^2 \right)^{1/2}
$$

Biased selection of previously studied problems $\frac{1}{38}$

Anisotropically scaled simplices K. (2020)

• Uses anisotropic multilinear C–Z operators:

$$
\Lambda(f_0,\ldots,f_n):=\int_{(\mathbb{R}^d)^{n+1}}K(x_1-x_0,\ldots,x_n-x_0)\left(\prod_{k=0}^n f_k(x_k)\,dx_k\right)
$$

• Coifman and Meyer (1970s), Grafakos and Torres (2002) meet Stein and Wainger (1978)

Arithmetic progressions in ℓ p **-norms** Cook, Magyar, and Pramanik (2015) Durcik and K. (2020)

• Uses (dualized and truncated) multilinear Hilbert transforms:

$$
\Lambda(f_0,\ldots,f_n)=\int_{\mathbb{R}}\int_{[-R,-r]\cup[r,R]}\prod_{k=0}^n f_k(x+kt)\frac{dt}{t}\,dx
$$

- Tao (2016) showed $o(log(R/r))$, Zorin-Kranich (2016)
- Durcik, K., and Thiele (2016) showed $O((\log(R/r))^{1-\epsilon})$

(Non-rotated) corners in ℓ p **-norms** Durcik, K., and Rimanić (2016)

• Uses the 2D bilinear square function:

$$
S(f,g)(x,y) := \bigg(\sum_{k\in\mathbb{Z}} \Big(\int_{\mathbb{R}} f(x+t,y)g(x,y+t)\psi_k(t) dt\Big)^2\bigg)^{1/2}
$$

• Durcik, K., Škreb, and Thiele (2016)

Progression-extended boxes in ℓ p **-norms** Durcik and K. (2018)

• Uses some hybrid singular integral forms

Pairs of points along a parabola (or a beam of parabolae) Kuca, Orponen, and Sahlsten (2021) Durcik, K., and Stipčić (2023)

• Uses Bourgain's generalized circular maximal function (1986):

$$
(Mf)(x) := \sup_{t \in (0,\infty)} |(f * \sigma_t)(x)|
$$

Similar copies of arbitrary finite configurations in very dense sets Falconer, K., and Yavicoli (2020)

• Uses the method of rotations + Diophantine approximations: quantitative equidistribution of quadratic sequences modulo 1 We will discuss: triangles and simplices rectangles and rectangular boxes parallelograms and parallelotopes $m, n \in \mathbb{N}, 2 \leq m \leq n$

Graham (1979)

For all finite colorings of \mathbb{R}^n some color-class contains vertices of a right-angled m-dimensional simplex of unit volume

It is sufficient to color a "large" cube $[0, R]^n$ in r colors

Open problem (essentially Graham, 1979)

Is there a reasonable lower bound (i.e., not of the Ackermann type) on the number $R = R(r)$?

 $m \geqslant 2$, $n \geqslant m+1$

Theorem (K., 2024)

(a) $R > 1$, $A \subseteq [0, R]^n$, $\delta = \frac{|A|}{R^n}$ $\frac{|A|}{R^n} \geqslant \big(\frac{\mathcal{C}_m}{\log R}\big)^{1/(9m^2)}$

 \implies A contains $m + 1$ vertices of a right-angled m-dimensional simplex of unit volume

(b) $R \geqslant \exp(C_m r^{9m^2})$, $[0, R]^n$ is measurably colored in r colors \implies there exists a right-angled m-dimensional simplex of unit

volume with monochromatic vertices

```
Assume n = m + 1
```

```
E.g., m = 2, n = 3
```


 $\theta = m^{-1}2^{-m^2-m-1}\delta^{m+1}, \quad \lambda > 0$ a certain (aspect ratio) parameter Configuration-counting form:

$$
\mathcal{N}_{\lambda}^{0}(A;R) :=
$$
\n
$$
\int_{\mathbb{R}^{m-1}} \int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{m-1}} \int_{\mathbb{R}^{2}} \mathbb{1}_{A}(x,y) \left(\prod_{k=1}^{m-1} \mathbb{1}_{A}(x+u_{k}e_{k},y) \right) \mathbb{1}_{A}(x,y+v)
$$
\n
$$
d\sigma_{m\mid u_{1}\cdots u_{m-1}\mid^{-1}}(v) \lambda^{-m+1} \left(\prod_{k=1}^{m-1} \mathbb{1}_{[-\lambda,-\theta\lambda]\cup[\theta\lambda,\lambda]}(u_{k}) \right) du R^{-m-1} dy dx
$$

 $\sigma =$ the normalized circle measure on $\mathbb{S}^1 \subseteq \mathbb{R}^2$

 $\mathcal{N}^{0}_{\lambda}(\mathit{A};\mathit{R})=$ a certain density of a subcollection of axes-aligned right-simplices inside A

A great idea developed by Bourgain (1986), ..., Cook, Magyar, and Pramanik (2015) is a smoothed counting form defined for $\varepsilon \in (0,1]$:

$$
\mathcal{N}_{\lambda}^{\varepsilon}(A;R) :=
$$
\n
$$
\int_{\mathbb{R}^{m-1}} \int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{m-1}} \int_{\mathbb{R}^{2}} \mathbb{1}_{A}(x,y) \Big(\prod_{k=1}^{m-1} \mathbb{1}_{A}(x+u_{k}e_{k},y) \Big) \mathbb{1}_{A}(x,y+v)
$$
\n
$$
(\sigma * g_{\varepsilon})_{m!|u_{1}...u_{m-1}|^{-1}}(v) \lambda^{-m+1} \Big(\prod_{k=1}^{m-1} \mathbb{1}_{[-\lambda,-\theta\lambda] \cup [\theta\lambda,\lambda]}(u_{k}) \Big) dvdu R^{-m-1} dy dx
$$

We use the normalized Gaussian g for this purpose to apply the heat equation (Durcik and K., 2020)

Interlude — A general scheme −26

$$
\mathcal{N}_{\lambda}^{0}(A; R) = \lim_{\epsilon \to 0+} \mathcal{N}_{\lambda}^{\epsilon}(A; R)
$$
\nWe want > 0

\nWe want term

\n
$$
\mathcal{N}_{\lambda}^{0}(A; R) = \underbrace{\mathcal{N}_{\lambda}^{1}(A; R)}_{\text{structured part}} + \underbrace{(\mathcal{N}_{\lambda}^{\epsilon}(A; R) - \mathcal{N}_{\lambda}^{1}(A; R)}_{\text{error part}}) + (\underbrace{\mathcal{N}_{\lambda}^{0}(A; R) - \mathcal{N}_{\lambda}^{\epsilon}(A; R)}_{\text{uniform part}})_{\text{uniform part}}
$$
\nsmall for all small ϵ uniformly in λ and for some λ

For the structured part \mathcal{N}_λ^1 we need a lower bound $\mathcal{N}_\lambda^1 \geqslant c(\delta)$

that is uniform in λ , but this should be a simpler/smoother problem

For the uniform part
$$
\mathcal{N}_{\lambda}^{0} - \mathcal{N}_{\lambda}^{\varepsilon}
$$
 we want
\n
$$
\lim_{\varepsilon \to 0} |\mathcal{N}_{\lambda}^{0} - \mathcal{N}_{\lambda}^{\varepsilon}| = 0
$$

uniformly in λ; this usually leads to some **oscillatory integrals**

For the error part
$$
\mathcal{N}_{\lambda}^{\varepsilon} - \mathcal{N}_{\lambda}^{1}
$$
 one tries to prove\n
$$
\sum_{j=1}^{J} |\mathcal{N}_{\lambda_{j}}^{\varepsilon} - \mathcal{N}_{\lambda_{j}}^{1}| \leq C(\varepsilon) o(J)
$$

for lacunary scales $\lambda_1 < \cdots < \lambda_j$; this usually leads to some **multilinear singular integrals**

Lemma $R, \lambda \in (0, \infty), R^{-1/(m-1)} \leq \lambda \leq R, A \subseteq [0, R]^{m+1}, \delta = |A|/R^{m+1}$ $\implies \mathcal{N}_{\lambda}^1(A;R) \gtrsim \delta^{(m+1)(2m-1)}$

Estimated by cutting $[0, R]^{m+1}$ into pieces of size

$$
\lambda\times\cdots\times\lambda\times\lambda^{-m+1}\times\lambda^{-m+1}
$$

and using basic enumerative combinatorics

Lemma
\nλ, R ∈ (0, ∞), ε ∈ (0, 1], A ⊆ [0, R]^{m+1}
\n⇒
$$
|\mathcal{N}_{\lambda}^0(A; R) - \mathcal{N}_{\lambda}^{\varepsilon}(A; R)| \lesssim \varepsilon^{1/2}
$$

Estimated using the Fourier decay of σ:

 $|\widehat{\sigma}(\xi)| \lesssim (1+|\xi|)^{-1/2}$

Triangles and simplices — Proof: uniform part $\qquad \qquad _{-22}$

$$
f(x, y; u) := \mathbb{1}_{A}(x, y) \prod_{k=1}^{m-1} \mathbb{1}_{A}(x + u_{k}e_{k}, y)
$$

$$
g(x) := e^{-\pi |x|^{2}}, \ \mathbb{k} := \Delta g
$$

The heat equation:

$$
(\sigma * g_{\tau})(v) - (\sigma * g_{\epsilon})(v) = -\int_{\tau}^{\epsilon} (\sigma * k_t)(v) \frac{dt}{2\pi t}
$$

$$
\mathcal{N}_{\lambda}^{\tau}(A;R) - \mathcal{N}_{\lambda}^{\varepsilon}(A;R)
$$
\n
$$
= -\int_{\tau}^{\varepsilon} \int_{\mathbb{R}^{m-1}} \int_{\mathbb{R}^{m-1}} \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} f(x,y;u) \mathbb{1}_{A}(x,y+v) R^{-m-1} \lambda^{-m+1}
$$
\n
$$
(\sigma * \mathbb{k}_{t})_{m!|u_{1} \cdots u_{m-1}|^{-1}}(v) \Big(\prod_{k=1}^{m-1} \mathbb{1}_{[-\lambda, -\theta \lambda] \cup [\theta \lambda, \lambda]}(u_k) \Big) dv dy du dx \frac{dt}{2\pi t}
$$

$$
\begin{aligned}\n&\left|\int_{\mathbb{R}^2}\int_{\mathbb{R}^2}f(x,y;u)\mathbb{1}_A(x,y+v)(\sigma*\Bbbk_t)_a(v)\,dv\,dy\right| \\
&= \left|\int_{\mathbb{R}^2}\widehat{\mathbb{1}_A}(x,\xi)\,\overline{\widehat{f}(x,\xi;u)}\,\widehat{\sigma}(a\xi)\,\widehat{\Bbbk}(ta\xi)\,d\xi\right| \\
&\lesssim t^{1/2}\Big(\int_{\mathbb{R}^2}\big|\widehat{\mathbb{1}_A}(x,\xi)\big|^2\,d\xi\Big)^{1/2}\Big(\int_{\mathbb{R}^2}\big|\widehat{f}(x,\xi;u)\big|^2\,d\xi\Big)^{1/2} \\
&= t^{1/2}\Big(\int_{\mathbb{R}^2}\mathbb{1}_A(x,y)^2\,dy\Big)^{1/2}\Big(\int_{\mathbb{R}^2}f(x,y;u)^2\,dy\Big)^{1/2}\leq t^{1/2}R^2.\n\end{aligned}
$$

$$
\left| \mathcal{N}^{\tau}_{\lambda}(A;R) - \mathcal{N}^{\epsilon}_{\lambda}(A;R) \right| \lesssim \int_{\tau}^{\epsilon} t^{-1/2} \, dt \lesssim \epsilon^{1/2}
$$

Let $\tau \to 0$

Lemma
\n
$$
R \in (0, \infty), \ \varepsilon \in (0, 1], \ A \subseteq [0, R]^{m+1}
$$

\n $\implies \int_0^\infty \left(\mathcal{N}_{\lambda}^{\varepsilon}(A; R) - \mathcal{N}_{\lambda}^1(A; R) \right)^2 \frac{d\lambda}{\lambda} \lesssim \theta^{-4(m-1)} \left(\log \frac{1}{\varepsilon} \right)^2$

Estimated using basic Littlewood–Paley theory Pigeonholing gives an appropriate parameter λ

$$
\mathcal{N}_{\lambda}^{\varepsilon}(A;R) - \mathcal{N}_{\lambda}^{1}(A;R) = -\int_{\varepsilon}^{1} \int_{e^{-1}t\lambda^{-m+1}}^{t\lambda^{-m+1}} \int_{\mathbb{R}^{m-1}} \int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} f(x,y;u) 1_{A}(x,y+v)
$$

$$
R^{-m-1}\lambda^{-m+1}(\sigma * \mathbb{k}_{t})_{a}(v) \Big(\prod_{k=1}^{m-1} 1_{[-\lambda, -\theta\lambda] \cup [\theta\lambda, \lambda]}(u_{k})\Big) dv dy du dx \frac{ds}{s} \frac{dt}{2\pi t}
$$

A few L–P tricks and Cauchy–Schwarz reduce:

$$
\int_{\mathbb{R}} \left(\mathcal{N}^{\varepsilon}_{e^{\alpha}}(A;R) - \mathcal{N}^{1}_{e^{\alpha}}(A;R) \right)^{2} d\alpha \lesssim \theta^{-4m+4} R^{-m-1} \Big(\log \frac{1}{\varepsilon} \Big)
$$

$$
\int_{\varepsilon}^{1} \underbrace{\int_{\mathbb{R}} \int_{te^{-(m-1)\alpha}}^{te^{-(m-1)\alpha}} \int_{\mathbb{R}^{m-1}} \int_{\mathbb{R}^{2}} \left| \widehat{\mathbb{1}_{A}}(x,\xi) \right|^{2} e^{-2\pi s^{2}|\xi|^{2}} |\xi|^{2} d\xi dx \, s \, ds \, d\alpha}{\xi^{R^{m+1}}}
$$

□

Erdős

A measurable set $A \subseteq \mathbb{R}^2$ of infinite area (and even an unbounded set of positive area) necessarily contains the vertices of a triangle of area 1.

Open problem (Erdős, 1983)

Must a measurable set $A \subseteq \mathbb{R}^2$ with infinite area contain the vertices of a right triangle of area 1?

Open problem (Erdős, 1978)

Is it true that there is an absolute constant C so that, if $A \subseteq \mathbb{R}^2$ has $area > C$, then A contains the vertices of a triangle of area 1?

Problem (Erdős and Graham, 1979)

The question is: Is this also true for rectangles?

Ad: T. Bloom, Erdős Problems www.erdosproblems.com

Theorem (K., 2024)

There exists a Jordan-measurable coloring of the plane in 25 colors such that no color-class contains the vertices of a rectangle of area 1

Relax a rectangle of area 1 to a parallelogram $\mathcal P$ with $|AB|\cdot|AD|=1$

Define a complex "invariant" quantity:

$$
\mathcal{I}(\mathcal{P}) := z_A^2 - z_B^2 + z_C^2 - z_D^2 = 2uv
$$

On the one hand, for a parallelogram with $|AB| \cdot |AD| = 1$,

 $|\mathscr{I}(\mathcal{P})| = 2|u||v| = 2$

For each pair $(j,k)\in\{0,1,2,3,4\}^2$ define a color-class $\mathscr{C}_{j,k}$ as

$$
\mathscr{C}_{j,k}:=\left\{z\in\mathbb{C}\,:\, z^2\in\frac{10}{3}\bigg(\mathbb{Z}+\mathrm{i}\mathbb{Z}+\frac{j+\mathrm{i} k}{5}+\Big[0,\frac{1}{5}\Big)+\mathrm{i}\Big[0,\frac{1}{5}\Big)\bigg)\right\}
$$

One the other hand, for a monochromatic parallelogram,

$$
\mathscr{I}(\mathcal{P}) \in \frac{10}{3}\bigg(\mathbb{Z} + i \mathbb{Z} + \Big(-\frac{2}{5}, \frac{2}{5}\Big) + i \Big(-\frac{2}{5}, \frac{2}{5}\Big)\bigg),
$$

which is never $= 2$ in the absolute value \Box

The coloring $(\mathscr{C}_{j,k})$ of \mathbb{R}^2 :

A higher-dimensional generalization

Theorem (K., 2024) For every $n \in \mathbb{N}$ \exists a finite Jordan-measurable coloring of \mathbb{R}^n s.t., ∀ $m \le n$, there is no *m*-dimensional rectangular box of *m*-volume equal to 1 with all 2^m vertices colored the same

Rectangular boxes — Proof of the theorem -12

Proof idea. A real-valued quantity invariant for slightly tilted boxes:

$$
\mathscr{J}(\mathcal{R}) := \sum_{x=(x_1,\ldots,x_n) \text{ is a vertex of } \mathcal{R}} (-1)^{m-\text{parity}(x)} x_1 \cdots x_m
$$

$n \geq m + 1$ & the coloring is measurable \implies all sufficiently large volumes are attained

Theorem (K., 2024)

- (a) $A \subseteq \mathbb{R}^n$, $\overline{\delta}_n(A) > 0$ $\implies \exists V_0 = V_0(A) > 0 \ \forall V \geq V_0 \ \exists m\text{-dimensional rectangular}$ box of m-volume V with all 2^m vertices in A
- (b) For every finite measurable coloring of \mathbb{R}^n \exists a color-class \mathscr{C} $\exists V_0 > 0 \ \forall V \geq V_0 \ \exists$ an m-dimensional rectangular box of m-volume V with all vertices in $\mathscr C$
	- Previously known for
		- $n \ge 5m$ (Durcik and K., 2018)
		- $n \ge 2m$ (Lyall and Magyar, 2019)
	- Still open for $n = m$

Rectangular boxes — Proof of the theorem -10

Configuration-counting form:

\n
$$
\theta = m^{-1} 2^{-2^m n} \delta^{2^m}, \quad \lambda > 0
$$
\n
$$
\mathcal{N}_{\lambda}^0(A;R) := \int_{\mathbb{R}^{n-1}} \int_{\mathbb{R}^{n-m+1}} \int_{\mathbb{R}^{n-m+1}} \int_{\mathbb{R}^{n-m+1}} \phi_{\lambda}^{2^m}(\mathbf{x}) d\mathbf{x}
$$
\n
$$
\left(\prod_{(r_1,\ldots,r_m)\in\{0,1\}^m} \mathbb{1}_A(x_1 + r_1 u_1, \ldots, x_{m-1} + r_{m-1} u_{m-1}, y + r_m v)\right)
$$
\n
$$
d\sigma_{\lambda^m|u_1\cdots u_{m-1}|^{-1}}(v) \lambda^{-m+1} \left(\prod_{k=1}^{m-1} \mathbb{1}_{[-\lambda, -\theta\lambda] \cup [\theta\lambda, \lambda]}(u_k)\right) du R^{-n} dy dx
$$

Smoothed configuration-counting form: $\varepsilon \in (0,1]$

$$
\mathcal{N}_{\lambda}^{\varepsilon}(A;R) := \int_{\mathbb{R}^{m-1}} \int_{\mathbb{R}^{n-m+1}} \int_{\mathbb{R}^{n-m+1}} \int_{\mathbb{R}^{n-m+1}} \left(\prod_{(r_1,\ldots,r_m)\in\{0,1\}^m} \mathbb{1}_A(x_1+r_1u_1,\ldots,x_{m-1}+r_{m-1}u_{m-1},y+r_mv) \right)
$$
\n
$$
(\sigma * g_{\varepsilon})_{\lambda^m|u_1\cdots u_{m-1}|^{-1}}(v) dv \lambda^{-m+1} \Big(\prod_{k=1}^{m-1} \mathbb{1}_{[-\lambda,-\theta\lambda]\cup[\theta\lambda,\lambda]}(u_k) \Big) du R^{-n} dy dx
$$

Lemma $0 < \lambda \leqslant R$, $A \subseteq [0, R]^n$, $\delta = |A|/R^n$ $\implies \mathcal{N}^1_\lambda(A;R) \gtrsim_{\delta} 1$

Estimated by cutting $[0, R]^n$ into cubes of size

 $\lambda \times \cdots \times \lambda$

and using inequalities for the so-called box-Gowers norms

Lemma
\n
$$
\lambda, R \in (0, \infty), \ \varepsilon \in (0, 1], \ A \subseteq [0, R]^n
$$

\n $\implies |\mathcal{N}_{\lambda}^0(A; R) - \mathcal{N}_{\lambda}^{\varepsilon}(A; R)| \lesssim \varepsilon^{1/2}$

Very similar to the lemma for simplices

Lemma

 $R \in (0, \infty)$, $\varepsilon \in (0, 1]$, $(\lambda_j)_{1 \leqslant j \leqslant J}$ satisfying $\lambda_{j+1} \geqslant 2\lambda_j$, $A \subseteq [0, R]^n$

$$
\implies \sum_{j=1}^J \left| \mathcal{N}^{\varepsilon}_{\lambda_j}(A;R) - \mathcal{N}^1_{\lambda_j}(A;R) \right| \lesssim_{\delta,\varepsilon} 1
$$

Estimated using superpositions of

- entangled singular integral forms K. (2010, 2011), Durcik (2014, 2015), Durcik, K., Škreb, Thiele (2016),
- recently a.k.a. singular Brascamp–Lieb estimates Durcik, Thiele (2018, 2019), Durcik, Slavíková, Thiele (2021, 2023)

Pigeonholing gives an appropriate parameter λ_j , $1 \leqslant j \leqslant J$

Open problem (Erdős and Graham, 1979) Or perhaps parallelograms?

Here we only give a partial answer

```
Theorem (K., 2024)
```
Suppose that we are given lines $\ell_1, \ldots, \ell_m \subset \mathbb{R}^2$ and $\varepsilon > 0$

There exists a Jordan-measurable coloring of the plane s.t. there is no parallelogram of area 1 with monochromatic vertices that, additionally, has one side parallel to some line ℓ_i or it has all angles greater than ε

 \implies Possible counterexamples are almost degenerate parallelograms and infinitely many directions should be considered

 $n \geqslant 2, \varepsilon > 0$

Theorem (K., 2024)

There exists a Jordan-measurable set $A\subseteq \mathbb{R}^n$ of infinite volume such that every *n*-dimensional parallelotope with all 2^n vertices in A has volume less than ε

Taking $\varepsilon = 1$ we guarantee that parallelotopes with vertices in A cannot have volume 1

Case $n = 2$ previously claimed by Erdős and Mauldin (1983)

Proof idea. This result is much easier:

$$
\left\{(x_1,x_2,\ldots,x_n)\in (0,\infty)^n\,:\,x_1x_2\cdots x_n\leqslant \frac{\epsilon}{n!}\right\}
$$

How are **area** 1 **rectangles** (density results impossible) different from **area** 1 **right-angled triangles** (density results possible in dimensions $n \geqslant 3$?

 $\varphi, \psi \in \mathcal{S}(\mathbb{R}), 0 \notin \mathsf{supp}(\widehat{\varphi})$ or $0 \notin \mathsf{supp}(\widehat{\psi})$ $(p_1, p_2, p_3, p_4) \in [1, \infty]^4$, $\sum_{k=1}^4 \frac{1}{p_k}$ $\frac{1}{p_k} = 1, 0 < r < R$ Let $C_{r,R}$ be the best constant in:

$$
\left| \int_{r}^{R} \int_{\mathbb{R}^{4}} f_{1}(x, y) f_{2}(x, y') f_{3}(x', y) f_{4}(x', y') \right|
$$

$$
\varphi_{t}(x - x') \psi_{1/t}(y - y') \, dy \, dy' \, dx \, dx' \frac{dt}{t} \right|
$$

$$
\leq C_{r, R} \prod_{k=1}^{4} ||f_{k}||_{L^{p_{k}}(\mathbb{R}^{2})}
$$

We claim: $C_{r,R} \sim \log(R/r)$ as $R/r \to \infty$

(Not any better than the trivial estimate obtained from Hölder)

Harmonic analyst's point of view — rectangles $\overline{}$ $\overline{}$

$$
M > 0, \quad g(x) := e^{-\pi x^2}
$$

$$
f_1(x, y) := e^{2\pi i xy} g\left(\frac{x}{M}\right) g\left(\frac{y}{M}\right)
$$

$$
f_2 := \overline{f_1}, \quad f_3 := \overline{f_1}, \quad f_4 := f_1
$$

$$
RHS \sim C_{r,R} M^2
$$

$$
\lim_{M \to \infty} \frac{1}{M^2} LHS = \lim_{M \to \infty} \frac{1}{M^2} \int_r^R \int_{\mathbb{R}^4} f_1(x, y) f_2(x, y') f_3(x', y) f_4(x', y')
$$

$$
\varphi_t(x - x') \psi_{1/t}(y - y') d(x, x', y, y') \frac{dt}{t}
$$

[substitute $u = x - x', v = y - y']$

$$
= \lim_{M \to \infty} \frac{1}{4} \int_r^R \int_{\mathbb{R}^2} e^{2\pi i u v} \varphi_t(u) \psi_{1/t}(v) g\left(\frac{u}{M}\right) g\left(\frac{v}{M}\right) d(u, v) \frac{dt}{t}
$$

$$
= \frac{1}{4} \left(\log \frac{R}{r} \right) \int_{\mathbb{R}} \widehat{\varphi}(-v) \psi(v) dv
$$

Harmonic analyst's point of view $-$ triangles

Let $C'_{r,R}$ be the best constant in: $(p_4 = \infty)$

$$
\left| \int_{r}^{R} \int_{\mathbb{R}^{4}} f_{1}(x, y) f_{2}(x, y') f_{3}(x', y) \varphi_{t}(x - x') \psi_{1/t}(y - y') dy dy' dx dx' \frac{dt}{t} \right|
$$

\$\leq C'_{r,R} \prod_{k=1}^{3} ||f_{k}||_{L^{p_{k}}(\mathbb{R}^{2})}\$

A single Cauchy–Schwarz + a square function estimate:

$$
C'_{r,R}=O((\log(R/r))^{1/2})
$$

It could be interesting to study boundedness/cancellation of "volume-preserving" or "time reversed" multilinear singular integral operators

Thank you for your attention!