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Block-diagonal truncation

(X,X , µ), (Y,Y, ν) σ-finite measure spaces, N ∈ N
(An)N

n=1 an X -measurable partition of X
(Bn)N

n=1 a Y-measurable partition of Y
1 6 p 6 q <∞

Suppose that T : Lp(Y,Y, ν)→ Lq(X,X , µ) is a bounded linear operator

A warm-up result
If

T̃ f :=
N∑

n=1

1AnT (f 1Bn),

then
‖T̃‖Lp→Lq 6 ‖T‖Lp→Lq .
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Block-diagonal truncation

(Tf )(x) :=

∫
Y
K (x , y)f (y)dν(y)

K̃ (x , y) :=
N∑

n=1

K (x , y)1An(x)1Bn(y)
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Block-diagonal truncation

Proof.
Denote C = ‖T‖Lp→Lq

‖T̃ f ‖Lq =
( N∑

n=1

‖1An T̃ f ‖qLq

)1/q
=
( N∑

n=1

‖1AnT (f 1Bn)‖qLq

)1/q

6
( N∑

n=1

‖T (f 1Bn)‖qLq

)1/q
6 C

( N∑
n=1

‖f 1Bn‖
q
Lp

)1/q

6 C
( N∑

n=1

‖f 1Bn‖
p
Lp

)1/p
= C‖f ‖Lp
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Block-triangular truncation

Now assume 1 6 p < q <∞

Suppose that T : Lp(Y,Y, ν)→ Lq(X,X , µ) is a bounded linear operator

Theorem (Christ and Kiselev, 2000)
If

T̃ f :=
∑
m,n

16n6m6N

1AmT (f 1Bn),

then
‖T̃‖Lp→Lq 6 Cp,q‖T‖Lp→Lq .
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Block-triangular truncation

(Tf )(x) :=

∫
Y
K (x , y)f (y)dν(y)

K̃ (x , y) :=
∑

16n6m6N

K (x , y)1Am(x)1Bn(y)
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Block-triangular truncation

Proof (Tao, 2006).
We are showing

‖T̃‖Lp→Lq 6
(
1− 21/q−1/p)−1︸ ︷︷ ︸

Cp,q

‖T‖Lp→Lq

by the induction on N

Normalize ‖T‖Lp→Lq = 1, ‖f ‖Lp = 1.
Choose the unique k ∈ {1, 2, . . . ,N} such that

‖f 1B1∪···∪Bk−1‖
p
Lp 6 1

2 < ‖f 1B1∪···∪Bk‖
p
Lp

=⇒ ‖f 1Bk+1∪···∪BN‖
p
Lp < 1

2 .
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Block-triangular truncation

Proof (Tao, 2006).
The induction hypothesis gives:∥∥1A1∪···∪Ak−1T̃ (f 1B1∪···∪Bk−1)

∥∥
Lq 6 Cp,q‖f 1B1∪···∪Bk−1‖Lp 6 Cp,q2−1/p

∥∥1Ak+1∪···∪AN T̃ (f 1Bk+1∪···∪BN )
∥∥

Lq 6 Cp,q‖f 1Bk+1∪···∪BN‖Lp 6 Cp,q2−1/p

Also clearly:∥∥1Ak∪···∪AN T̃ (f 1B1∪···∪Bk )
∥∥

Lq =
∥∥1Ak∪···∪ANT (f 1B1∪···∪Bk )

∥∥
Lq 6 1

Combine these to obtain:

‖T̃ f ‖Lq 6 Cp,q21/q−1/p + 1 = Cp,q
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A cheap maximal estimate

(J,�) a countable totally ordered set, (Ej)j∈J an increasing collection in Y
1 6 p < q 6∞
Suppose that T : Lp(Y,Y, ν)→ Lq(X,X , µ) is a bounded linear operator

Theorem (Christ and Kiselev, 2000)
If

T?f := sup
j∈J
|T (f 1Ej )|,

then T? is also bounded with

‖T?‖Lp→Lq 6 Cp,q‖T‖Lp→Lq .

Idea of proof. Assume J = {1, 2, . . . ,N}.
Linearize (T?f )(x) = |T (f 1Ej(x))(x)|
and take Am := {x ∈ X : j(x) = m}, Bn := En \ En−1.
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A cheap variational estimate

(En)n∈Z an increasing collection in Y
1 6 p < q 6∞, p < % <∞

Suppose that T : Lp(Y,Y, ν)→ Lq(X,X , µ) is a bounded linear operator

Theorem (Oberlin, Seeger, Tao, Thiele, and Wright, 2009)

∥∥∥∥∥ sup
k∈N

n0,n1,...,nk∈Z
n0<n1<···<nk

( k∑
j=1

∣∣T (f 1Enj
)− T (f 1Enj−1

)
∣∣%)1/%

∥∥∥∥∥
Lq(X,X ,µ)

6 Cp,q,%‖T‖Lp→Lq‖f ‖Lp(Y,Y,ν)

Idea of proof. Reduce to E0 ⊆ E1 ⊆ · · · ⊆ EN and induct on N.
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The Fourier transform

F : L1(Rd )→ C0(Rd ), F : f 7→ f̂

f̂ (ξ) :=

∫
Rd

f (x)e−2πix ·ξ dx

F extends to a unitary operator L2(Rd )→ L2(Rd )

F extends to a linear contraction Lp(Rd )→ Lp′(Rd ) for 1 < p < 2,

where 1
p + 1

p′ = 1, i.e. p′ = p
p−1
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Restriction of the Fourier transform

S = a (hyper)surface in Rd (e.g. a paraboloid, a cone, a sphere)

Is it possible to give a meaning to f̂ |S when f ∈ Lp(R)? (Stein, late 1960s)

p = 1  YES, because f̂ is continuous

p = 2  NO, since f̂ is an arbitrary L2 function

What can be said for 1 < p < 2?
A question depending on S and p
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A priori estimate

σ = a measure on S , e.g. (appropriately weighted) surface measure

We want an estimate for the restriction operator

Rf := f̂ |S

of the form ∥∥f̂ ∥∥Lq(S ,σ) 6 C‖f ‖Lp(Rd )

for some 1 6 q 6∞ and all functions f ∈ S(Rd )

How to “compute” f̂ |S?

χ ∈ S(Rd ),
∫
Rd χ = 1, χε(x) := ε−dχ(ε−1x)

lim
ε→0+

(
f̂ ∗ χε

)∣∣
S exists in the norm of Lq(S , σ)
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Adjoint formulation

Equivalently, we want an estimate for the extension operator

(Eg)(x) =

∫
S
e2πix ·ξg(ξ) dσ(ξ)

R and E are mutually adjoint:

〈Rf , g〉L2(S ,σ) = 〈f , Eg〉L2(Rd )

R : Lp(Rd )→ Lq(S , σ) ⇐⇒ E : Lq′(S , σ)→ Lp′(Rd )
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T ∗T method

For q = 2 one can use the T ∗T trick: ‖T ∗T‖ = ‖T‖2

(ERf )(x) =

∫
Rd

f (y)
(∫

Rd
e2πi(x−y)·ξ dσ(ξ)

)
dy

=⇒ ERf = f ∗ σ̌

ER : Lp(Rd )→ Lp′(Rd ) (?)

Take the sphere Sd−1 with its surface measure σ
=⇒ |σ̌(x)| 6 C (1 + |x |)−(d−1)/2

Young’s inequality for convolution (Fefferman/Stein, 1970): p < 4d
3d+1

Applied on dyadic annuli (Tomas/Stein, 1975): p 6 2(d+1)
d+3  optimal

(note p < q = 2)
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Restriction conjecture in d = 2

Essentially solved: p < 4
3 , q 6

p′
3

For S = S1  Zygmund, 1974

For compact C2 curves S with curvature κ > 0

dσ = arclength measure weighted by κ1/3

 Carleson and Sjölin, 1972; Sjölin, 1974
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Restriction conjecture in d > 3

Largely open, even for the three classical hypersurfaces
paraboloid {ξ = (η,−2πk |η|2) : η ∈ Rd−1} with dσ(ξ) = dη

q = 2  Strichartz estimates for the Schrödinger equation{
i∂tu + k∆u = 0 in Rd−1

u(·, 0) = u0

Conjecture: p < 2d
d+1 , q = (d−1)p′

d+1 (note p < q)
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Restriction conjecture in d > 3

cone {ξ = (η,±k |η|) : η ∈ Rd−1} with dσ(ξ) = dη/|η|

q = 2  Strichartz estimates for the wave equation{
∂2

t u − k2∆u = 0 in Rd−1

u(·, 0) = u0, ∂tu(·, 0) = u1

Conjecture: p < 2(d−1)
d , q = (d−2)p′

d (note p < q)
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Restriction conjecture in d > 3

sphere {ξ ∈ Rd : |ξ| = k/2π} with surface measure σ

q = 2  The Helmholtz equation

∆u + k2u = 0 in Rd

Conjecture: p < 2d
d+1 , q 6

(d−1)p′
d+1 (note p < q at the endpoint)
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Maximal Fourier restriction

Theorem (Müller, Ricci, and Wright, 2016)

d = 2, S = C2 curve with κ > 0, dσ = κ1/3 dl ,
χ ∈ S(Rd ), p < 4

3 , q 6
p′
3∥∥∥ sup

t>0
|f̂ ∗ χt |

∥∥∥
Lq(S ,σ)

6 C‖f ‖Lp(Rd )

For f ∈ Lp(Rd ) the restriction f̂ |S makes sense pointwise, i.e.

lim
ε→0+

(
f̂ ∗ χε

)
(ξ) exists for σ-a.e. ξ ∈ S

(pointwise convergence on S(Rd ) + maximal estimate)
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Higher dimensions

Theorem (Vitturi, 2017)

d > 3, S = Sd−1, σ = surface measure,
χ ∈ S(Rd ), p 6 4

3 , q 6
(d−1)p′

d+1

(strict subset of the Tomas–Stein range, i.e. q = 2, when d > 4)∥∥∥ sup
t>0
|f̂ ∗ χt |

∥∥∥
Lq(Sd−1,σ)

6 C‖f ‖Lp(Rd )

Idea: inserting the maximal function inside the non-oscillatory restriction
estimate
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Variational Fourier restriction

Can we do it “quantitatively”? Variational (semi)norms

Theorem (K. and Oliveira e Silva, 2018)

σ = surface measure on S2 ⊂ R3, χ ∈ S(R3) or χ = 1B(0,1), % > 2∥∥∥∥ sup
0<t0<t1<···<tm

( m∑
j=1

∣∣f̂ ∗ χtj − f̂ ∗ χtj−1

∣∣%)1/%
∥∥∥∥

L2(S2,σ)
6 C‖f ‖L4/3(R3)

If f ∈ L4/3(R3), then for σ-a.e. ξ ∈ S2:

sup
0<t0<t1<···<tm

( m∑
j=1

∣∣(f̂ ∗ χtj )(ξ)− (f̂ ∗ χtj−1)(ξ)
∣∣%)1/%

<∞

=⇒
((

f̂ ∗ χε
)
(ξ)
)
ε>0 makes O(δ−%) jumps of size > δ
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Abstract principle

Theorem (K., 2018)

S ⊆ Rd a measurable set, σ = a measure on S,
µ = a complex measure on Rd , µt(E ) := µ(t−1E ), µ̂ ∈ C∞, η > 0

|∇µ̂(x)| 6 D(1 + |x |)−1−η

Suppose that for some 1 6 p 6 2, p < q <∞ the a priori F. r. estimate
holds. Then we have the maximal F. r. estimate:∥∥∥ sup

t∈(0,∞)

∣∣f̂ ∗ µt
∣∣∥∥∥

Lq(S ,σ)
6 C‖f ‖Lp(Rd )

and for p < % <∞ we have the variational F. r. estimate:∥∥∥∥ sup
0<t0<t1<···<tm

( m∑
j=1

∣∣f̂ ∗ µtj − f̂ ∗ µtj−1

∣∣%)1/%
∥∥∥∥

Lq(S ,σ)
6 C‖f ‖Lp(Rd )
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Consequences

Covers the full Tomas–Stein range for the sphere Sd−1

Covers any known range for the paraboloid or the cone

One can take dµ(x) = χ(x) dx , χ ∈ S(Rd ) or χ = 1B(0,1)

One can take µ to be the surface measure on Sd−1 in dimensions
d > 4  spherical averages of f̂ :

1
µ(Sd−1)

∫
Sd−1

f̂ (ξ + εζ) dµ(ζ)
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The proof

The idea of proof

“Imagine” that µ̌ = 1E , where 0 ∈ E ∈ Rd is a convex set

=⇒ µ̌(tx) = 1Et (x), where Et = t−1E for t ∈ Q+

t < t ′ =⇒ Et ⊇ Et′

f̂ ∗ µt = (f (x)µ̌(tx))̂

=⇒ supt∈Q+ |f̂ ∗ µt | = F∗f

maximal and variational Christ–Kiselev lemmae apply

F∗ was already known to be bounded (in 1D) by the
Menshov–Paley–Zygmund theorem
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The proof

The actual proof (handling overlaps)

Begin by proving the variational estimate

Represent µ̌ as a superposition of “nice” cutoffs

Split into long variations (over {2k : k ∈ Z}) and short variations (over
[2k , 2k+1]) following the approach of Jones, Seeger, and Wright, 2008

For long variations use the variational Christ–Kiselev lemma by
Oberlin, Seeger, Tao, Thiele, and Wright, 2009

Short variations are trivial by an off-diagonal square function estimate
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Subsequent research

Theorem (Ramos, 2019)

µ = a measure on R2, p < 4
3 , q 6

p′
3

Maximal F. r. for S1 holds as soon as Mµg := supt>0 |g ∗ µt | is bounded on
Lr (R2) for r > 2.

µ = a measure on R3, p 6 4
3 , q 6 2

Maximal F. r. for S2 holds as soon as Mµg := supt>0 |g ∗ µt | is bounded on
L2(R3).

⇐= spherical averages in d = 2, 3 (Bourgain, 1986; Stein, 1976)
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Thank you for your attention!
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