Density theorems for anisotropic point configurations

and related joint work with P. Durcik, K. Falconer, L. Rimanić, and A. Yavicoli

Vjekoslav Kovač* (University of Zagreb)
2021 Canadian Mathematical Society Winter Meeting (online)
Harmonic Analysis and Fractal Geometry special session
December 4, 2021

* Supported by HRZZ UIP-2017-05-4129 (MUNHANAP)

Density theorems

EuClidean density theorems

There exist patterns in large but otherwise arbitrary structures.

The main idea behind Ramsey theory (\subseteq combinatorics), but also widespread in other areas of mathematics.

Euclidean density theorems belong to:

- geometric measure theory (28A12, etc.),
- Ramsey theory (05D10),
- arithmetic combinatorics (11B25, 11B30, etc.).

Harmonic analysis seems to be the most powerful tool for attacking this type of problems.

EUCL. DENSITY THEOREMS STUDY "LARGE" MEASURABLE SETS

When is a measurable set A considered large?

- For $A \subseteq[0,1]^{d}$ this means

$$
|A|>0
$$

(the Lebesgue measure).

- For $A \subseteq \mathbb{R}^{d}$ this means

$$
\bar{\delta}(A):=\limsup _{R \rightarrow \infty} \sup _{x \in \mathbb{R}^{d}} \frac{\left|A \cap\left(x+[0, R]^{d}\right)\right|}{R^{d}}>0
$$

(the upper Banach density).

Classical results

Classical results

A question by Székely (1982):
Does for every measurable set $A \subseteq \mathbb{R}^{2}$ satisfying $\bar{\delta}(A)>0$ there exist a number $\lambda_{0}=\lambda_{0}(A)$ such that for each $\lambda \in\left[\lambda_{0}, \infty\right)$ there exist points $x, x^{\prime} \in A$ satisfying $\left|x-x^{\prime}\right|=\lambda$?

Classical results

A question by Székely (1982):
Does for every measurable set $A \subseteq \mathbb{R}^{2}$ satisfying $\bar{\delta}(A)>0$ there exist a number $\lambda_{0}=\lambda_{0}(A)$ such that for each $\lambda \in\left[\lambda_{0}, \infty\right)$ there exist points $x, x^{\prime} \in A$ satisfying $\left|x-x^{\prime}\right|=\lambda$?

Yes.
Furstenberg, Katznelson, and Weiss (1980s),
Falconer and Marstrand (1986),
Bourgain (1986).

Simplices

$\Delta=$ the set of vertices of a non-degenerate n-dimensional simplex Bourgain (1986):
For every measurable set $A \subseteq \mathbb{R}^{n+1}$ satisfying $\bar{\delta}(A)>0$ there is a number $\lambda_{0}=\lambda_{0}(A, \Delta)$ such that for each $\lambda \in\left[\lambda_{0}, \infty\right)$ the set A contains an isometric copy of $\lambda \Delta$.

Simplices

$\Delta=$ the set of vertices of a non-degenerate n-dimensional simplex Bourgain (1986):
For every measurable set $A \subseteq \mathbb{R}^{n+1}$ satisfying $\bar{\delta}(A)>0$ there is a number $\lambda_{0}=\lambda_{0}(A, \Delta)$ such that for each $\lambda \in\left[\lambda_{0}, \infty\right)$ the set A contains an isometric copy of $\lambda \Delta$.

Alternative proofs by Lyall and Magyar (2016, 2018, 2019), K. (2021).
(Bourgain?):
When $n \geq 2$, does the same hold for subsets of \mathbb{R}^{n} ?

Degenerate triangle counterexample

Bourgain (1986) also gave a counterexample for 3-term arithmetic progressions, i.e., isometric copies of dilates of $\{0,1,2\}$.

$$
A:=\left\{x \in \mathbb{R}^{d}:(\exists m \in \mathbb{Z})\left(m-\varepsilon<|x|^{2}<m+\varepsilon\right)\right\}
$$

- Take some $0<\varepsilon<1 / 8$. We have $\bar{\delta}(A)=2 \varepsilon>0$.
- The parallelogram law:

$$
|x|^{2}-2|x+y|^{2}+|x+2 y|^{2}=|y|^{2} .
$$

- $x, x+y, x+2 y \in A$
 $\operatorname{dist}\left(|x|^{2}, \mathbb{Z}\right), \operatorname{dist}\left(|x+y|^{2}, \mathbb{Z}\right), \operatorname{dist}\left(|x+2 y|^{2}, \mathbb{Z}\right)<\varepsilon$
$\Longrightarrow \operatorname{dist}\left(2|y|^{2}, \mathbb{Z}\right)<4 \varepsilon<1 / 2$
\Longrightarrow not all large numbers are attained by $|y|$

Boxes (Product-type configurations)

$\square=$ the set of vertices of an n-dimensional rectangular box Lyall and Magyar (2016, 2019):
For every measurable set $A \subseteq \mathbb{R}^{2} \times \cdots \times \mathbb{R}^{2}=\left(\mathbb{R}^{2}\right)^{n}$ satisfying
$\bar{\delta}(A)>0$ there is a number $\lambda_{0}=\lambda_{0}(A, \square)$ such that for each $\lambda \in\left[\lambda_{0}, \infty\right)$ the set A contains an isometric copy of $\lambda \square$ with sides parallel to the distinguished 2-dimensional coordinate planes.

Boxes (PRoduct-type configurations)

$\square=$ the set of vertices of an n-dimensional rectangular box Lyall and Magyar (2016, 2019):
For every measurable set $A \subseteq \mathbb{R}^{2} \times \cdots \times \mathbb{R}^{2}=\left(\mathbb{R}^{2}\right)^{n}$ satisfying
$\bar{\delta}(A)>0$ there is a number $\lambda_{0}=\lambda_{0}(A, \square)$ such that for each $\lambda \in\left[\lambda_{0}, \infty\right)$ the set A contains an isometric copy of $\lambda \square$ with sides parallel to the distinguished 2-dimensional coordinate planes.

Alternative proofs by Durcik and K. (2018: in $\left.\left(\mathbb{R}^{5}\right)^{n}, 2020\right)$.

Generalizations

(Graham? Furstenberg?):

Which point configurations P have the following property: for some (sufficiently large) dimension d and every measurable $A \subseteq \mathbb{R}^{d}$ with $\bar{\delta}(A)>0$ there exists $\lambda_{0}=\lambda_{0}(P, A) \in(0, \infty)$ such that for every $\lambda \geq \lambda_{0}$ the set A contains an isometric copy of λP ?

Generalizations

(Graham? Furstenberg?):
Which point configurations P have the following property: for some (sufficiently large) dimension d and every measurable $A \subseteq \mathbb{R}^{d}$ with $\bar{\delta}(A)>0$ there exists $\lambda_{0}=\lambda_{0}(P, A) \in(0, \infty)$ such that for every $\lambda \geq \lambda_{0}$ the set A contains an isometric copy of λP ?

The most general positive result is due to Lyall and Magyar (2019): This holds for products of vertex-sets of nondegenerate simplices $\Delta_{1} \times \cdots \times \Delta_{m}$.

The most general negative result is due to Graham (1993): This fails for configurations that cannot be inscribed in a sphere.

Compact formulations - Back to simplices

$\Delta=$ the set of vertices of a non-degenerate n-dimensional simplex
Bourgain (1986):
Take $\delta \in(0,1 / 2], A \subseteq[0,1]^{n+1}$ measurable, $|A| \geq \delta$.
Then the set of "scales"

$$
\{\lambda \in(0,1]: \text { A contains an isometric copy of } \lambda \Delta\}
$$

contains an interval of length at least $\left(\exp \left(\delta^{-C(\Delta, n)}\right)\right)^{-1}$.

$$
2
$$

Compact formulations - Back to simplices

$\Delta=$ the set of vertices of a non-degenerate n-dimensional simplex
Bourgain (1986):
Take $\delta \in(0,1 / 2], A \subseteq[0,1]^{n+1}$ measurable, $|A| \geq \delta$.
Then the set of "scales"

$$
\{\lambda \in(0,1]: \text { A contains an isometric copy of } \lambda \Delta\}
$$

contains an interval of length at least $\left(\exp \left(\delta^{-C(\Delta, n)}\right)\right)^{-1}$.

Such formulation is qualitatively weaker, but it is quantitative.
One can try to "beat the current record" for dependencies on δ.

General approach

General scheme of the approach

Abstracted from:
Bourgain (1986) and Cook, Magyar, and Pramanik (2017)
$\mathcal{N}_{\lambda}^{0}=$ configuration "counting" form, identifies the configuration associated with the parameter $\lambda>0$ (i.e., of "size" λ)
$\mathcal{N}_{\lambda}^{\varepsilon}=$ smoothened counting form; the picture is blurred up to scale $0<\varepsilon \leq 1$

The largeness-smoothness multiscale approach:

- $\lambda=$ scale of largeness,
- $\varepsilon=$ scale of smoothness.

General scheme of the approach (Continued)

Decompose:

$$
\mathcal{N}_{\lambda}^{0}=\mathcal{N}_{\lambda}^{1}+\left(\mathcal{N}_{\lambda}^{\varepsilon}-\mathcal{N}_{\lambda}^{1}\right)+\left(\mathcal{N}_{\lambda}^{0}-\mathcal{N}_{\lambda}^{\varepsilon}\right) .
$$

$\mathcal{N}_{\lambda}^{1}=$ structured part,
$\mathcal{N}_{\lambda}^{\varepsilon}-\mathcal{N}_{\lambda}^{1}=$ error part,
$\mathcal{N}_{\lambda}^{0}-\mathcal{N}_{\lambda}^{\varepsilon}=$ uniform part.

General scheme of the approach (CONTINUED)

For the structured part $\mathcal{N}_{\lambda}^{1}$ we need a lower bound

$$
\mathcal{N}_{\lambda}^{1} \geq c(\delta)
$$

that is uniform in λ, but this should be a simpler/smoother problem.
For the uniform part $\mathcal{N}_{\lambda}^{0}-\mathcal{N}_{\lambda}^{\varepsilon}$ we want

$$
\lim _{\varepsilon \rightarrow 0}\left|\mathcal{N}_{\lambda}^{0}-\mathcal{N}_{\lambda}^{\varepsilon}\right|=0
$$

uniformly in λ; this usually leads to some oscillatory integrals.
For the error part $\mathcal{N}_{\lambda}^{\varepsilon}-\mathcal{N}_{\lambda}^{1}$ one tries to prove

$$
\sum_{j=1}^{J}\left|\mathcal{N}_{\lambda_{j}}^{\varepsilon}-\mathcal{N}_{\lambda_{j}}^{1}\right| \leq C(\varepsilon) o(J)
$$

for lacunary scales $\lambda_{1}<\cdots<\lambda_{\text {; }}$; this usually leads to some multilinear singular integrals.

General scheme of the approach (Continued)

We argue by contradiction. Take sufficiently many lacunary scales $\lambda_{1}<\cdots<\lambda_{J}$ such that $\mathcal{N}_{\lambda_{j}}^{0}=0$ for each j.
The structured part

$$
\mathcal{N}_{\lambda_{j}}^{1} \geq c(\delta)
$$

dominates the uniform part

$$
\left|\mathcal{N}_{\lambda_{j}}^{0}-\mathcal{N}_{\lambda_{j}}^{\varepsilon}\right| \ll 1 \quad \text { (for sufficiently small } \varepsilon \text {) }
$$

and the error part

$$
\left|\mathcal{N}_{\lambda_{j}}^{\varepsilon}-\mathcal{N}_{\lambda_{j}}^{1}\right| \ll C(\varepsilon) \quad \text { (for some } j \text { by pigeonholing) }
$$

for at least one index j. This contradicts $\mathcal{N}_{\lambda_{j}}^{0}=0$.

Anisotropic configurations

Polynomial generalizations?

- There are no triangles with sides λ, λ^{2}, and λ^{3} for large λ.
- One can look for triangles with two sides of lengths λ, λ^{2} and a fixed angle between them.

()

Polynomial generalizations?

- There are no triangles with sides λ, λ^{2}, and λ^{3} for large λ.
- One can look for triangles with two sides of lengths λ, λ^{2} and a fixed angle between them.

We will be working with anisotropic power-type dilations

$$
\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(\lambda^{a_{1}} b_{1} x_{1}, \ldots, \lambda^{a_{n}} b_{n} x_{n}\right) .
$$

Here $a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots, b_{n}>0$ are fixed parameters.
$a_{1}=\cdots=a_{n}=1$ is the (classical) "linear" case.

Which families of dilations are also good?

Anisotropic dilates of simplices

We are given linearly independent unit vectors

$$
u_{1}, u_{2}, \ldots, u_{n} \in \mathbb{R}^{n}
$$

$$
\Delta=\left\{0, b_{1} u_{1}, b_{2} u_{2}\right\}
$$

ANISOTROPIC DILATES OF SIMPLICES

We are given linearly independent unit vectors

$$
u_{1}, u_{2}, \ldots, u_{n} \in \mathbb{R}^{n}
$$

K. (2021):

For every measurable set $A \subseteq \mathbb{R}^{n+1}$ satisfying $\bar{\delta}(A)>0$ there is a positive number $\lambda_{0}=\lambda_{0}\left(A, a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}, u_{1}, \ldots, u_{n}\right)$ such that for each $\lambda \in\left[\lambda_{0}, \infty\right)$ the set A contains an isometric copy of

$$
\left\{0, \lambda^{a_{1}} b_{1} u_{1}, \lambda^{a_{2}} b_{2} u_{2}, \ldots, \lambda^{a_{n}} b_{n} u_{n}\right\} .
$$

ANISOTROPIC DILATES OF BOXES

K. (2021):

For every measurable set $A \subseteq\left(\mathbb{R}^{2}\right)^{n}$ satisfying $\bar{\delta}(A)>0$ there is a positive number $\lambda_{0}=\lambda_{0}\left(A, a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}\right)$ such that for each $\lambda \in\left[\lambda_{0}, \infty\right)$ one can find $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} \in \mathbb{R}^{2}$ satisfying

$$
\left\{\left(x_{1}+r_{1} y_{1}, x_{2}+r_{2} y_{2}, \ldots, x_{n}+r_{n} y_{n}\right):\left(r_{1}, \ldots, r_{n}\right) \in\{0,1\}^{n}\right\} \subseteq A
$$

and

$$
\left|y_{k}\right|=\lambda^{a_{k}} b_{k} \quad \text { for } k=1,2, \ldots, n
$$

ANISOTROPIC DILATES OF BOXES

K. (2021):

For every measurable set $A \subseteq\left(\mathbb{R}^{2}\right)^{n}$ satisfying $\bar{\delta}(A)>0$ there is a positive number $\lambda_{0}=\lambda_{0}\left(A, a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}\right)$ such that for each $\lambda \in\left[\lambda_{0}, \infty\right)$ one can find $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} \in \mathbb{R}^{2}$ satisfying

$$
\left\{\left(x_{1}+r_{1} y_{1}, x_{2}+r_{2} y_{2}, \ldots, x_{n}+r_{n} y_{n}\right):\left(r_{1}, \ldots, r_{n}\right) \in\{0,1\}^{n}\right\} \subseteq A
$$

and

$$
\left|y_{k}\right|=\lambda^{a_{k}} b_{k} \quad \text { for } k=1,2, \ldots, n
$$

In other words, for each $\lambda \in\left[\lambda_{0}, \infty\right)$ the set A contains an isometric copy of

$$
\left\{0, \lambda^{a_{1}} b_{1}\right\} \times\left\{0, \lambda^{a_{2}} b_{2}\right\} \times \cdots \times\left\{0, \lambda^{a_{n}} b_{n}\right\} \subset \mathbb{R}^{n}
$$

with sides parallel to the 2-dimensional coordinate planes.

Anisotropic dilates of trees

$\mathcal{T}=(V, E)$ a finite tree
K. (2021):

For every measurable set $A \subseteq \mathbb{R}^{2}$ satisfying $\bar{\delta}(A)>0$ there is a positive number $\lambda_{0}=\lambda_{0}\left(A, \mathcal{T}, a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}\right)$ such that for each $\lambda \in\left[\lambda_{0}, \infty\right)$ one can find a set of points $\left\{x_{v}: v \in V\right\} \subseteq A$ satisfying $\left|x_{u}-x_{v}\right|=\lambda^{a_{k}} b_{k} \quad$ for each edge $k \in E$ joining vertices $u, v \in V$.

ANISOTROPIC DILATES OF TREES (CONTINUED)

In other words, for each $\lambda \in\left[\lambda_{0}, \infty\right)$ the set A contains an embedding of the distance tree combinatorially isomorphic to \mathcal{T} and having the numbers $\ell(k)=\lambda^{a_{k}} b_{k}$ as lengths of its edges.

This is not a rigid point configuration.

The corresponding isotropic result is due to Lyall and Magyar (2018) and it generalizes to nondegenerate distance graphs.

BACK to the general scheme

Durcik and K. (2020): $\mathcal{N}_{\lambda}^{\varepsilon}$ could be obtained by "heating up" $\mathcal{N}_{\lambda}^{0}$.

$$
\mathfrak{g}=\text { standard Gaussian, } \quad \mathbb{k}=\Delta \mathfrak{g}
$$

The present topic mainly benefits from the fact that the heat equation

$$
\frac{\partial}{\partial t}\left(g_{t}(x)\right)=\frac{1}{2 \pi t} \mathbb{k}_{t}(x)
$$

is unaffected by a power-type change of the time variable

$$
\frac{\partial}{\partial t}\left(g_{\mu^{\prime} b}(x)\right)=\frac{a}{2 \pi t} \mathbb{k}_{t^{a} b}(x) .
$$

Anisotropic simplices

For simplicity consider right-angled simplices, i.e., $u_{k}=\mathbb{C}_{k}$.
Pattern counting form:

$$
\mathcal{N}_{\lambda}^{0}(f):=\int_{\mathbb{R}^{n+1}} \int_{\mathrm{SO}(n+1, \mathbb{R})} f(x)\left(\prod_{k=1}^{n} f\left(x+\lambda^{a_{k}} b_{k} U \mathbb{e}_{k}\right)\right) \mathrm{d} \mu(U) \mathrm{d} x .
$$

Smoothened counting form:

$$
\mathcal{N}_{\lambda}^{\varepsilon}(f):=\int_{\mathbb{R}^{n+1}} \int_{\mathrm{SO}(n+1, \mathbb{R})} f(x)\left(\prod_{k=1}^{n}\left(f * g_{(\varepsilon \lambda)}{ }^{a^{k_{b}} b_{k}}\right)\left(x+\lambda^{a_{k}} b_{k} U \mathbb{e}_{k}\right)\right) \mathrm{d} \mu(U) \mathrm{d} x .
$$

ANISOTROPIC SIMPLICES (CONTINUED)

It is sufficient to show:

$$
\begin{aligned}
& \mathcal{N}_{\lambda}^{1}\left(\mathbb{1}_{B}\right) \gtrsim \delta^{n+1} R^{n+1}, \\
& \sum_{j=1}^{J}\left|\mathcal{N}_{\lambda_{j}}^{\varepsilon}\left(\mathbb{1}_{B}\right)-\mathcal{N}_{\lambda_{j}}^{1}\left(\mathbb{1}_{B}\right)\right| \lesssim \varepsilon^{-C} J^{1 / 2} R^{n+1}, \\
& \left|\mathcal{N}_{\lambda}^{0}\left(\mathbb{1}_{B}\right)-\mathcal{N}_{\lambda}^{\varepsilon}\left(\mathbb{1}_{B}\right)\right| \lesssim \varepsilon^{c} R^{n+1} .
\end{aligned}
$$

$\lambda>0, J \in \mathbb{N}, 0<\lambda_{1}<\cdots<\lambda_{J}$ satisfy $\lambda_{j+1} \geq 2 \lambda_{j}$,
$R>0$ is sufficiently large, $0<\delta \leq 1$,
$B \subseteq[0, R]^{n+1}$ has measure $|B| \geq \delta R^{n+1}$.
(We take $B:=(A-x) \cap[0, R]^{n+1}$ for appropriate x, R.)

Anisotropic simplices - structured part

$\sigma^{H}=$ the spherical measure inside a subspace H

$$
\begin{aligned}
& \left.\mathcal{N}_{\lambda}^{\varepsilon}(f)=\int_{\left(\mathbb{R}^{n+1}\right)^{n+1}} f(x)\left(\prod_{k=1}^{n}\left(f * g_{(\varepsilon \lambda)^{\alpha_{k}} b_{k}}\right)\left(x+y_{k}\right)\right) d \sigma_{\lambda}^{\left\{y_{1}, \ldots, y_{n}\right.} y_{n-1}\right\}^{\perp}\left(y_{n}\right) \\
& \mathrm{d} \sigma_{\lambda^{a_{n-1}} b_{1} b_{n-1}}^{\left\{y_{1}, \ldots, y_{n-2}\right\}^{\perp}}\left(y_{n-1}\right) \cdots \mathrm{d} \sigma_{\lambda^{2} b_{2}}^{\left\{y_{1} b^{\perp}\right.}\left(y_{2}\right) \mathrm{d} \sigma_{\lambda^{1}{ }^{1} b_{1}}^{\mathbb{R}^{n+1}}\left(y_{1}\right) \mathrm{d} x
\end{aligned}
$$

ANISOTROPIC SIMPLICES - STRUCTURED PART

$\sigma^{H}=$ the spherical measure inside a subspace H

$$
\begin{gathered}
\mathcal{N}_{\lambda}^{\varepsilon}(f)=\int_{\left(\mathbb{R}^{n+1}\right)^{n+1}} f(x)\left(\prod_{k=1}^{n}\left(f * \mathbb{g}_{(\varepsilon \lambda)^{a_{k} b_{k}}}\right)\left(x+y_{k}\right)\right) \mathrm{d} \sigma_{\lambda^{n} b_{n} b_{n}}^{\left\{y_{1}, \ldots, y_{n-1}\right\}^{\perp}}\left(y_{n}\right) \\
\mathrm{d} \sigma_{\lambda^{n-1} b_{n-1}}^{\left\{y_{1}, \ldots, y_{n-2}\right\}^{\perp}}\left(y_{n-1}\right) \cdots \mathrm{d} \sigma_{\lambda^{a_{2} b_{2}}}^{\left\{y_{1}\right\}^{\perp}}\left(y_{2}\right) \mathrm{d} \sigma_{\lambda^{a_{1} b_{1}}}^{\mathbb{R}_{n+1}^{n+1}}\left(y_{1}\right) \mathrm{d} x \\
\sigma^{H} * \mathrm{~g} \geq\left(\min _{\mathrm{B}(0,2)} \mathfrak{g}\right) \mathbb{1}_{\mathrm{B}(0,1)} \gtrsim \varphi:=|\mathrm{B}(0,1)|^{-1} \mathbb{1}_{\mathrm{B}(0,1)}
\end{gathered}
$$

Bourgain's lemma (1988):

$$
f_{[0, R]^{d}} f(x)\left(\prod_{k=1}^{n}\left(f * \varphi_{t_{k}}\right)(x)\right) \mathrm{d} x \gtrsim\left(f_{[0, R]^{d}} f(x) \mathrm{d} x\right)^{n+1}
$$

ANISOTROPIC SIMPLICES - ERROR PART

$$
\begin{gathered}
\mathcal{N}_{\lambda}^{\alpha}(f)-\mathcal{N}_{\lambda}^{\beta}(f)=\sum_{m=1}^{n} \mathcal{L}_{\lambda}^{\alpha, \beta, m}(f) \\
\mathcal{L}_{\lambda}^{\alpha, \beta, m}(f):=-\frac{a_{m}}{2 \pi} \int_{\alpha}^{\beta} \int_{\mathbb{R}^{n+1}} \int_{\mathrm{SO}(n+1, \mathbb{R})} f(x)\left(f * \mathbb{k}_{(t \lambda)^{a_{m}} b_{m}}\right)\left(x+\lambda^{a_{m}} b_{m} U \mathbb{e}_{m}\right) \\
\times\left(\prod_{\substack{1 \leq k \leq n \\
k \neq m}}\left(f * \mathbb{g}_{(t \lambda)^{a_{k}} b_{k}}\right)\left(x+\lambda^{a_{k}} b_{k} U \mathbb{C}_{k}\right)\right) \mathrm{d} \mu(U) \mathrm{d} x \frac{\mathrm{~d} t}{t}
\end{gathered}
$$

These look like certain paraproducts.

ANISOTROPIC SIMPLICES - ERROR PART (CONTINUED)

From $\sum_{j=1}^{J}\left|\mathcal{N}_{\lambda_{j}}^{\varepsilon}\left(\mathbb{1}_{B}\right)-\mathcal{N}_{\lambda_{j}}^{1}\left(\mathbb{1}_{B}\right)\right|$ we are lead to study

$$
\Lambda_{K}\left(f_{0}, \ldots, f_{n}\right):=\int_{\left(\mathbb{R}^{d}\right)^{n+1}} K\left(x_{1}-x_{0}, \ldots, x_{n}-x_{0}\right)\left(\prod_{k=0}^{n} f_{k}\left(x_{k}\right) \mathrm{d} x_{k}\right) .
$$

Multilinear C-Z operators: Coifman and Meyer (1970s), Grafakos and Torres (2002).

Here K is a C-Z kernel, but with respect to the quasinorm associated with our anisotropic dilation structure.

ANISOTROPIC SIMPLICES - UNIFORM PART

$$
\begin{gathered}
\left|\mathcal{L}_{\lambda}^{0, \varepsilon, n}(f)\right| \lesssim\|f\|_{L^{2}\left(\mathbb{R}^{n+1}\right)} \int_{0}^{\varepsilon}\left(\int_{\mathbb{R}^{n+1}}|\widehat{f}(\xi)|^{2} \left\lvert\, \widehat{\mathbb{k}}^{\left.\left.\left(t^{a_{n}} \lambda^{a_{n}} b_{n} \xi\right)\right|^{2} \mathcal{I}\left(\lambda^{a_{n}} b_{n} \xi\right) \mathrm{d} \xi\right)^{1 / 2} \frac{\mathrm{~d} t}{t}} \begin{array}{c}
\mathcal{I}(\zeta):=\int_{\left(\mathbb{R}^{n+1}\right)^{n-1}}\left|\widehat{\sigma}^{\left\{y_{1}, \ldots, y_{n-1}\right\}^{\perp}}(\zeta)\right|^{2} \mathrm{~d} \sigma^{\left\{y_{1}, \ldots, y_{n-2}\right\}^{\perp}}\left(y_{n-1}\right) \cdots \mathrm{d} \sigma^{\mathbb{R}^{n+1}}\left(y_{1}\right) \\
\left|\widehat{\sigma}^{\left\{y_{1}, \ldots, y_{n-1}\right\}^{\perp}}(\zeta)\right| \lesssim \operatorname{dist}\left(\zeta, \operatorname{span}\left(\left\{y_{1}, \ldots, y_{n-1}\right\}\right)\right)^{-1 / 2} \\
\left|\mathcal{L}_{\lambda}^{0, \varepsilon, n}(f)\right| \lesssim\|f\|_{L^{2}\left(\mathbb{R}^{n+1}\right)}^{2} \int_{0}^{\varepsilon} t^{c} \frac{\mathrm{~d} t}{t}
\end{array} .\right.\right.
\end{gathered}
$$

Anisotropic boxes

Pattern counting form ($\sigma=$ circle measure in \mathbb{R}^{2}):

$$
\mathcal{N}_{\lambda}^{0}(f):=\int_{\left(\mathbb{R}^{2}\right)^{2 n}}\left(\prod_{\left(r_{1}, \ldots, r_{n}\right) \in\{0,1\}^{n}} f\left(x_{1}+r_{1} y_{1}, \ldots, x_{n}+r_{n} y_{n}\right)\right)\left(\prod_{k=1}^{n} \mathrm{~d} x_{k} \mathrm{~d} \sigma_{\lambda} a_{k} b_{k}\left(y_{k}\right)\right)
$$

Smoothened counting form:

$$
\begin{gathered}
\mathcal{N}_{\lambda}^{\varepsilon}(f):=\int_{\left(\mathbb{R}^{2}\right)^{2 n}}(\cdots)\left(\prod_{k=1}^{n}\left(\sigma * g_{\varepsilon^{q_{k}}}\right)_{\lambda^{a} k_{k} b_{k}}\left(y_{k}\right) \mathrm{d} x_{k} \mathrm{~d} y_{k}\right) \\
=\int_{\left(\mathbb{R}^{2}\right)^{2 n}} \mathcal{F}(\mathrm{x})\left(\prod_{k=1}^{n}\left(\sigma * \mathbb{g}_{\varepsilon_{k}}{ }^{a_{k}}\right)_{\lambda^{a} b_{k} b_{k}}\left(x_{k}^{0}-x_{k}^{1}\right)\right) \mathrm{dx} \\
\mathcal{F}(\mathbf{x}):=\prod_{\left(r_{1}, \ldots, r_{n}\right) \in\{0,1\}^{n}} f\left(x_{1}^{r_{1}}, \ldots, x_{n}^{r_{n}}\right), \quad \mathrm{dx}:=\mathrm{d} x_{1}^{0} \mathrm{~d} x_{1}^{1} \mathrm{~d} x_{2}^{0} \mathrm{~d} x_{2}^{1} \cdots \mathrm{~d} x_{n}^{0} \mathrm{~d} x_{n}^{1}
\end{gathered}
$$

Anisotropic boxes (CONTINUED)

It is sufficient to show:

$$
\begin{aligned}
& \mathcal{N}_{\lambda}^{1}\left(\mathbb{1}_{B}\right) \gtrsim \delta^{2^{n}} R^{2 n}, \\
& \sum_{j=1}^{J}\left|\mathcal{N}_{\lambda_{j}}^{\varepsilon}\left(\mathbb{1}_{B}\right)-\mathcal{N}_{\lambda_{j}}^{1}\left(\mathbb{1}_{B}\right)\right| \lesssim \varepsilon^{-C} R^{2 n}, \\
& \left|\mathcal{N}_{\lambda}^{0}\left(\mathbb{1}_{B}\right)-\mathcal{N}_{\lambda}^{\varepsilon}\left(\mathbb{1}_{B}\right)\right| \lesssim \varepsilon^{c} R^{2 n} .
\end{aligned}
$$

$B \subseteq\left([0, R]^{2}\right)^{n}$ has measure $|B| \geq \delta R^{2 n}$.

ANISOTROPIC BOXES - STRUCTURED PART

Partition "most" of the cube $\left([0, R]^{2}\right)^{n}$ into rectangular boxes
$Q_{1} \times \cdots \times Q_{n}$, where

$$
Q_{k}=\left[l \lambda^{a_{k}} b_{k},(l+1) \lambda^{a_{k}} b_{k}\right) \times\left[l^{\prime} \lambda^{a_{k}} b_{k},\left(l^{\prime}+1\right) \lambda^{a_{k}} b_{k}\right) .
$$

Anisotropic boxes - structured part

Partition "most" of the cube $\left([0, R]^{2}\right)^{n}$ into rectangular boxes
$Q_{1} \times \cdots \times Q_{n}$, where

$$
Q_{k}=\left[l \lambda^{a_{k}} b_{k},(l+1) \lambda^{a_{k}} b_{k}\right) \times\left[l^{\prime} \lambda^{a_{k}} b_{k},\left(l^{\prime}+1\right) \lambda^{a_{k}} b_{k}\right) .
$$

We only need the box-Gowers-Cauchy-Schwarz inequality:

$$
f_{Q_{1} \times Q_{1} \times \cdots \times Q_{n} \times Q_{n}} \mathcal{F}(x) d x \geq\left(f_{Q_{1} \times \ldots \times Q_{n}} f\right)^{2^{n}} .
$$

AnIsotropic boxes - ERROR PART

$$
\begin{gathered}
\mathcal{N}_{\lambda}^{\alpha}(f)-\mathcal{N}_{\lambda}^{\beta}(f)=\sum_{m=1}^{n} \mathcal{L}_{\lambda}^{\alpha, \beta, m}(f) \\
\mathcal{L}_{\lambda}^{\alpha, \beta, m}(f):=-\frac{a_{m}}{2 \pi} \int_{\alpha}^{\beta} \int_{\left(\mathbb{R}^{2}\right)^{2 n}} \mathcal{F}(\mathbf{x})\left(\sigma * \mathbb{k}_{t^{a_{m}}}\right) \lambda_{\lambda^{a_{m}} b_{m}}\left(x_{m}^{0}-x_{m}^{1}\right) \\
\times\left(\prod_{\substack{\leq k \leq n \\
k \neq m}}\left(\sigma * \mathscr{S}_{t^{a_{k}}}\right)_{\lambda^{a_{k}} b_{k}}\left(x_{k}^{0}-x_{k}^{1}\right)\right) \mathrm{d} \mathbf{x} \frac{\mathrm{~d} t}{t}
\end{gathered}
$$

These look like certain "entangled" paraproducts.

ANISOTROPIC BOXES - ERROR PART (CONTINUED)

From $\sum_{j=1}^{J}\left|\mathcal{N}_{\lambda_{j}}^{\varepsilon}\left(\mathbb{1}_{B}\right)-\mathcal{N}_{\lambda_{j}}^{1}\left(\mathbb{1}_{B}\right)\right|$ we are lead to study

$$
\begin{aligned}
& \Theta_{K}\left(\left(f_{r_{1}, \ldots, r_{n}}\right)_{\left.\left(r_{1}, \ldots, r_{n}\right) \in\{0,1\}^{n}\right)} \int_{\left(\mathbb{R}^{d}\right)^{2 n}} \prod_{\left(r_{1}, \ldots, r_{n}\right) \in\{0,1\}^{n}} f_{r_{1}, \ldots, r_{n}}\left(x_{1}+r_{1} y_{1}, \ldots, x_{n}+r_{n} y_{n}\right)\right) \\
& \quad K\left(y_{1}, \ldots, y_{n}\right)\left(\prod_{k=1}^{n} \mathrm{~d} x_{k} \mathrm{~d} y_{k}\right)
\end{aligned}
$$

Entangled multilinear singular integral forms with cubical structure: K. (2010), Durcik (2014), Durcik and Thiele (2018: entangled Brascamp-Lieb)

ANISOTROPIC BOXES - UNIFORM PART

Exactly the same as for the simplices

Again one only needs some decay of $\widehat{\sigma}$
(coming from circle curvature)

Other configurations

Rectangular boxes - quantitative strengthening

Fix $b_{1}, \ldots, b_{n}>0$ (box sidelengths).
Durcik and K. (2020), interesting already for isotropic boxes:
For $0<\delta \leq 1 / 2$ and measurable $A \subseteq\left([0,1]^{2}\right)^{n}$ with $|A| \geq \delta$ there exists an interval $I=I\left(A, b_{1}, \ldots, b_{n}\right) \subseteq(0,1]$ of length at least

$$
\left(\exp \left(\delta^{-C(n)}\right)\right)^{-1}
$$

s. t. for every $\lambda \in I$ one can find $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} \in \mathbb{R}^{2}$ satisfying

$$
\begin{gathered}
\left(x_{1}+r_{1} y_{1}, x_{2}+r_{2} y_{2}, \ldots, x_{n}+r_{n} y_{n}\right) \in A \text { for }\left(r_{1}, \ldots, r_{n}\right) \in\{0,1\}^{n} ; \\
\left|y_{i}\right|=\lambda b_{i} \text { for } i=1, \ldots, n .
\end{gathered}
$$

This improves the bound of Lyall and Magyar (2019) of the form $\left(\exp \left(\exp \left(\cdots \exp \left(C(n) \delta^{-3 \cdot 2^{n}}\right) \cdots\right)\right)\right)^{-1}$
(a tower of height n).

Arithmetic progressions

Bourgain's counterexample applies.

Cook, Magyar, and Pramanik (2015) decided to measure gap lengths in the ℓ^{p}-norm for $p \neq 1,2, \infty$.

Cook, Magyar, and Pramanik (2015):
If $p \neq 1,2, \infty, d$ sufficiently large, $A \subseteq \mathbb{R}^{d}$ measurable, $\bar{\delta}(A)>0$,
then $\exists \lambda_{0}=\lambda_{0}(p, d, A) \in(0, \infty)$ such that for every $\lambda \geq \lambda_{0}$ one can find
$x, y \in \mathbb{R}^{d}$ satisfying $x, x+y, x+2 y \in A$ and $\|y\|_{\ell^{p}}=\lambda$.

Arithmetic progressions

Bourgain's counterexample applies.

Cook, Magyar, and Pramanik (2015) decided to measure gap lengths in the ℓ^{p}-norm for $p \neq 1,2, \infty$.

Cook, Magyar, and Pramanik (2015):
If $p \neq 1,2, \infty, d$ sufficiently large, $A \subseteq \mathbb{R}^{d}$ measurable, $\bar{\delta}(A)>0$, then $\exists \lambda_{0}=\lambda_{0}(p, d, A) \in(0, \infty)$ such that for every $\lambda \geq \lambda_{0}$ one can find $x, y \in \mathbb{R}^{d}$ satisfying $x, x+y, x+2 y \in A$ and $\|y\|_{\ell^{p}}=\lambda$.
(Cook, Magyar, and Pramanik):
Is it possible to lower the dimensional threshold all the way to $d=2$ or
$d=3$?

Arithmetic progressions (CONTINUED)

(Durcik, K., and Rimanić):
Prove or disprove: if $n \geq 4, p \neq 1,2, \ldots, n-1, \infty, d$ sufficiently large, $A \subseteq \mathbb{R}^{d}$ measurable, $\bar{\delta}(A)>0$, then
$\exists \lambda_{0}=\lambda_{0}(n, p, d, A) \in(0, \infty)$ such that for every $\lambda \geq \lambda_{0}$ one can find $x, y \in \mathbb{R}^{d}$ satisfying $x, x+y, \ldots, x+(n-1) y \in A$ and $\|y\|_{\ell^{p}}=\lambda$.

It is necessary to assume $p \neq 1,2, \ldots, n-1, \infty$.

In fact, we have the following weaker but quantitative "compact" result.

Arithmetic progressions - compact formulation

Durcik and K. (2020):
Take $n \geq 3, p \neq 1,2, \ldots, n-1, \infty, d \geq d_{\min }(n, p), \delta \in(0,1 / 2]$, $A \subseteq[0,1]^{d}$ measurable, $|A| \geq \delta$. Then the set of ℓ^{p}-norms of the gaps of n-term APs in the set A contains an interval of length at least

$$
\begin{cases}\left(\exp \left(\exp \left(\delta^{-C(n, p, d)}\right)\right)\right)^{-1} & \text { when } 3 \leq n \leq 4 \\ \left(\exp \left(\exp \left(\exp \left(\delta^{-C(n, p, d)}\right)\right)\right)\right)^{-1} & \text { when } n \geq 5\end{cases}
$$

One can take $d_{\min }(n, p)=2^{n+3}(n+p)$ (certainly not sharp).

These "weird" bounds in terms of δ come from the best known bounds in Szemerédi's theorem (with an additional "exp").

ARITHMETIC PROGRESSIONS - COMPACT FORMULATION

The error part uses bounds for (what is essentially) the multilinear Hilbert transform,

$$
\int_{\mathbb{R}} \int_{[-R,-r] \cup[r, R]]} \prod_{k=0}^{n-1} f_{k}(x+k y) \frac{\mathrm{d} y}{y} \mathrm{~d} x .
$$

- When $n \geq 4$, no L^{p}-bounds uniform in r, R are known.
- Tao (2016) showed a bound of the form $o(J)$, where $J \sim \log (R / r)$ is the "number of scales" involved.
- Reproved and generalized by Zorin-Kranich (2016), still with $o(J)$.
- Durcik, K., and Thiele (2016) showed a bound $O\left(J^{1-\varepsilon}\right)$.

OTHER ARITHMETIC CONFIGURATIONS

Allowed symmetries play a major role.
Note a difference between:

- the so-called corners: $(x, y),(x+s, y),(x, y+s)$
(harder),
- isosceles right triangles: $(x, y),(x+s, y),(x, y+t)$ with $\|s\|_{\ell^{2}}=\|t\|_{\ell^{2}}$
(easier).

Corners

Durcik, K., and Rimanić (2016):
If $p \neq 1,2, \infty, d$ sufficiently large, $A \subseteq \mathbb{R}^{d} \times \mathbb{R}^{d}$ measurable, $\bar{\delta}(A)>0$, then $\exists \lambda_{0}=\lambda_{0}(p, d, A) \in(0, \infty)$ such that for every $\lambda \geq \lambda_{0}$ one can find $x, y, s \in \mathbb{R}^{d}$ satisfying $(x, y),(x+s, y),(x, y+s) \in A$ and $\|s\|_{e^{p}}=\lambda$.
Generalizes the result of Cook, Magyar, and Pramanik (2015) via the skew projection $(x, y) \mapsto y-x$.

AP-extended boxes

Consider the configuration in $\mathbb{R}^{d_{1}} \times \cdots \times \mathbb{R}^{d_{n}}$ consisting of:

$$
\begin{gathered}
\left(x_{1}+k_{1} s_{1}, x_{2}+k_{2} s_{2}, \ldots, x_{n}+k_{n} s_{n}\right), \quad k_{1}, k_{2}, \ldots, k_{n} \in\{0,1\}, \\
\left(x_{1}+2 s_{1}, x_{2}, \ldots, x_{n}\right),\left(x_{1}, x_{2}+2 s_{2}, \ldots, x_{n}\right), \ldots,\left(x_{1}, x_{2}, \ldots, x_{n}+2 s_{n}\right) .
\end{gathered}
$$

Fix $b_{1}, \ldots, b_{n}>0$ and $p \neq 1,2, \infty$.

AP-extended boxes

Consider the configuration in $\mathbb{R}^{d_{1}} \times \cdots \times \mathbb{R}^{d_{n}}$ consisting of:

$$
\begin{gathered}
\left(x_{1}+k_{1} s_{1}, x_{2}+k_{2} s_{2}, \ldots, x_{n}+k_{n} s_{n}\right), \quad k_{1}, k_{2}, \ldots, k_{n} \in\{0,1\}, \\
\left(x_{1}+2 s_{1}, x_{2}, \ldots, x_{n}\right),\left(x_{1}, x_{2}+2 s_{2}, \ldots, x_{n}\right), \ldots,\left(x_{1}, x_{2}, \ldots, x_{n}+2 s_{n}\right) .
\end{gathered}
$$

Fix $b_{1}, \ldots, b_{n}>0$ and $p \neq 1,2, \infty$.

Durcik and K. (2018):
There exists a dimensional threshold $d_{\text {min }}$ such that for any d_{1}, d_{2}, \ldots, $d_{n} \geq d_{\text {min }}$ and any measurable set A with $\bar{\delta}(A)>0$ one can find $\lambda_{0}>0$ with the property that for any $\lambda \geq \lambda_{0}$ the set A contains the above 3AP-extended box with $\left\|s_{i}\right\|_{e^{p}}=\lambda b_{i}, i=1,2, \ldots, n$.

Corner-extended boxes

Consider the config. in $\mathbb{R}^{d_{1}} \times \mathbb{R}^{d_{1}} \times \cdots \times \mathbb{R}^{d_{n}} \times \mathbb{R}^{d_{n}}$ consisting of:

$$
\begin{gathered}
\left(x_{1}+k_{1} s_{1}, \ldots, x_{n}+k_{n} s_{n}, y_{1}, y_{2}, \ldots, y_{n}\right), \quad k_{1}, k_{2}, \ldots, k_{n} \in\{0,1\}, \\
\left(x_{1}, x_{2}, \ldots, x_{n}, y_{1}+s_{1}, y_{2}, \ldots, y_{n}\right), \ldots,\left(x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{n}+s_{n}\right) .
\end{gathered}
$$

Fix $b_{1}, \ldots, b_{n}>0$ and $p \neq 1,2, \infty$.

Corner-extended boxes

Consider the config. in $\mathbb{R}^{d_{1}} \times \mathbb{R}^{d_{1}} \times \cdots \times \mathbb{R}^{d_{n}} \times \mathbb{R}^{d_{n}}$ consisting of:

$$
\left(x_{1}+k_{1} s_{1}, \ldots, x_{n}+k_{n} s_{n}, y_{1}, y_{2}, \ldots, y_{n}\right), \quad k_{1}, k_{2}, \ldots, k_{n} \in\{0,1\},
$$

$\left(x_{1}, x_{2}, \ldots, x_{n}, y_{1}+s_{1}, y_{2}, \ldots, y_{n}\right), \ldots,\left(x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{n}+s_{n}\right)$.
Fix $b_{1}, \ldots, b_{n}>0$ and $p \neq 1,2, \infty$.

Durcik and K. (2018):
There exists a dimensional threshold $d_{\text {min }}$ such that for any d_{1}, \ldots, $d_{n} \geq d_{\text {min }}$ and any measurable set A with $\bar{\delta}(A)>0$ one can find $\lambda_{0}>0$ with the property that for any $\lambda \geq \lambda_{0}$ the set A contains the above corner-extended box with $\left\|s_{i}\right\|_{e p}=\lambda b_{i}, i=1,2, \ldots, n$.

Very dense sets

Falconer, K., and Yavicoli (2020):
If $d \geq 2$ and $A \subseteq \mathbb{R}^{d}$ is measurable with $\bar{\delta}(A)>1-\frac{1}{n-1}$, then for every n-point configuration P there exists $\lambda_{0}>0$ s. t. for every $\lambda \geq \lambda_{0}$ the set A contains an isometric copy of λP.

The result would be trivial for $\bar{\delta}(A)>1-\frac{1}{n}$ and rotations would not even be needed there.

Very dense sets - lower bound

What can one say about the lower bound for such density threshold (depending on the \# of points n)?

Let us return to arithmetic progressions!
Falconer, K., and Yavicoli (2020):
For all $n, d \geq 2$ there exists a measurable set $A \subseteq \mathbb{R}^{d}$ of density at least

$$
1-\frac{10 \log n}{n^{1 / 5}}
$$

s.t. there are arbitrarily large values of λ for which A contains no congruent copy of $\lambda\{0,1, \ldots, n-1\}$.

Conclusion

- The largeness-smoothness multiscale approach is quite flexible.
- It also gives superior quantitative bounds.
- Its applicability largely depends on the current state of the art on estimates for multilinear singular and oscillatory integrals.

Thank you for your attention!

