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EUCLIDEAN DENSITY THEOREMS

There exist patterns in large but otherwise arbitrary structures.

The main idea behind Ramsey theory (⊆ combinatorics), but also
widespread in other areas of mathematics.

Euclidean density theorems belong to:

• geometric measure theory (28A12, etc.),

• Ramsey theory (05D10),

• arithmetic combinatorics (11B25, 11B30, etc.).

Harmonic analysis seems to be the most powerful tool for attacking
this type of problems.
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EUCL. DENSITY THEOREMS STUDY “LARGE” MEASURABLE SETS

When is a measurable set A considered large?

• For A ⊆ [0, 1]d this means

|A| > 0

(the Lebesgue measure).

• For A ⊆ Rd this means

δ(A) := lim sup
R→∞

sup
x∈Rd

|A ∩ (x + [0,R]d)|
Rd > 0

(the upper Banach density).
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CLASSICAL RESULTS

A question by Székely (1982):
Does for every measurable set A ⊆ R2 satisfying δ(A) > 0 there exist
a number λ0 = λ0(A) such that for each λ ∈ [λ0,∞) there exist points
x, x′ ∈ A satisfying |x − x′| = λ?

Yes.

Furstenberg, Katznelson, and Weiss (1980s),
Falconer and Marstrand (1986),
Bourgain (1986).
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SIMPLICES

∆ = the set of vertices of a non-degenerate n-dimensional simplex

Bourgain (1986):
For every measurable set A ⊆ Rn+1 satisfying δ(A) > 0 there is a
number λ0 = λ0(A,∆) such that for each λ ∈ [λ0,∞) the set A
contains an isometric copy of λ∆.

Alternative proofs by Lyall and Magyar (2016, 2018, 2019), K. (2021).

Open question (Bourgain?):
When n ≥ 2, does the same hold for subsets of Rn?
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DEGENERATE TRIANGLE COUNTEREXAMPLE

Bourgain (1986) also gave a counterexample for 3-term arithmetic
progressions, i.e., isometric copies of dilates of {0, 1, 2}.

A :=
{

x ∈ Rd : (∃m ∈ Z)
(
m − ε < |x|2 < m + ε

)}
• Take some 0 < ε < 1/8. We have δ(A) = 2ε > 0.

• The parallelogram law:

|x|2 − 2|x + y|2 + |x + 2y|2 = |y|2.

• x, x + y, x + 2y ∈ A
dist(|x|2,Z),dist(|x + y|2,Z),dist(|x + 2y|2,Z) < ε

=⇒ dist(2|y|2,Z) < 4ε < 1/2
=⇒ not all large numbers are attained by |y|
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BOXES (PRODUCT-TYPE CONFIGURATIONS)

□ = the set of vertices of an n-dimensional rectangular box

Lyall and Magyar (2016, 2019):
For every measurable set A ⊆ R2 × · · · × R2 = (R2)n satisfying
δ(A) > 0 there is a number λ0 = λ0(A,□) such that for each
λ ∈ [λ0,∞) the set A contains an isometric copy of λ□ with sides
parallel to the distinguished 2-dimensional coordinate planes.

Alternative proofs by Durcik and K. (2018: in (R5)n, 2020).
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GENERALIZATIONS

Open question (Graham? Furstenberg?):
Which point configurations P have the following property: for some
(sufficiently large) dimension d and every measurable A ⊆ Rd with
δ(A) > 0 there exists λ0 = λ0(P,A) ∈ (0,∞) such that for every
λ ≥ λ0 the set A contains an isometric copy of λP?

The most general positive result is due to Lyall and Magyar (2019):
This holds for products of vertex-sets of nondegenerate simplices
∆1 × · · · ×∆m.

The most general negative result is due to Graham (1993):
This fails for configurations that cannot be inscribed in a sphere.
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COMPACT FORMULATIONS — BACK TO SIMPLICES

∆ = the set of vertices of a non-degenerate n-dimensional simplex

Bourgain (1986):
Take δ ∈ (0, 1/2], A ⊆ [0, 1]n+1 measurable, |A| ≥ δ.
Then the set of “scales”

{λ ∈ (0, 1] : A contains an isometric copy of λ∆}

contains an interval of length at least
(
exp(δ−C(∆,n))

)−1.

Such formulation is qualitatively weaker, but it is quantitative.

One can try to “beat the current record” for dependencies on δ.
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GENERAL SCHEME OF THE APPROACH

Abstracted from:
Bourgain (1986) and Cook, Magyar, and Pramanik (2017)

N 0
λ = configuration “counting” form, identifies the configuration

associated with the parameter λ > 0 (i.e., of “size” λ)

N ε
λ = smoothened counting form; the picture is blurred up to scale

0 < ε ≤ 1

The largeness–smoothness multiscale approach:

• λ = scale of largeness,

• ε = scale of smoothness.
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GENERAL SCHEME OF THE APPROACH (CONTINUED)

Decompose:

N 0
λ = N 1

λ +
(
N ε

λ −N 1
λ

)
+
(
N 0

λ −N ε
λ

)
.

N 1
λ = structured part,

N ε
λ −N 1

λ = error part,

N 0
λ −N ε

λ = uniform part.
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GENERAL SCHEME OF THE APPROACH (CONTINUED)

For the structured part N 1
λ we need a lower bound

N 1
λ ≥ c(δ)

that is uniform in λ, but this should be a simpler/smoother problem.

For the uniform part N 0
λ −N ε

λ we want

lim
ε→0

∣∣N 0
λ −N ε

λ

∣∣ = 0

uniformly in λ; this usually leads to some oscillatory integrals.

For the error part N ε
λ −N 1

λ one tries to prove
J∑

j=1

∣∣N ε
λj
−N 1

λj

∣∣ ≤ C(ε)o(J)

for lacunary scales λ1 < · · · < λJ; this usually leads to some
multilinear singular integrals.
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GENERAL SCHEME OF THE APPROACH (CONTINUED)

We argue by contradiction. Take sufficiently many lacunary scales
λ1 < · · · < λJ such that N 0

λj
= 0 for each j.

The structured part
N 1

λj
≥ c(δ)

dominates the uniform part∣∣N 0
λj
−N ε

λj

∣∣ ≪ 1 (for sufficiently small ε)

and the error part∣∣N ε
λj
−N 1

λj

∣∣ ≪ C(ε) (for some j by pigeonholing)

for at least one index j. This contradicts N 0
λj
= 0.
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POLYNOMIAL GENERALIZATIONS?

• There are no triangles with sides λ, λ2, and λ3 for large λ.

• One can look for triangles with two sides of lengths λ, λ2 and a
fixed angle between them.

We will be working with anisotropic power-type dilations

(x1, . . . , xn) 7→ (λa1 b1x1, . . . , λ
an bnxn).

Here a1, a2, . . . , an, b1, b2, . . . , bn > 0 are fixed parameters.

a1 = · · · = an = 1 is the (classical) “linear” case.

Open question:
Which families of dilations are also good?
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ANISOTROPIC DILATES OF SIMPLICES

We are given linearly independent unit vectors

u1,u2, . . . ,un ∈ Rn.

K. (2021):
For every measurable set A ⊆ Rn+1 satisfying δ(A) > 0 there is a
positive number λ0 = λ0(A, a1, . . . , an, b1, . . . , bn,u1, . . . ,un) such that
for each λ ∈ [λ0,∞) the set A contains an isometric copy of{

0, λa1 b1u1, λ
a2 b2u2, . . . , λ

an bnun
}
.
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ANISOTROPIC DILATES OF BOXES

K. (2021):
For every measurable set A ⊆ (R2)n satisfying δ(A) > 0 there is a
positive number λ0 = λ0(A, a1, . . . , an, b1, . . . , bn) such that for each
λ ∈ [λ0,∞) one can find x1, . . . , xn, y1, . . . , yn ∈ R2 satisfying{

(x1 + r1y1, x2 + r2y2, . . . , xn + rnyn) : (r1, . . . , rn) ∈ {0, 1}n} ⊆ A

and
|yk| = λak bk for k = 1, 2, . . . ,n.

In other words, for each λ ∈ [λ0,∞) the set A contains an isometric
copy of

{0, λa1 b1} × {0, λa2 b2} × · · · × {0, λan bn} ⊂ Rn

with sides parallel to the 2-dimensional coordinate planes.
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ANISOTROPIC DILATES OF TREES

T = (V,E) a finite tree

K. (2021):
For every measurable set A ⊆ R2 satisfying δ(A) > 0 there is a
positive number λ0 = λ0(A, T , a1, . . . , an, b1, . . . , bn) such that for each
λ ∈ [λ0,∞) one can find a set of points {xv : v ∈ V} ⊆ A satisfying

|xu − xv| = λak bk for each edge k ∈ E joining vertices u, v ∈ V.
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ANISOTROPIC DILATES OF TREES (CONTINUED)

In other words, for each λ ∈ [λ0,∞) the set A contains an embedding
of the distance tree combinatorially isomorphic to T and having the
numbers ℓ(k) = λak bk as lengths of its edges.

This is not a rigid point configuration.

The corresponding isotropic result is due to Lyall and Magyar (2018)
and it generalizes to nondegenerate distance graphs.
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BACK TO THE GENERAL SCHEME

Durcik and K. (2020): N ε
λ could be obtained by “heating up” N 0

λ.

g = standard Gaussian, k = ∆g

The present topic mainly benefits from the fact that the heat equation

∂

∂t
(
gt(x)

)
=

1
2πt

kt(x)

is unaffected by a power-type change of the time variable

∂

∂t
(
gtab(x)

)
=

a
2πt

ktab(x).
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ANISOTROPIC SIMPLICES

For simplicity consider right-angled simplices, i.e., uk = ek.

Pattern counting form:

N 0
λ(f ) :=

ˆ
Rn+1

ˆ
SO(n+1,R)

f (x)
( n∏

k=1

f (x + λak bkUek)
)

dµ(U)dx.

Smoothened counting form:

N ε
λ(f ) :=

ˆ
Rn+1

ˆ
SO(n+1,R)

f (x)
( n∏

k=1

(f ∗ g(ελ)ak bk
)(x + λak bkUek)

)
dµ(U) dx.
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ANISOTROPIC SIMPLICES (CONTINUED)

It is sufficient to show:

N 1
λ(1B) ≳ δn+1Rn+1,

J∑
j=1

∣∣N ε
λj
(1B)−N 1

λj
(1B)

∣∣ ≲ ε−CJ1/2Rn+1,

∣∣N 0
λ(1B)−N ε

λ(1B)
∣∣ ≲ εcRn+1.

λ > 0, J ∈ N, 0 < λ1 < · · · < λJ satisfy λj+1 ≥ 2λj,
R > 0 is sufficiently large, 0 < δ ≤ 1,
B ⊆ [0,R]n+1 has measure |B| ≥ δRn+1.

(We take B := (A − x) ∩ [0,R]n+1 for appropriate x,R.)
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ANISOTROPIC SIMPLICES — STRUCTURED PART

σH = the spherical measure inside a subspace H

N ε
λ(f ) =

ˆ
(Rn+1)n+1

f (x)
( n∏

k=1

(f ∗ g(ελ)ak bk
)(x + yk)

)
dσ{y1,...,yn−1}⊥

λan bn
(yn)

dσ{y1,...,yn−2}⊥

λ
an−1 bn−1

(yn−1) · · · dσ{y1}⊥

λa2 b2
(y2) dσRn+1

λa1 b1
(y1) dx

σH ∗ g ≥
(
min
B(0,2)

g
)
1B(0,1) ≳ φ := |B(0, 1)|−11B(0,1)

Bourgain’s lemma (1988):

 
[0,R]d

f (x)
( n∏

k=1

(f ∗ φtk)(x)
)

dx ≳
( 

[0,R]d
f (x)dx

)n+1
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ANISOTROPIC SIMPLICES — ERROR PART

Nα
λ (f )−N β

λ (f ) =
n∑

m=1

Lα,β,m
λ (f )

Lα,β,m
λ (f ) := − am

2π

ˆ β

α

ˆ
Rn+1

ˆ
SO(n+1,R)

f (x) (f ∗ k(tλ)am bm)(x + λam bmUem)

×
( ∏

1≤k≤n
k ̸=m

(f ∗ g(tλ)ak bk)(x + λak bkUek)
)

dµ(U)dx
dt
t

These look like certain paraproducts.
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ANISOTROPIC SIMPLICES — ERROR PART (CONTINUED)

From
∑J

j=1

∣∣N ε
λj
(1B)−N 1

λj
(1B)

∣∣ we are lead to study

ΛK(f0, . . . , fn) :=
ˆ
(Rd)n+1

K(x1 − x0, . . . , xn − x0)
( n∏

k=0

fk(xk)dxk

)
.

Multilinear C–Z operators: Coifman and Meyer (1970s), Grafakos and
Torres (2002).

Here K is a C–Z kernel, but with respect to the quasinorm associated
with our anisotropic dilation structure.
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ANISOTROPIC SIMPLICES — UNIFORM PART

∣∣L0,ε,n
λ (f )

∣∣ ≲ ∥f∥L2(Rn+1)

ˆ ε

0

(ˆ
Rn+1

∣∣̂f (ξ)∣∣2∣∣k̂(tanλan bnξ)
∣∣2I(λan bnξ)dξ

)1/2 dt
t

I(ζ) :=
ˆ
(Rn+1)n−1

∣∣σ̂{y1,...,yn−1}⊥
(ζ)

∣∣2dσ{y1,...,yn−2}⊥
(yn−1) · · · dσRn+1

(y1)

∣∣σ̂{y1,...,yn−1}⊥
(ζ)

∣∣ ≲ dist
(
ζ, span({y1, . . . , yn−1})

)−1/2

∣∣L0,ε,n
λ (f )

∣∣ ≲ ∥f∥2
L2(Rn+1)

ˆ ε

0
tc dt

t
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ANISOTROPIC BOXES

Pattern counting form (σ = circle measure in R2):

N 0
λ(f ) :=

ˆ
(R2)2n

( ∏
(r1,...,rn)∈{0,1}n

f (x1+r1y1, . . . , xn+rnyn)
)( n∏

k=1

dxk dσλak bk
(yk)

)

Smoothened counting form:

N ε
λ(f ) :=

ˆ
(R2)2n

(
· · ·

)( n∏
k=1

(σ ∗ gεak )λak bk
(yk) dxk dyk

)
=

ˆ
(R2)2n

F(x)
( n∏

k=1

(σ ∗ gεak )λak bk
(x0

k − x1
k)
)

dx

F(x) :=
∏

(r1,...,rn)∈{0,1}n

f (xr1
1 , . . . , xrn

n ), dx := dx0
1 dx1

1 dx0
2 dx1

2 · · · dx0
n dx1

n
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ANISOTROPIC BOXES (CONTINUED)

It is sufficient to show:

N 1
λ(1B) ≳ δ2n

R2n,

J∑
j=1

∣∣N ε
λj
(1B)−N 1

λj
(1B)

∣∣ ≲ ε−CR2n,

∣∣N 0
λ(1B)−N ε

λ(1B)
∣∣ ≲ εcR2n.

B ⊆ ([0,R]2)n has measure |B| ≥ δR2n.
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ANISOTROPIC BOXES — STRUCTURED PART

Partition “most” of the cube ([0,R]2)n into rectangular boxes
Q1 × · · · × Qn, where

Qk = [lλak bk, (l + 1)λak bk)× [l′λak bk, (l′ + 1)λak bk).

We only need the box–Gowers–Cauchy–Schwarz inequality:
 

Q1×Q1×···×Qn×Qn

F(x)dx ≥
( 

Q1×...×Qn

f
)2n

.

27
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ANISOTROPIC BOXES — ERROR PART

Nα
λ (f )−N β

λ (f ) =
n∑

m=1

Lα,β,m
λ (f )

Lα,β,m
λ (f ) := − am

2π

ˆ β

α

ˆ
(R2)2n

F(x) (σ ∗ ktam )λam bm(x
0
m − x1

m)

×
( ∏

1≤k≤n
k ̸=m

(σ ∗ gtak )λak bk(x
0
k − x1

k)
)

dx
dt
t

These look like certain “entangled” paraproducts.

28



Density theorems Classical results General approach Anisotropic configurations Other configurations

ANISOTROPIC BOXES — ERROR PART (CONTINUED)

From
∑J

j=1

∣∣N ε
λj
(1B)−N 1

λj
(1B)

∣∣ we are lead to study

ΘK((fr1,...,rn)(r1,...,rn)∈{0,1}n)

:=

ˆ
(Rd)2n

∏
(r1,...,rn)∈{0,1}n

fr1,...,rn(x1 + r1y1, . . . , xn + rnyn)
)

K(y1, . . . , yn)
( n∏

k=1

dxk dyk

)
Entangled multilinear singular integral forms with cubical structure: K.
(2010), Durcik (2014), Durcik and Thiele (2018: entangled
Brascamp–Lieb)
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ANISOTROPIC BOXES — UNIFORM PART

Exactly the same as for the simplices

Again one only needs some decay of σ̂

(coming from circle curvature)
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RECTANGULAR BOXES — QUANTITATIVE STRENGTHENING

Fix b1, . . . , bn > 0 (box sidelengths).

Durcik and K. (2020), interesting already for isotropic boxes:
For 0 < δ ≤ 1/2 and measurable A ⊆ ([0, 1]2)n with |A| ≥ δ there
exists an interval I = I(A, b1, . . . , bn) ⊆ (0, 1] of length at least(

exp(δ−C(n))
)−1

s. t. for every λ ∈ I one can find x1, . . . , xn, y1, . . . , yn ∈ R2 satisfying
(x1 + r1y1, x2 + r2y2, . . . , xn + rnyn) ∈ A for (r1, . . . , rn) ∈ {0, 1}n;

|yi| = λbi for i = 1, . . . ,n.

This improves the bound of Lyall and Magyar (2019) of the form(
exp(exp(· · · exp(C(n)δ−3·2n

) · · · ))
)−1 (a tower of height n).
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ARITHMETIC PROGRESSIONS

Bourgain’s counterexample applies.

Cook, Magyar, and Pramanik (2015) decided to measure gap lengths
in the ℓp-norm for p ̸= 1, 2,∞.

Cook, Magyar, and Pramanik (2015):
If p ̸= 1, 2,∞, d sufficiently large, A ⊆ Rd measurable, δ(A) > 0,
then ∃λ0 = λ0(p, d,A) ∈ (0,∞) such that for every λ ≥ λ0 one can find
x, y ∈ Rd satisfying x, x + y, x + 2y ∈ A and ∥y∥ℓp = λ.

Open question (Cook, Magyar, and Pramanik):
Is it possible to lower the dimensional threshold all the way to d = 2 or
d = 3?
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ARITHMETIC PROGRESSIONS (CONTINUED)

Open question (Durcik, K., and Rimanić):
Prove or disprove: if n ≥ 4, p ̸= 1, 2, . . . ,n − 1,∞, d sufficiently
large, A ⊆ Rd measurable, δ(A) > 0, then
∃λ0 = λ0(n, p, d,A) ∈ (0,∞) such that for every λ ≥ λ0 one can find
x, y ∈ Rd satisfying x, x + y, . . . , x + (n − 1)y ∈ A and ∥y∥ℓp = λ.

It is necessary to assume p ̸= 1, 2, . . . ,n − 1,∞.

In fact, we have the following weaker but quantitative “compact” result.
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ARITHMETIC PROGRESSIONS — COMPACT FORMULATION

Durcik and K. (2020):
Take n ≥ 3, p ̸= 1, 2, . . . ,n − 1,∞, d ≥ dmin(n, p), δ ∈ (0, 1/2],
A ⊆ [0, 1]d measurable, |A| ≥ δ. Then the set of ℓp-norms of the gaps
of n-term APs in the set A contains an interval of length at least{(

exp(exp(δ−C(n,p,d)))
)−1 when 3 ≤ n ≤ 4,(

exp(exp(exp(δ−C(n,p,d))))
)−1 when n ≥ 5.

One can take dmin(n, p) = 2n+3(n + p) (certainly not sharp).

These “weird” bounds in terms of δ come from the best known
bounds in Szemerédi’s theorem (with an additional “exp”).
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ARITHMETIC PROGRESSIONS — COMPACT FORMULATION

The error part uses bounds for (what is essentially) the multilinear
Hilbert transform,

ˆ
R

ˆ
[−R,−r]∪[r,R]

n−1∏
k=0

fk(x + ky)
dy
y

dx.

• When n ≥ 4, no Lp-bounds uniform in r,R are known.

• Tao (2016) showed a bound of the form o(J), where J ∼ log(R/r)
is the “number of scales” involved.

• Reproved and generalized by Zorin-Kranich (2016), still with o(J).

• Durcik, K., and Thiele (2016) showed a bound O(J1−ε).
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OTHER ARITHMETIC CONFIGURATIONS

Allowed symmetries play a major role.

Note a difference between:

• the so-called corners: (x, y), (x + s, y), (x, y + s) (harder),

• isosceles right triangles: (x, y), (x + s, y), (x, y + t)
with ∥s∥ℓ2 = ∥t∥ℓ2 (easier).
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CORNERS

Durcik, K., and Rimanić (2016):
If p ̸= 1, 2,∞, d sufficiently large, A ⊆ Rd ×Rd measurable, δ(A) > 0,
then ∃λ0 = λ0(p, d,A) ∈ (0,∞) such that for every λ ≥ λ0 one can find
x, y, s ∈ Rd satisfying (x, y), (x + s, y), (x, y + s) ∈ A and ∥s∥ℓp = λ.

Generalizes the result of Cook, Magyar, and Pramanik (2015) via the
skew projection (x, y) 7→ y − x.
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AP-EXTENDED BOXES

Consider the configuration in Rd1 × · · · × Rdn consisting of:

(x1 + k1s1, x2 + k2s2, . . . , xn + knsn), k1, k2, . . . , kn ∈ {0, 1},

(x1 + 2s1, x2, . . . , xn), (x1, x2 + 2s2, . . . , xn), . . . , (x1, x2, . . . , xn + 2sn).

Fix b1, . . . , bn > 0 and p ̸= 1, 2,∞.

Durcik and K. (2018):
There exists a dimensional threshold dmin such that for any d1, d2, . . . ,

dn ≥ dmin and any measurable set A with δ(A) > 0 one can find λ0 > 0
with the property that for any λ ≥ λ0 the set A contains the above
3AP-extended box with ∥si∥ℓp = λbi, i = 1, 2, . . . ,n.
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CORNER-EXTENDED BOXES

Consider the config. in Rd1 × Rd1 × · · · × Rdn × Rdn consisting of:

(x1 + k1s1, . . . , xn + knsn, y1, y2, . . . , yn), k1, k2, . . . , kn ∈ {0, 1},

(x1, x2, . . . , xn, y1 + s1, y2, . . . , yn), . . . , (x1, x2, . . . , xn, y1, y2, . . . , yn + sn).

Fix b1, . . . , bn > 0 and p ̸= 1, 2,∞.

Durcik and K. (2018):
There exists a dimensional threshold dmin such that for any d1, . . . ,

dn ≥ dmin and any measurable set A with δ(A) > 0 one can find λ0 > 0
with the property that for any λ ≥ λ0 the set A contains the above
corner-extended box with ∥si∥ℓp = λbi, i = 1, 2, . . . ,n.
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VERY DENSE SETS

Falconer, K., and Yavicoli (2020):
If d ≥ 2 and A ⊆ Rd is measurable with δ(A) > 1 − 1

n−1 , then for every
n-point configuration P there exists λ0 > 0 s. t. for every λ ≥ λ0 the set
A contains an isometric copy of λP.

The result would be trivial for δ(A) > 1 − 1
n and rotations would not

even be needed there.
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VERY DENSE SETS — LOWER BOUND

What can one say about the lower bound for such density threshold
(depending on the # of points n)?

Let us return to arithmetic progressions!

Falconer, K., and Yavicoli (2020):
For all n, d ≥ 2 there exists a measurable set A ⊆ Rd of density at
least

1 − 10 log n
n1/5

s.t. there are arbitrarily large values of λ for which A contains no
congruent copy of λ{0, 1, . . . ,n − 1}.
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CONCLUSION

• The largeness–smoothness multiscale approach is quite flexible.

• It also gives superior quantitative bounds.

• Its applicability largely depends on the current state of the art on
estimates for multilinear singular and oscillatory integrals.

Thank you for your attention!
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