Variants of the Christ-Kiselev lemma and an application to the maximal Fourier restriction

Vjekoslav Kovač
University of Zagreb

Analysis Seminar
Georgia Tech
September 25, 2019

Block-diagonal truncation

$(\mathbb{X}, \mathcal{X}, \mu),(\mathbb{Y}, \mathcal{Y}, \nu) \sigma$-finite measure spaces, $N \in \mathbb{N}$
$\left(A_{n}\right)_{n=1}^{N}$ an \mathcal{X}-measurable partition of \mathbb{X}
$\left(B_{n}\right)_{n=1}^{N}$ a \mathcal{Y}-measurable partition of \mathbb{Y}
$1 \leqslant p \leqslant q<\infty$
Suppose that $T: \mathrm{L}^{p}(\mathbb{Y}, \mathcal{Y}, \nu) \rightarrow \mathrm{L}^{q}(\mathbb{X}, \mathcal{X}, \mu)$ is a bounded linear operator
A warm-up result
If

$$
\widetilde{T} f:=\sum_{n=1}^{N} \mathbb{1}_{A_{n}} T\left(f \mathbb{1}_{B_{n}}\right),
$$

then

$$
\|\tilde{T}\|_{L^{p} \rightarrow L^{q}} \leqslant\|T\|_{L^{p} \rightarrow L^{q}} .
$$

Block-diagonal truncation

$$
\begin{aligned}
& (T f)(x):=\int_{\mathbb{Y}} K(x, y) f(y) d \nu(y) \\
& \widetilde{K}(x, y):=\sum_{n=1}^{N} K(x, y) \mathbb{1}_{A_{n}}(x) \mathbb{1}_{B_{n}}(y) \\
& \begin{array}{c|l|l|l|}
B_{1} & B_{2} & B_{3} \\
A_{1} & & & \\
\cline { 2 - 4 } & & & \\
A_{2} & & & \\
\hdashline & & & \\
\hdashline A_{3} & & & \\
\hline
\end{array}
\end{aligned}
$$

Block-diagonal truncation

Proof.

Denote $C=\|T\|_{L^{p} \rightarrow L^{q}}$

$$
\begin{aligned}
\|\widetilde{T} f\|_{L^{q}} & =\left(\sum_{n=1}^{N}\left\|\mathbb{1}_{A_{n}} \widetilde{T} f\right\|_{L^{q}}^{q}\right)^{1 / q}=\left(\sum_{n=1}^{N}\left\|\mathbb{1}_{A_{n}} T\left(f \mathbb{1}_{B_{n}}\right)\right\|_{L^{q}}^{q}\right)^{1 / q} \\
& \leqslant\left(\sum_{n=1}^{N}\left\|T\left(f \mathbb{1}_{B_{n}}\right)\right\|_{L^{q}}^{q}\right)^{1 / q} \leqslant C\left(\sum_{n=1}^{N}\left\|f \mathbb{1}_{B_{n}}\right\|_{L^{p}}^{q}\right)^{1 / q} \\
& \leqslant C\left(\sum_{n=1}^{N}\left\|f \mathbb{1}_{B_{n}}\right\|_{L^{p}}^{p}\right)^{1 / p}=C\|f\|_{L^{p}}
\end{aligned}
$$

Block-triangular truncation

Now assume $1 \leqslant p<q<\infty$
Suppose that $T: \mathrm{L}^{p}(\mathbb{Y}, \mathcal{Y}, \nu) \rightarrow \mathrm{L}^{q}(\mathbb{X}, \mathcal{X}, \mu)$ is a bounded linear operator
Theorem (Christ and Kiselev, 2000)
If

$$
\widetilde{T} f:=\sum_{m, n} \mathbb{1}_{A_{m}} T\left(f \mathbb{1}_{B_{n}}\right),
$$

then

$$
\|\widetilde{T}\|_{\mathrm{L}^{p} \rightarrow \mathrm{~L}^{q}} \leqslant C_{p, q}\|T\|_{\mathrm{L}^{p} \rightarrow \mathrm{~L}^{q}} .
$$

Block-triangular truncation

$$
\begin{aligned}
& (T f)(x):=\int_{\mathbb{Y}} K(x, y) f(y) d \nu(y) \\
& \widetilde{K}(x, y):=\sum_{1 \leqslant n \leqslant m \leqslant N} K(x, y) \mathbb{1}_{A_{m}}(x) \mathbb{1}_{B_{n}}(y) \\
& \left.\begin{array}{c|l|l|l|l|}
B_{1} & B_{2} & B_{3} \\
A_{1} & & & & \\
\hline A_{2} & & & & \\
\hline A_{3} & & & \\
\hline
\end{array}\right] \\
&
\end{aligned}
$$

Block-triangular truncation

Proof (Tao, 2006).

We are showing

$$
\|\widetilde{T}\|_{L^{p} \rightarrow \mathrm{~L}^{q}} \leqslant \underbrace{\left(1-2^{1 / q-1 / p}\right)^{-1}}_{C_{p, q}}\|T\|_{L^{p} \rightarrow \mathrm{~L}^{q}}
$$

by the induction on N

- Normalize $\|T\|_{L^{p} \rightarrow L^{q}}=1,\|f\|_{L^{p}}=1$.
- Choose the unique $k \in\{1,2, \ldots, N\}$ such that

$$
\begin{gathered}
\left\|f \mathbb{1}_{B_{1} \cup \ldots \cup B_{k-1}}\right\|_{L^{p}}^{p} \leqslant \frac{1}{2}<\left\|f \mathbb{1}_{B_{1} \cup \cdots \cup B_{k}}\right\|_{L^{p}}^{p} \\
\Longrightarrow\left\|f \mathbb{1}_{B_{k+1} \cup \cdots \cup B_{N}}\right\|_{L^{p}}^{p}<\frac{1}{2} .
\end{gathered}
$$

Block-triangular truncation

Proof (Tao, 2006).

- The induction hypothesis gives:

$$
\begin{aligned}
& \left\|\mathbb{1}_{A_{1} \cup \cdots \cup A_{k-1}} \widetilde{T}\left(f \mathbb{1}_{B_{1} \cup \ldots \cup B_{k-1}}\right)\right\|_{L^{q}} \leqslant C_{p, q}\left\|f \mathbb{1}_{B_{1} \cup \ldots \cup B_{k-1}}\right\|_{L^{p}} \leqslant C_{p, q} 2^{-1 / p} \\
& \left\|\mathbb{1}_{A_{k+1} \cup \ldots \cup A_{N}} \widetilde{T}\left(f \mathbb{1}_{B_{k+1} \cup \ldots \cup B_{N}}\right)\right\|_{L^{q}} \leqslant C_{p, q}\left\|f \mathbb{1}_{B_{k+1} \cup \ldots \cup B_{N}}\right\|_{L^{p}} \leqslant C_{p, q} 2^{-1 / p}
\end{aligned}
$$

- Also clearly:

$$
\left\|\mathbb{1}_{A_{k} \cup \ldots \cup A_{N}} \widetilde{T}\left(f \mathbb{1}_{B_{1} \cup \cdots \cup B_{k}}\right)\right\|_{L^{q}}=\left\|\mathbb{1}_{A_{k} \cup \cdots \cup A_{N}} T\left(f \mathbb{1}_{B_{1} \cup \ldots \cup B_{k}}\right)\right\|_{L^{q}} \leqslant 1
$$

- Combine these to obtain:

$$
\|\widetilde{T} f\|_{L^{q}} \leqslant C_{p, q} 2^{1 / q-1 / p}+1=C_{p, q}
$$

A cheap maximal estimate

(J, \preceq) a countable totally ordered set, $\left(E_{j}\right)_{j \in J}$ an increasing collection in \mathcal{Y} $1 \leqslant p<q \leqslant \infty$
Suppose that $T: \mathrm{L}^{p}(\mathbb{Y}, \mathcal{Y}, \nu) \rightarrow \mathrm{L}^{q}(\mathbb{X}, \mathcal{X}, \mu)$ is a bounded linear operator
Theorem (Christ and Kiselev, 2000)
If

$$
T_{\star} f:=\sup _{j \in J}\left|T\left(f \mathbb{1}_{E_{j}}\right)\right|
$$

then T_{\star} is also bounded with

$$
\left\|T_{\star}\right\|_{L^{p} \rightarrow L^{q}} \leqslant C_{p, q}\|T\|_{L^{p} \rightarrow L^{q}} .
$$

Idea of proof. Assume $J=\{1,2, \ldots, N\}$.
Linearize $\left(T_{\star} f\right)(x)=\left|T\left(f \mathbb{1}_{E_{j(x)}}\right)(x)\right|$
and take $A_{m}:=\{x \in \mathbb{X}: j(x)=m\}, B_{n}:=E_{n} \backslash E_{n-1}$.

A cheap variational estimate

$\left(E_{n}\right)_{n \in \mathbb{Z}}$ an increasing collection in \mathcal{Y}
$1 \leqslant p<q \leqslant \infty, p<\varrho<\infty$
Suppose that $T: \mathrm{L}^{p}(\mathbb{Y}, \mathcal{Y}, \nu) \rightarrow \mathrm{L}^{q}(\mathbb{X}, \mathcal{X}, \mu)$ is a bounded linear operator
Theorem (Oberlin, Seeger, Tao, Thiele, and Wright, 2009)

$$
\begin{array}{r}
\left\|\sup _{\substack{k \in \mathbb{N} \\
n_{0}, n_{1}, \ldots n_{k} \in \mathbb{Z} \\
n_{0}<n_{1}<\cdots<n_{k}}}\left(\sum_{j=1}^{k}\left|T\left(f \mathbb{1}_{E_{n_{j}}}\right)-T\left(f \mathbb{1}_{E_{n_{j-1}}}\right)\right|^{\varrho}\right)^{1 / \varrho}\right\|_{L^{q}(\mathbb{X}, \mathcal{X}, \mu)} \\
\\
\leqslant C_{p, q, \varrho}\|T\|_{L^{p} \rightarrow L^{q}}\|f\|_{L^{p}(\mathbb{Y}, \mathcal{Y}, \nu)}
\end{array}
$$

Idea of proof. Reduce to $E_{0} \subseteq E_{1} \subseteq \cdots \subseteq E_{N}$ and induct on N.

The Fourier transform

$\mathcal{F}:\left\llcorner^{1}\left(\mathbb{R}^{d}\right) \rightarrow C_{0}\left(\mathbb{R}^{d}\right), \quad \mathcal{F}: f \mapsto \widehat{f}\right.$

$$
\widehat{f}(\xi):=\int_{\mathbb{R}^{d}} f(x) e^{-2 \pi i x \cdot \xi} \mathrm{~d} x
$$

\mathcal{F} extends to a unitary operator $\mathrm{L}^{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathrm{L}^{2}\left(\mathbb{R}^{d}\right)$
\mathcal{F} extends to a linear contraction $\mathrm{L}^{p}\left(\mathbb{R}^{d}\right) \rightarrow \mathrm{L}^{p^{\prime}}\left(\mathbb{R}^{d}\right)$ for $1<p<2$, where $\frac{1}{p}+\frac{1}{p^{\prime}}=1$, i.e. $p^{\prime}=\frac{p}{p-1}$

Restriction of the Fourier transform

$S=$ a (hyper)surface in \mathbb{R}^{d} (e.g. a paraboloid, a cone, a sphere)
Is it possible to give a meaning to $\left.\widehat{f}\right|_{S}$ when $f \in L^{p}(\mathbb{R})$? (Stein, late 1960s)

- $p=1 \rightsquigarrow$ YES, because \widehat{f} is continuous
- $p=2 \rightsquigarrow$ NO, since \widehat{f} is an arbitrary L^{2} function
- What can be said for $1<p<2$?

A question depending on S and p

A priori estimate

$\sigma=$ a measure on S, e.g. (appropriately weighted) surface measure
We want an estimate for the restriction operator

$$
\mathcal{R} f:=\left.\widehat{f}\right|_{S}
$$

of the form

$$
\|\widehat{f}\|_{L^{q}(S, \sigma)} \leqslant C\|f\|_{L^{p}\left(\mathbb{R}^{d}\right)}
$$

for some $1 \leqslant q \leqslant \infty$ and all functions $f \in \mathcal{S}\left(\mathbb{R}^{d}\right)$
How to "compute" $\left.\widehat{f}\right|_{s}$?
$\chi \in \mathcal{S}\left(\mathbb{R}^{d}\right), \int_{\mathbb{R}^{d}} \chi=1, \chi_{\varepsilon}(x):=\varepsilon^{-d} \chi\left(\varepsilon^{-1} x\right)$

$$
\left.\lim _{\varepsilon \rightarrow 0^{+}}\left(\widehat{f} * \chi_{\varepsilon}\right)\right|_{S} \text { exists in the norm of } \mathrm{L}^{q}(S, \sigma)
$$

Adjoint formulation

Equivalently, we want an estimate for the extension operator

$$
(\mathcal{E} g)(x)=\int_{S} e^{2 \pi i x \cdot \xi} g(\xi) \mathrm{d} \sigma(\xi)
$$

\mathcal{R} and \mathcal{E} are mutually adjoint:

$$
\langle\mathcal{R} f, g\rangle_{\mathrm{L}^{2}(S, \sigma)}=\langle f, \mathcal{E} g\rangle_{\mathrm{L}^{2}\left(\mathbb{R}^{d}\right)}
$$

$\mathcal{R}: \mathrm{L}^{p}\left(\mathbb{R}^{d}\right) \rightarrow \mathrm{L}^{q}(S, \sigma) \quad \Longleftrightarrow \mathcal{E}: \mathrm{L}^{q^{\prime}}(S, \sigma) \rightarrow \mathrm{L}^{p^{\prime}}\left(\mathbb{R}^{d}\right)$

$T^{*} T$ method

For $q=2$ one can use the $T^{*} T$ trick: $\left\|T^{*} T\right\|=\|T\|^{2}$

$$
\begin{gathered}
(\mathcal{E R} f)(x)=\int_{\mathbb{R}^{d}} f(y)\left(\int_{\mathbb{R}^{d}} e^{2 \pi i(x-y) \cdot \xi} \mathrm{d} \sigma(\xi)\right) \mathrm{d} y \\
\Longrightarrow \mathcal{E R} f=f * \check{\sigma}
\end{gathered}
$$

$\mathcal{E R}: \mathrm{L}^{p}\left(\mathbb{R}^{d}\right) \rightarrow \mathrm{L}^{p^{\prime}}\left(\mathbb{R}^{d}\right)(?)$
Take the sphere \mathbb{S}^{d-1} with its surface measure σ
$\Longrightarrow|\check{\sigma}(x)| \leqslant C(1+|x|)^{-(d-1) / 2}$
Young's inequality for convolution (Fefferman/Stein, 1970): $p<\frac{4 d}{3 d+1}$
Applied on dyadic annuli (Tomas/Stein, 1975): $p \leqslant \frac{2(d+1)}{d+3} \rightsquigarrow$ optimal (note $p<q=2$)

Restriction conjecture in $d=2$

Essentially solved: $p<\frac{4}{3}, q \leqslant \frac{p^{\prime}}{3}$

- For $S=\mathbb{S}^{1} \rightsquigarrow$ Zygmund, 1974
- For compact C^{2} curves S with curvature $\kappa \geqslant 0$ $\mathrm{d} \sigma=$ arclength measure weighted by $\kappa^{1 / 3}$
\rightsquigarrow Carleson and Sjölin, 1972; Sjölin, 1974

Restriction conjecture in $d \geqslant 3$

Largely open, even for the three classical hypersurfaces

- paraboloid $\left\{\xi=\left(\eta,-2 \pi k|\eta|^{2}\right): \eta \in \mathbb{R}^{d-1}\right\}$ with $\mathrm{d} \sigma(\xi)=\mathrm{d} \eta$

$q=2 \rightsquigarrow$ Strichartz estimates for the Schrödinger equation

$$
\left\{\begin{array}{l}
i \partial_{t} u+k \Delta u=0 \quad \text { in } \mathbb{R}^{d-1} \\
u(\cdot, 0)=u_{0}
\end{array}\right.
$$

Conjecture: $p<\frac{2 d}{d+1}, q=\frac{(d-1) p^{\prime}}{d+1}$

Restriction conjecture in $d \geqslant 3$

- cone $\left\{\xi=(\eta, \pm k|\eta|): \eta \in \mathbb{R}^{d-1}\right\}$ with $\mathrm{d} \sigma(\xi)=\mathrm{d} \eta /|\eta|$

$q=2 \rightsquigarrow$ Strichartz estimates for the wave equation

$$
\left\{\begin{array}{l}
\partial_{t}^{2} u-k^{2} \Delta u=0 \quad \text { in } \mathbb{R}^{d-1} \\
u(\cdot, 0)=u_{0}, \partial_{t} u(\cdot, 0)=u_{1}
\end{array}\right.
$$

Conjecture: $p<\frac{2(d-1)}{d}, q=\frac{(d-2) p^{\prime}}{d}$

Restriction conjecture in $d \geqslant 3$

- sphere $\left\{\xi \in \mathbb{R}^{d}:|\xi|=k / 2 \pi\right\}$ with surface measure σ

$q=2 \rightsquigarrow$ The Helmholtz equation

$$
\Delta u+k^{2} u=0 \quad \text { in } \mathbb{R}^{d}
$$

Conjecture: $p<\frac{2 d}{d+1}, q \leqslant \frac{(d-1) p^{\prime}}{d+1} \quad$ (note $p<q$ at the endpoint)

Maximal Fourier restriction

Theorem (Müller, Ricci, and Wright, 2016)
$d=2, S=C^{2}$ curve with $\kappa \geqslant 0, \mathrm{~d} \sigma=\kappa^{1 / 3} \mathrm{~d} l$, $\chi \in \mathcal{S}\left(\mathbb{R}^{d}\right), p<\frac{4}{3}, q \leqslant \frac{p^{\prime}}{3}$

$$
\left\|\sup _{t>0} \mid \widehat{f} * \chi_{t}\right\|_{L^{q}(S, \sigma)} \leqslant C\|f\|_{L^{p}\left(\mathbb{R}^{d}\right)}
$$

For $f \in \mathrm{~L}^{p}\left(\mathbb{R}^{d}\right)$ the restriction $\left.\widehat{f}\right|_{s}$ makes sense pointwise, i.e.

$$
\lim _{\varepsilon \rightarrow 0^{+}}\left(\widehat{f} * \chi_{\varepsilon}\right)(\xi) \quad \text { exists for } \sigma \text {-a.e. } \xi \in S
$$

(pointwise convergence on $\mathcal{S}\left(\mathbb{R}^{d}\right)+$ maximal estimate)

Higher dimensions

Theorem (Vitturi, 2017)
$d \geqslant 3, S=\mathbb{S}^{d-1}, \sigma=$ surface measure,
$\chi \in \mathcal{S}\left(\mathbb{R}^{d}\right), p \leqslant \frac{4}{3}, q \leqslant \frac{(d-1) p^{\prime}}{d+1}$
(strict subset of the Tomas-Stein range, i.e. $q=2$, when $d \geqslant 4$)

$$
\left\|\sup _{t>0}\left|\widehat{f} * \chi_{t}\right|\right\|_{\mathrm{L}^{q}\left(\mathbb{S}^{d-1}, \sigma\right)} \leqslant C\|f\|_{\mathrm{L}^{p}\left(\mathbb{R}^{d}\right)}
$$

Idea: inserting the maximal function inside the non-oscillatory restriction estimate

Variational Fourier restriction

Can we do it "quantitatively"? Variational (semi)norms
Theorem (K. and Oliveira e Silva, 2018)
$\sigma=$ surface measure on $\mathbb{S}^{2} \subset \mathbb{R}^{3}, \chi \in \mathcal{S}\left(\mathbb{R}^{3}\right)$ or $\chi=\mathbb{1}_{\mathrm{B}(0,1)}, \varrho>2$

$$
\left\|\sup _{0<t_{0}<t_{1}<\cdots<t_{m}}\left(\sum_{j=1}^{m}\left|\widehat{f} * \chi_{t_{j}}-\widehat{f} * \chi_{t_{j-1}}\right|^{\varrho}\right)^{1 / \varrho}\right\|_{L^{2}\left(\mathbb{S}^{2}, \sigma\right)} \leqslant C\|f\|_{L^{4 / 3}\left(\mathbb{R}^{3}\right)}
$$

If $f \in L^{4 / 3}\left(\mathbb{R}^{3}\right)$, then for σ-a.e. $\xi \in \mathbb{S}^{2}$:

$$
\sup _{0<t_{0}<t_{1}<\cdots<t_{m}}\left(\sum_{j=1}^{m}\left|\left(\widehat{f} * \chi_{t_{j}}\right)(\xi)-\left(\widehat{f} * \chi_{t_{j-1}}\right)(\xi)\right|^{\varrho}\right)^{1 / \varrho}<\infty
$$

$\Longrightarrow\left(\left(\hat{f} * \chi_{\varepsilon}\right)(\xi)\right)_{\varepsilon>0}$ makes $O\left(\delta^{-\varrho}\right)$ jumps of size $\geqslant \delta$

Abstract principle

Theorem (K., 2018)

$S \subseteq \mathbb{R}^{d}$ a measurable set, $\sigma=$ a measure on S, $\mu=$ a complex measure on $\mathbb{R}^{d}, \mu_{t}(E):=\mu\left(t^{-1} E\right), \widehat{\mu} \in C^{\infty}, \eta>0$

$$
|\nabla \widehat{\mu}(x)| \leqslant D(1+|x|)^{-1-\eta}
$$

Suppose that for some $1 \leqslant p \leqslant 2, p<q<\infty$ the a priori F. r. estimate holds. Then we have the maximal F. r. estimate:

$$
\left\|\sup _{t \in(0, \infty)}\left|\widehat{f} * \mu_{t}\right|\right\|_{L^{q}(S, \sigma)} \leqslant C\|f\|_{L^{p}\left(\mathbb{R}^{d}\right)}
$$

and for $p<\varrho<\infty$ we have the variational F.r. estimate:

$$
\left\|\sup _{0<t_{0}<t_{1}<\cdots<t_{m}}\left(\sum_{j=1}^{m}\left|\widehat{f} * \mu_{t_{j}}-\widehat{f} * \mu_{t_{j-1}}\right|^{\varrho}\right)^{1 / \varrho}\right\|_{L^{q}(S, \sigma)} \leqslant C\|f\|_{L^{p}\left(\mathbb{R}^{d}\right)}
$$

Consequences

- Covers the full Tomas-Stein range for the sphere \mathbb{S}^{d-1}
- Covers any known range for the paraboloid or the cone
- One can take $\mathrm{d} \mu(x)=\chi(x) \mathrm{d} x, \chi \in \mathcal{S}\left(\mathbb{R}^{d}\right)$ or $\chi=\mathbb{1}_{\mathrm{B}(0,1)}$
- One can take μ to be the surface measure on \mathbb{S}^{d-1} in dimensions $d \geqslant 4 \rightsquigarrow$ spherical averages of \widehat{f} :

$$
\frac{1}{\mu\left(\mathbb{S}^{d-1}\right)} \int_{\mathbb{S}^{d-1}} \widehat{f}(\xi+\varepsilon \zeta) \mathrm{d} \mu(\zeta)
$$

The proof

The idea of proof

- "Imagine" that $\check{\mu}=\mathbb{1}_{E}$, where $0 \in E \in \mathbb{R}^{d}$ is a convex set $\Longrightarrow \check{\mu}(t x)=\mathbb{1}_{E_{t}}(x)$, where $E_{t}=t^{-1} E$ for $t \in \mathbb{Q}^{+}$ $t<t^{\prime} \Longrightarrow E_{t} \supseteq E_{t^{\prime}}$
- $\widehat{f} * \mu_{t}=(f(x) \check{\mu}(t x))^{\wedge}$
$\Longrightarrow \sup _{t \in \mathbb{Q}^{+}}\left|\widehat{f} * \mu_{t}\right|=\mathcal{F}_{*} f$
- maximal and variational Christ-Kiselev lemmae apply
- \mathcal{F}_{*} was already known to be bounded (in 1D) by the Menshov-Paley-Zygmund theorem

The proof

The actual proof (handling overlaps)

- Begin by proving the variational estimate
- Represent $\check{\mu}$ as a superposition of "nice" cutoffs
- Split into long variations (over $\left\{2^{k}: k \in \mathbb{Z}\right\}$) and short variations (over $\left[2^{k}, 2^{k+1}\right]$) following the approach of Jones, Seeger, and Wright, 2008
- For long variations use the variational Christ-Kiselev lemma by Oberlin, Seeger, Tao, Thiele, and Wright, 2009
- Short variations are trivial by an off-diagonal square function estimate

Subsequent research

Theorem (Ramos, 2019)
$\mu=$ a measure on $\mathbb{R}^{2}, p<\frac{4}{3}, q \leqslant \frac{p^{\prime}}{3}$
Maximal F.r. for \mathbb{S}^{1} holds as soon as $\mathrm{M}_{\mu} g:=\sup _{t>0}\left|g * \mu_{t}\right|$ is bounded on $L^{r}\left(\mathbb{R}^{2}\right)$ for $r>2$.
$\mu=$ a measure on $\mathbb{R}^{3}, p \leqslant \frac{4}{3}, q \leqslant 2$
Maximal F.r. for \mathbb{S}^{2} holds as soon as $\mathrm{M}_{\mu} g:=\sup _{t>0}\left|g * \mu_{t}\right|$ is bounded on $\mathrm{L}^{2}\left(\mathbb{R}^{3}\right)$.
\Longleftarrow spherical averages in $d=2,3$ (Bourgain, 1986; Stein, 1976)

Thank you for your attention!

