Bilinear and trilinear embeddings for complex elliptic operators

Vjekoslav Kovač* (University of Zagreb) joint work with Andrea Carbonaro, Oliver Dragičević, and Kristina Ana Škreb International Prague seminar on function spaces October 20, 2022

Semigroups

StRONGLY CONTINUOUS SEMIGROUPS

$X=a$ Banach space, $B(X)=$ bounded linear operators on X
Function

$$
[0, \infty\rangle \rightarrow \mathrm{B}(X), \quad t \mapsto T_{t}
$$

is a strongly continuous one-parameter operator semigroup if:

- $T_{0}=I$;
- for all $s, t \in[0, \infty\rangle$ one has $T_{s+t}=T_{s} T_{t}$;
- for all $f \in X$ the function $[0, \infty\rangle \rightarrow X, t \mapsto T_{t} f$ is continuous.

Infinitesimal generator of the semigroup is

$$
L f:=\lim _{t \rightarrow 0+} \frac{T_{t} f-f}{t} .
$$

Its domain $\mathcal{D}(L) \subseteq X$ is dense in X, while its graph is a closed subset of $X \times X$.

Strongly continuous semigroups

Conversely, L uniquely determines the semigroup and we write

$$
T_{t}=\exp (t L)=e^{t L}
$$

For each $f \in \mathcal{D}(L)$ the function

$$
u(t):=T_{t} f
$$

represents a classical solution of the differential equation (in X)

$$
u^{\prime}(t)=L u(t)
$$

(a "proof" is $\frac{\mathrm{d}}{\mathrm{d} t} e^{t L}=L e^{t L}$) with the initial condition

$$
u(0)=f .
$$

For each $f \in X$ the formula gives a "mild" solution of the problem,

$$
u(t)=f+L \int_{0}^{t} u(s) \mathrm{d} s .
$$

Examples of classical questions: Generation

Under which conditions does operator L really generate a strongly continuous semigroup?

Hille-Yosida-Feller-Miyadera-Phillips theorem:
if and only if

- $\mathcal{D}(L)$ is dense in X,
- the graph of L is a closed subset of $X \times X$,
- there exist $\omega \in[0, \infty\rangle, M \in[1, \infty\rangle$ such that for $\lambda \in\langle\omega, \infty\rangle, n \in \mathbb{N}$ one has

$$
\left\|(\lambda I-L)^{-n}\right\|_{X \rightarrow X} \leqslant \frac{M}{(\lambda-\omega)^{n}} .
$$

Moreover, the semigroup then satisfies the bound

$$
\left\|T_{t}\right\|_{X \rightarrow X} \leqslant M e^{\omega t} .
$$

Examples of classical questions: Contractivity

Under which conditions is the semigroup contractive, i.e.,

$$
\left\|T_{t} f\right\|_{X} \leqslant\|f\|_{X}
$$

for all $t \in[0, \infty\rangle$ and $f \in X$?
Hille-Yosida theorem:
if and only if for every $\lambda>0$ one has $\left\|(\lambda I-L)^{-1}\right\|_{X \rightarrow X} \leqslant \frac{1}{\lambda}$.
Lumer-Phillips theorem:
if and only if for every $f \in \mathcal{D}(L) \subseteq X$ there exists $g \in X^{*}$ such that $g(f)=\|f\|_{X}^{2}=\|g\|_{X^{*}}^{2}$ and $\operatorname{Re} g(L f) \leqslant 0$.

Contractivity can be investigated in different norms $\|\cdot\|$, but for the same semigroup. For instance, when $X=L^{2}\left(\mathbb{R}^{d}\right)$ we could consider $\|\cdot\|_{L^{p}\left(\mathbb{R}^{d}\right)}$ for some $1<p<\infty$.

Elliptic operators

Matrix functions with complex L ${ }^{\infty}$ coefficients

$A: \mathbb{R}^{d} \rightarrow \mathrm{M}_{d}(\mathbb{C})$ a matrix function
$A=\left[\begin{array}{ccc}a_{1,1} & \cdots & a_{1, d} \\ \vdots & & \vdots \\ a_{d, 1} & \cdots & a_{d, d}\end{array}\right], \quad a_{i, j} \in \mathrm{~L}^{\infty}\left(\mathbb{R}^{d}\right)$
(For simplicity we are not working on domains $\Omega \subseteq \mathbb{R}^{d}$.)
We say that A is uniformly elliptic (accretive) if:

$$
\begin{aligned}
& \Lambda(A):=\underset{x \in \mathbb{R}^{d}}{\operatorname{ess} \sup } \max _{\substack{\zeta, \eta \in \mathbb{C}^{d} \\
|\zeta|=|\eta|=1}}\left|\langle A(x) \zeta, \eta\rangle_{\mathbb{C}^{d}}\right|<\infty, \\
& \lambda(A):=\underset{x \in \mathbb{R}^{d}}{\operatorname{essinf}} \min _{\substack{\xi \in \mathbb{C}^{d} \\
|\xi|=1}} \operatorname{Re}\langle A(x) \xi, \xi\rangle_{\mathbb{C}^{d}}>0 .
\end{aligned}
$$

ELLIPTIC OPERATORS IN DIVERGENCE FORM

Elliptic operator in divergence form (complex and non-smooth) associated with A is formally defined:

$$
L_{A} f:=-\operatorname{div}(A \nabla f)
$$

i.e.,

$$
\left(L_{A} f\right)(x):=-\sum_{i, j=1}^{d} \partial_{i}\left(a_{i, j}(x) \partial_{j} f(x)\right)
$$

(One might also add first-order derivatives.)
This is well defined in the classical sense only when the coefficients of A are smooth.

If $A \equiv I$, then $L_{I}=-\operatorname{div} \nabla=-\Delta$.

ElLiptic operators in divergence form

In general, L_{A} is defined via duality:

$$
\left\langle L_{A} f, g\right\rangle_{L^{2}\left(\mathbb{R}^{d}\right)}=\int_{\mathbb{R}^{d}}\langle A(x) \nabla f(x), \nabla g(x)\rangle_{\mathbb{C}^{d}} \mathrm{~d} x
$$

(as if we formally applied integration by parts) and its domain $\mathcal{D}\left(L_{A}\right) \subseteq \mathrm{L}^{2}\left(\mathbb{R}^{d}\right)$ is the set of all $f \in \mathrm{~W}^{1,2}\left(\mathbb{R}^{d}\right)$ for which the RHS, as a function of $g \in \mathbf{W}^{1,2}\left(\mathbb{R}^{d}\right)$, extends to a bounded antilinear functional on $L^{2}\left(\mathbb{R}^{d}\right)$.
We will only work with $f, g \in \mathrm{C}_{c}^{\infty}\left(\mathbb{R}^{d}\right)$.
Consider the strongly continuous operator semigroup $\left(T_{t}^{A}\right)_{t \geqslant 0}$ on $L^{2}\left(\mathbb{R}^{d}\right)$ generated by $-L_{A}$:

$$
T_{t}^{A}:=\exp \left(-t L_{A}\right)
$$

ElLiptic operators in divergence form

Why is this concept important or interesting?
For every $f \in \mathcal{D}\left(L_{A}\right)$ the function

$$
\begin{gathered}
u:[0, \infty) \times \mathbb{R}^{d} \rightarrow \mathbb{C}, \\
u(t, x):=\left(T_{t}^{A} f\right)(x)
\end{gathered}
$$

is a classical solution of the evolution PDE

$$
\frac{\partial}{\partial t} u(t, x)=-L_{A}(x) u(t, x)
$$

with the initial condition

$$
u(0, x)=f(x) .
$$

For $A \equiv I$ we obtain the heat equation:

$$
\frac{\partial}{\partial t} u(t, x)=\Delta u(t, x) .
$$

An interesting question: Contractivity

Under which condition on A is the semigroup contractive on $\mathrm{L}^{p}\left(\mathbb{R}^{d}\right)$ for some $1<p<\infty$, i.e.,

$$
\left\|T_{t}^{A} f\right\|_{L^{p}\left(\mathbb{R}^{d}\right)} \leqslant\|f\|_{L^{p}\left(\mathbb{R}^{d}\right)}
$$

for $t \in[0, \infty\rangle$ and $f \in L^{p}\left(\mathbb{R}^{d}\right)$?
Under the additional requirement that $\operatorname{Im} A$ is symmetric, Cialdea and Maz'ya (2005) showed that the contractivity on $L^{p}\left(\mathbb{R}^{d}\right)$ is equivalent with

$$
|p-2|\left|\langle\operatorname{Im} A(x) \xi, \xi\rangle_{\mathbb{R}^{d}}\right| \leqslant 2(p-1)^{1 / 2}\langle\operatorname{Re} A(x) \xi, \xi\rangle_{\mathbb{R}^{d}}
$$

for a.e. $x \in \mathbb{R}^{d}$ and every $\xi \in \mathbb{R}^{d}$.
A general characterization is an open problem.
Carbonaro and Dragičević (2016) showed:
$\Delta_{p}(A) \geqslant 0$ is sufficient, $\Delta_{p}\left(\frac{A+A^{*}}{2}\right) \geqslant 0$ is necessary.

p-ELLIPTICITY

Carbonaro and Dragičević (2016) defined A to be p-elliptic for $1<p<\infty$ if $\Lambda(A)<\infty$ and

$$
\Delta_{p}(A):=\underset{x \in \mathbb{R}^{d}}{\operatorname{ess} \inf } \min _{\substack{\xi \in \mathbb{C}^{d} \\|\xi|=1}} \operatorname{Re}\langle A(x) \xi, \xi+| 1-\frac{2}{p}|\bar{\xi}\rangle_{\mathbb{C}^{d}}>0 .
$$

For $2 \leqslant p_{1} \leqslant p_{2}<\infty$ we have

$$
\lambda(A)=\Delta_{2}(A) \geqslant \Delta_{p_{1}}(A) \geqslant \Delta_{p_{2}}(A)
$$

and inclusions

$$
\begin{aligned}
& \left\{\begin{array}{c}
\text { elliptic } \\
\text { matrices }
\end{array}\right\}=\left\{\begin{array}{c}
2 \text {-elliptic } \\
\text { matrices }
\end{array}\right\} \supseteq\left\{\begin{array}{c}
p_{1} \text {-elliptic } \\
\text { matrices }
\end{array}\right\} \supseteq\left\{\begin{array}{c}
p_{2} \text {-elliptic } \\
\text { matrices }
\end{array}\right\} \\
& \supseteq\left\{\begin{array}{c}
\text { matrices that are } p \text {-elliptic } \\
\text { for every } 1<p<\infty
\end{array}\right\}=\left\{\begin{array}{c}
\text { real elliptic } \\
\text { matrices }
\end{array}\right\} .
\end{aligned}
$$

Bilinear embeddings

BILINEAR EMBEDDINGS

Let $\left(T_{t}\right)_{t \geqslant 0}$ and $\left(\widetilde{T}_{t}\right)_{t \geqslant 0}$ be operator semigroups on some space of functions on \mathbb{R}^{d}. Let $\|\cdot\|$ and $\|\cdot\|^{*}$ be mutually dual norms.

Bi-sub-linear estimates of the form

$$
\int_{0}^{\infty} \int_{\mathbb{R}^{d}}\left|\nabla T_{t} f(x)\right|\left|\nabla \widetilde{T}_{t} g(x)\right| \mathrm{d} x \mathrm{~d} t \leqslant C\|f\|\|g\|^{*}
$$

are called bilinear embeddings.
Some history of bilinear embeddings:

- Estimates for the Ahlfors-Beurling operator and iterated Riesz transforms (Petermichl-Volberg, 2002; Nazarov-Volberg, 2003):

$$
\int_{\mathbb{R}^{2}}\left(R_{1}^{2} f\right)(x) g(x) \mathrm{d} x=-2 \int_{0}^{\infty} \int_{\mathbb{R}^{2}}\left(\partial_{x_{1}} T_{t} f(x)\right)\left(\partial_{x_{1}} T_{t} g(x)\right) \mathrm{d} x \mathrm{~d} t
$$

where $\left(T_{t} f\right)_{t \geqslant 0}$ is the heat extension of f.

MORE HISTORY OF BILINEAR EMBEDDINGS

- Dimension-free Littlewood-Paley estimates (Dragičević-Volberg, 2006)
- Dimension-free estimates for Schrödinger operators
(Dragičević-Volberg, 2011, 2012)
- Dimension-free estimates for Riesz transforms associated with a Riemannian manifold (Carbonaro-Dragičević, 2011)
- Functional calculus for generators of symmetric contraction semigroups (Carbonaro-Dragičević, 2013)
- Bilinear embedding for divergence-form operators with complex coefficients (Carbonaro-Dragičević, 2016)

BILINEAR EMBEDDING FOR COMPLEX ELLIPTIC OPERATORS

Theorem [Carbonaro-Dragičević, 2016]. If $A, B: \mathbb{R}^{d} \rightarrow \mathbf{M}_{d}(\mathbb{C})$ are p-elliptic, then

$$
\int_{0}^{\infty} \int_{\mathbb{R}^{d}}\left|\left(\nabla T_{t}^{A} f\right)(x)\right|\left|\left(\nabla T_{t}^{B} g\right)(x)\right| \mathrm{d} x \mathrm{~d} t \leqslant 20 C_{p}(A, B)\|f\|_{L^{p}}\|g\|_{L^{q}} .
$$

Here

$$
C_{p}(A, B):=\frac{\max \{\Lambda(A), \Lambda(B)\}}{\min \left\{\Delta_{p}(A), \Delta_{p}(B)\right\} \min \{\lambda(A), \lambda(B)\}} .
$$

BILINEAR EMBEDDING FOR COMPLEX ELLIPTIC OPERATORS

They use certain convexity properties of the Bellman function constructed by Nazarov and Treil (1996):

$$
\mathfrak{X}(u, v):=\frac{|u|^{p}}{p}+\frac{|v|^{q}}{q}+\delta \begin{cases}\frac{2}{p}|u|^{p}+\left(\frac{2}{q}-1\right)|v|^{q} & \text { for }|u|^{p} \geqslant|v|^{q} \\ |u|^{2}|v|^{2-q} & \text { for }|u|^{p}<|v|^{q}\end{cases}
$$

for an appropriate $\delta>0$.
It is crucially used that \mathfrak{X} is made of powers.

Orlicz spaces

Orlicz spaces

They generalize L^{p} spaces.
We want to have function spaces "close to" L^{1} or L^{∞}, or a "finer scale" of function spaces between L^{1} and L^{∞}.
$\Phi:[0, \infty\rangle \rightarrow[0, \infty\rangle$ is a Young function if

$$
\Phi \text { is convex, } \quad \Phi(0)=0, \quad \lim _{s \rightarrow 0+} \frac{\Phi(s)}{s}=0, \quad \lim _{s \rightarrow \infty} \frac{\Phi(s)}{s}=\infty
$$

Conjugated Young function is $\Psi:[0, \infty\rangle \rightarrow[0, \infty\rangle$,

$$
\Psi(t):=\sup _{s \in\langle 0, \infty\rangle}(s t-\Phi(s))=\int_{0}^{t}\left(\Phi^{\prime}\right)^{-1}(r) \mathrm{d} r
$$

Young's inequality:

$$
s t \leqslant \Phi(s)+\Psi(t) \quad \text { for all } s, t \in[0, \infty\rangle
$$

Orlicz spaces

Luxemburg norm $\|\cdot\|_{\Phi}$ is defined for (a.e. classes of) measurable functions $f: \mathbb{R}^{d} \rightarrow \mathbb{C}$ as

$$
\|f\|_{\Phi}:=\inf \left\{\alpha \in\langle 0, \infty\rangle: \int_{\mathbb{R}^{d}} \Phi\left(\frac{|f(x)|}{\alpha}\right) \mathrm{d} x \leqslant 1\right\}
$$

That way we arrive at the Orlicz space $L^{\Phi}\left(\mathbb{R}^{d}\right)$.
The doubling condition

$$
\Phi(2 s) \leqslant K \Phi(s) \quad \text { for every } s \in[0, \infty\rangle
$$

guarantees

$$
\|\cdot\|_{\Phi}^{*} \sim\|\cdot\|_{\Psi}
$$

and

$$
L^{\Phi}\left(\mathbb{R}^{d}\right)^{*} \cong L^{\Psi}\left(\mathbb{R}^{d}\right) .
$$

ADDITIONAL ASSUMPTIONS

We additionally assume that Φ and Ψ are "like powers":

- Φ and Ψ are mutually conjugate Young functions,
- Φ and Ψ are C^{1} on $[0, \infty\rangle$ and C^{2} on $\langle 0, \infty\rangle$,
- $\Phi^{\prime \prime}(s), \Psi^{\prime \prime}(s)>0$ for every $s \in\langle 0, \infty\rangle$,
- Φ^{\prime} is strictly convex on $\langle 0, \infty\rangle$ and $\lim _{s \rightarrow 0^{+}} \frac{\Phi^{\prime}(s)}{s}=0$,
$-\sup _{s \in(0, \infty)} \frac{s \Phi^{\prime}(s)}{\Phi(s)}<\infty$,
- $1<\inf _{s \in(0, \infty)} \frac{s \Phi^{\prime \prime}(s)}{\Phi^{\prime}(s)} \leqslant \sup _{s \in(0, \infty)} \frac{s \Phi^{\prime \prime}(s)}{\Phi^{\prime}(s)}<\infty$.

ADDITIONAL ASSUMPTIONS

Consequently:
$\Phi^{\prime} \mathrm{i} \Psi^{\prime}$ are mutually inverse increasing bijections of $[0, \infty\rangle$.
The last three conditions are equivalent with:

- Ψ^{\prime} is strictly concave on $\langle 0, \infty\rangle$ and $\lim _{s \rightarrow 0^{+}} \frac{\Psi^{\prime}(s)}{s}=\infty$,
$-\inf _{s \in(0, \infty)} \frac{s \Psi^{\prime}(s)}{\Psi(s)}>1$,
- $0<\inf _{s \in(0, \infty)} \frac{s \Psi^{\prime \prime}(s)}{\Psi^{\prime}(s)} \leqslant \sup _{s \in(0, \infty)} \frac{s \Psi^{\prime \prime}(s)}{\Psi^{\prime}(s)}<1$.

Consequently:

$$
\|\cdot\|_{\Phi}^{*} \sim\|\cdot\|_{\Psi} .
$$

Examples

Example 1. Lebesgue spaces L^{p}.

$$
\begin{gathered}
\Phi(s)=\frac{s^{p}}{p}, \quad \Psi(s)=\frac{s^{q}}{q} \quad \text { for } p \in\langle 2, \infty\rangle, q \in\langle 1,2\rangle, \frac{1}{p}+\frac{1}{q}=1 . \\
\|\cdot\|_{\Phi} \sim\|\cdot\|_{L^{p}}, \quad\|\cdot\|_{\Psi} \sim\|\cdot\|_{L^{q}} .
\end{gathered}
$$

Example 2. Zygmund spaces $\mathrm{L}^{r} \log \mathrm{~L}$.

$$
\Phi(s)=s^{r} \log (s+e) \quad \text { for } r \in\langle 2, \infty\rangle \text {. }
$$

Examples

Example 3. Superposition of powers with exponents from $\langle 2, \infty\rangle$.

$$
\begin{gathered}
\Phi(s)=s^{p}+s^{r} \quad \text { for } 2<r<p<\infty \\
\Phi(s)=\int s^{t} \mathrm{~d} \mu(t)
\end{gathered}
$$

for a positive Borel measure μ with compact support in $\langle 2, \infty\rangle$.

Example 4. Superposition of powers with exponents from $\langle 1,2\rangle$.

$$
\begin{gathered}
\Psi(s)=s^{q}+s^{r} \quad \text { for } 1<q<r<2 . \\
\Psi(s)=\int s^{t} \mathrm{~d} \mu(t)
\end{gathered}
$$

for a positive Borel measure μ with compact support in $\langle 1,2\rangle$.

Embeddings meet Orlicz

What would be Φ-ELLIPTICITY?

For a Young function Φ one could define:

$$
\Delta_{\Phi}(A):=\underset{x \in \mathbb{R}^{d}}{\operatorname{essinf}} \inf _{\substack{\xi \in \mathbb{C}^{d},|\xi|=1 \\ s \in(0, \infty)}} \operatorname{Re}\left\langle A(x) \xi, \xi+\frac{s \Phi^{\prime \prime}(s)-\Phi^{\prime}(s)}{s \Phi^{\prime \prime}(s)+\Phi^{\prime}(s)} \bar{\xi}\right\rangle_{\mathbb{C}^{d}} .
$$

In the special case $\Phi(s)=s^{p} / p$ this simplifies as $\Delta_{p}(A)$.
However,

$$
\Delta_{\Phi}(A)=\Delta_{p}(A)
$$

for a unique $p \in[2, \infty]$ s.t.

$$
\sup _{s \in(0, \infty)}\left|\frac{s \Phi^{\prime \prime}(s)-\Phi^{\prime}(s)}{s \Phi^{\prime \prime}(s)+\Phi^{\prime}(s)}\right|=1-\frac{2}{p}, \quad \text { i.e., } p=\sup _{s \in(0, \infty)} \frac{s \Phi^{\prime \prime}(s)}{\Phi^{\prime}(s)}+1 .
$$

RELATION TO RECENT LITERATURE

Cialdea and Maz'ya (2021) introduced the notion of certain Φ-dissipativity, as an attempt to characterize L^{Φ}-contractivity.

Under the additional assumption that $\operatorname{Im} A$ is symmetric they showed that Φ-dissipativity is equivalent with

$$
\left|\Phi^{\prime \prime}(s)-\frac{\Phi^{\prime}(s)}{s}\right|\left|\langle\operatorname{Im} A(x) \xi, \xi\rangle_{\mathbb{R}^{d}}\right| \leqslant 2\left(\frac{\Phi^{\prime}(s) \Phi^{\prime \prime}(s)}{s}\right)^{1 / 2}\langle\operatorname{Re} A(x) \xi, \xi\rangle_{\mathbb{R}^{d}}
$$

for a.e. $x \in \mathbb{R}^{d}$, every $s \in(0, \infty)$, and every $\xi \in \mathbb{R}^{d}$.
In the special case $\Phi(s)=s^{p} / p$ this becomes the previously mentioned characterization of L^{p}-contractivity.

A bilinear embedding in Orlicz spaces

We recall all aditional assumptions on Φ, Ψ, and we set

$$
p=\sup _{s \in(0, \infty)} \frac{s \Phi^{\prime \prime}(s)}{\Phi^{\prime}(s)}+1=\sup _{s \in(0, \infty)} \frac{\Psi^{\prime}(s)}{s \Psi^{\prime \prime}(s)}+1
$$

Theorem [K.-Škreb, 2021]. If $A, B: \mathbb{R}^{d} \rightarrow M_{d}(\mathbb{C})$ are p-elliptic, then $\int_{0}^{\infty} \int_{\mathbb{R}^{d}}\left|\left(\nabla T_{t}^{A} f\right)(x)\right|\left|\left(\nabla T_{t}^{B} g\right)(x)\right| \mathrm{d} x \mathrm{~d} t \leqslant 40 C_{p}(A, B) D(\Phi, \Psi)\|f\|_{\Phi}\|g\|_{\Psi}$. Here $C_{p}(A, B)$ is as before, while

$$
D(\Phi, \Psi):=\max \left\{1, \frac{M}{\tilde{m}}\right\}\left(\frac{\tilde{m}}{\tilde{M}} \frac{\tilde{M}-1}{\tilde{m}-1}\right)^{1 / 2}
$$

with

$$
M:=\sup _{s \in(0, \infty)} \frac{s \Phi^{\prime}(s)}{\Phi(s)}, \quad \tilde{m}:=\inf _{s \in(0, \infty)} \frac{s \Phi^{\prime \prime}(s)}{\Phi^{\prime}(s)}, \quad \tilde{M}:=\sup _{s \in(0, \infty)} \frac{s \Phi^{\prime \prime}(s)}{\Phi^{\prime}(s)}
$$

LImitation of the complex case

Take

$$
A \equiv e^{i \phi} I, \quad B \equiv e^{-i \phi} I
$$

for some $\phi \in(-\pi / 2, \pi / 2), \phi \neq 0$.
Orlicz-space bilinear embedding implies boundedness:

$$
\sup _{t \in(0, \infty)}\left\|\exp \left(t e^{i \phi} \Delta\right)\right\|_{L^{\Phi} \rightarrow L^{\Phi}} \lesssim_{\Phi, \phi} 1 .
$$

However, a dimensionless bound

$$
\sup _{t \in(0, \infty)}\left\|\exp \left(t e^{i \phi} \Delta\right)\right\|_{L^{p} \rightarrow L^{p}} \lesssim_{p, \phi} 1
$$

can only hold when $|1-2 / p| \leqslant \cos \phi$.

SKETCH OF THE PROOF

A generalized Hessian of a function $\mathfrak{X}: \mathbb{C}^{2} \rightarrow \mathbb{R}$ w.r.t. matrices $A, B \in \mathrm{M}_{d}(\mathbb{C})$, denoted by

$$
H_{\mathfrak{X}}^{A, B}[(u, v) ;(\zeta, \eta)],
$$

is a dot product of

$$
\left(\operatorname{Hess}(\mathfrak{X} ;(u, v)) \otimes I_{d}\right)\left[\begin{array}{c}
\operatorname{Re} \zeta \\
\operatorname{Im} \zeta \\
\operatorname{Re} \eta \\
\operatorname{Im} \eta
\end{array}\right] \in\left(\mathbb{R}^{d}\right)^{4}
$$

and
$\left[\begin{array}{cccc}\operatorname{Re} A & -\operatorname{Im} A & 0 & 0 \\ \operatorname{Im} A & \operatorname{Re} A & 0 & 0 \\ 0 & 0 & \operatorname{Re} B & -\operatorname{Im} B \\ 0 & 0 & \operatorname{Im} B & \operatorname{Re} B\end{array}\right]\left[\begin{array}{c}\operatorname{Re} \zeta \\ \operatorname{Im} \zeta \\ \operatorname{Re} \eta \\ \operatorname{Im} \eta\end{array}\right] \in\left(\mathbb{R}^{d}\right)^{4}$.

Sketch of the proof

A function $\mathfrak{X}: \mathbb{C}^{2} \rightarrow[0, \infty)$ will be determined later.
For $R>0$ denote $\psi_{R}(x):=\psi(x / R)$ and define

$$
\mathcal{E}_{\mathbb{R}}(t):=\int_{\mathbb{R}^{d}} \psi_{\mathbb{R}}(x) \mathfrak{X}\left(\left(T_{t}^{A} f\right)(x),\left(T_{t}^{B} g\right)(x)\right) \mathrm{d} x .
$$

On the one hand,

$$
\begin{aligned}
\mathcal{E}_{R}(0)-\mathcal{E}_{R}(\tau) & \leqslant \mathcal{E}_{R}(0)=\int_{\mathbb{R}^{d}} \psi_{\mathbb{R}}(x) \mathfrak{X}(f(x), g(x)) \mathrm{d} x \\
& \lesssim \Phi, \Psi \int_{\mathbb{R}^{d}} \psi_{R}(x)(\Phi(|f(x)|)+\Psi(|g(x)|)) \mathrm{d} x .
\end{aligned}
$$

One the other hand,

$$
-\int_{0}^{\tau} \mathcal{E}_{R}^{\prime}(t) \mathrm{d} t=-\int_{0}^{\tau} \int_{\mathbb{R}^{d}} \psi_{\mathbb{R}}(x) \frac{\partial}{\partial t} \mathfrak{H}\left(\left(T_{t}^{A} f\right)(x),\left(T_{t}^{B} g\right)(x)\right) \mathrm{d} x \mathrm{~d} t .
$$

SKETCH OF THE PROOF

Continued:
$-\int_{0}^{\tau} \mathcal{E}_{R}^{\prime}(t) \mathrm{d} t$
$=\int_{0}^{\tau} \int_{\mathbb{R}^{d}} \psi_{\mathbb{R}}(x) H_{x}^{A(x), B(x)}\left[\left(\left(T_{t}^{A} f\right)(x),\left(T_{t}^{B} g\right)(x)\right) ;\left(\left(\nabla T_{t}^{A} f\right)(x),\left(\nabla T_{t}^{B} g\right)(x)\right)\right] \mathrm{d} x \mathrm{~d} t+\mathcal{R}_{R, \tau}$
$\gtrsim_{A, B, \Phi, \Psi} \int_{0}^{\tau} \int_{\mathbb{R}^{d}} \psi_{\mathbb{R}}(x)\left|\left(\nabla T_{t}^{A} f\right)(x)\right|\left|\left(\nabla T_{t}^{B} g\right)(x)\right| \mathrm{d} x \mathrm{~d} t+\mathcal{R}_{R, \tau}$,
where

$$
\begin{aligned}
\mathcal{R}_{R, \tau}=2 \operatorname{Re} & \int_{0}^{\tau} \int_{\mathbb{R}^{d}}\left(\left(\partial_{\bar{u}} \mathfrak{X}\right)\left(\left(T_{t}^{A} f\right)(x),\left(T_{t}^{B} g\right)(x)\right)\left\langle\left(\nabla \psi_{\mathbb{R}}\right)(x), A(x)\left(\nabla T_{t}^{A} f\right)(x)\right\rangle_{\mathbb{C}^{d}}\right. \\
& \left.+\left(\partial_{\bar{v}} \mathfrak{X}\right)\left(\left(T_{t}^{A} f\right)(x),\left(T_{t}^{B} g\right)(x)\right)\left\langle\left(\nabla \psi_{R}\right)(x), B(x)\left(\nabla T_{t}^{B} g\right)(x)\right\rangle_{\mathbb{C}^{d}}\right) \mathrm{d} x \mathrm{~d} t .
\end{aligned}
$$

We want

$$
\lim _{R \rightarrow \infty} \mathcal{R}_{R, \tau}=0 .
$$

SKETCH OF THE PROOF

Therefore

$$
\begin{aligned}
& \int_{0}^{\tau} \int_{\mathbb{R}^{d}} \psi_{R}(x)\left|\left(\nabla T_{t}^{A} f\right)(x)\right|\left|\left(\nabla T_{t}^{B} g\right)(x)\right| \mathrm{d} x \mathrm{~d} t+\mathcal{R}_{R, \tau} \\
& \lesssim A, B, \Phi, \Psi
\end{aligned} \int_{\mathbb{R}^{d}} \psi_{R}(x)(\Phi(|f(x)|)+\Psi(|g(x)|)) \mathrm{d} x . ~ \$
$$

Letting $R \rightarrow \infty$ we get
$\int_{0}^{\tau} \int_{\mathbb{R}^{d}}\left|\left(\nabla T_{t}^{A} f\right)(x)\right|\left|\left(\nabla T_{t}^{B} g\right)(x)\right| \mathrm{d} x \mathrm{~d} t \lesssim_{A, B, \Phi, \Psi} \int_{\mathbb{R}^{d}} \Phi(|f(x)|) \mathrm{d} x+\int_{\mathbb{R}^{d}} \Psi(|g(x)|) \mathrm{d} x$.
Finally, letting $\tau \rightarrow \infty$ and "homogenizing"

$$
f \rightarrow \alpha f, \quad g \rightarrow g / \alpha
$$

we obtain

$$
\int_{0}^{\infty} \int_{\mathbb{R}^{d}}\left|\left(\nabla T_{t}^{A} f\right)(x)\right|\left|\left(\nabla T_{t}^{B} g\right)(x)\right| \mathrm{d} x \mathrm{~d} t \lesssim_{A, B, \Phi, \Psi}\|f\|_{\Phi}\|g\|_{\Psi} .
$$

Properties of the desired Bellman function

The proof is complete if there exists a function $\mathfrak{X}: \mathbb{C}^{2} \rightarrow[0, \infty\rangle$ with the following properties (the so-called Bellman function):

- \mathfrak{x} is C^{1} on $\mathbb{C}^{2} \equiv \mathbb{R}^{4}$ and "piecewise" C^{2} with locally integrable second derivatives;
- $\mathfrak{X}(u, v) \lesssim_{\Phi, \Psi} \Phi(|u|)+\Psi(|v|) ;$
- $H_{\mathfrak{X}}^{A(x), B(x)}[(u, v) ;(\zeta, \eta)] \gtrsim_{\Phi, \Psi}|\zeta||\eta| ;$
- $\left|\partial_{\bar{u}} \mathfrak{X}(u, v)\right| \leqslant \max \left\{\Phi^{\prime}(|u|),|v|\right\}$, $\left|\partial_{\bar{v}} \mathfrak{X}(u, v)\right| \leqslant \Psi^{\prime}(|v|)$, where $\partial_{\bar{z}}=\left(\partial_{x}+i \partial_{y}\right) / 2$.

Existence of the desired Bellman function

We define \mathfrak{X} by the formula
$\mathfrak{X}(u, v):= \begin{cases}(1+\delta)(\Phi(|u|)+\Psi(|v|))+\delta|u|^{2} \int_{0}^{|u|} \frac{\Phi^{\prime}(s) \mathrm{d} s}{s^{2}} ; & |v| \leqslant \Phi^{\prime}(|u|), \\ \Phi(|u|)+\Psi(|v|)+\delta|u|^{2} \int_{0}^{|v|} \frac{\mathrm{d} s}{\Psi^{\prime}(s)} ; & |v|>\Phi^{\prime}(|u|),\end{cases}$
for an appropriate $\delta>0$.
A good choice is

$$
\delta:=\frac{\tilde{m}-1}{\tilde{m}} \min \left\{\frac{\Delta_{p}(A)}{8 \Lambda(A)}, \frac{\Delta_{p}(B)}{4 \Lambda(B)}, \frac{\lambda(A) \Delta_{p}(B)}{100 \max \left\{\Lambda(A)^{2}, \Lambda(B)^{2}\right\}}\right\} .
$$

The verification is tedious.

A trilinear embedding

TRILINEAR EMBEDDING

What if we have three semigroups generated by three elliptic div-form operators?

We would like to have a paraproduct-type estimate involving

$$
T_{t}^{A} f, \quad \nabla T_{t}^{B} g, \quad \nabla T_{t}^{C} h .
$$

What conditions on A, B, C are needed to guarantee an estimate on $\mathrm{L}^{p}\left(\mathbb{R}^{d}\right) \times \mathrm{L}^{q}\left(\mathbb{R}^{d}\right) \times \mathrm{L}^{r}\left(\mathbb{R}^{d}\right) ?$

TRILINEAR EMBEDDING

Take $p, q, r \in(1, \infty)$ such that $1 / p+1 / q+1 / r=1$.
Theorem [Carbonaro-Dragičević-K.-Š̌kreb, 2020].
Suppose that $A, B, C: \mathbb{R}^{d} \rightarrow \mathrm{M}_{d}(\mathbb{C})$ are matrix functions such that A is p-elliptic,
B is q-elliptic and $(1+q / r)$-elliptic,
C is r-elliptic and $(1+r / q)$-elliptic.
Then we have
$\int_{0}^{\infty} \int_{\mathbb{R}^{d}}\left|\left(T_{t}^{A} f\right)(x)\left\|\left(\nabla T_{t}^{B} g\right)(x)\right\|\left(\nabla T_{t}^{C} h\right)(x)\right| \mathrm{d} x \mathrm{~d} t \leqslant \mathcal{C}\|f\|_{L^{p}\left(\mathbb{R}^{d}\right)}\|g\|_{L^{q}\left(\mathbb{R}^{d}\right)}\|h\|_{L^{r^{(}\left(\mathbb{R}^{d}\right)}}$.
The embedding constant \mathcal{C} only depends on p, q, r and the implied ellipticity constants of A, B, C.

Properties of the desired Bellman function

For the proof we need a function $\mathfrak{X}: \mathbb{C}^{3} \rightarrow[0, \infty\rangle$ with the following properties:

- \mathfrak{X} is C^{1} on $\mathbb{C}^{3} \equiv \mathbb{R}^{6}$ and "piecewise" C^{2} with locally integrable second derivatives;
- $\mathfrak{X}(u, v, w) \lesssim_{p, q, r}|u|^{p}+|v|^{q}+|w|^{r}$;
- $H^{A}{ }^{A(x), B(x), C(x)}[(u, v, w) ;(\zeta, \eta, \xi)] \gtrsim \gtrsim_{p, q, r}|u||\eta||\xi| ;$
- $\left|\partial_{\bar{u}} \mathfrak{X}(u, v, w)\right| \lesssim|u|^{p-1}$,

$$
\left|\partial_{\bar{v}} \mathfrak{X}(u, v, w)\right| \lesssim \max \left\{|u|^{p},|v|^{q},|w|^{r}\right\}^{1-1 / q},
$$

$$
\left|\partial_{\bar{w}} \mathcal{X}(u, v, w)\right| \lesssim \max \left\{|u|^{p},|v|^{q},|w|^{r}\right\}^{1-1 / r} .
$$

Construction of the desired Bellman function

WLOG assume $q>r$ and use the ansatz:

$$
\begin{gathered}
\mathfrak{X}(u, v, w)=|u|^{p} \gamma(\underbrace{\frac{|v|^{q}}{|u|^{p}}}_{t}, \underbrace{\frac{|w|^{r}}{|u|^{p}}}_{s}) . \\
\gamma(t, s)=\left\{\begin{array}{lr}
a_{1}+b_{1} t+c_{1} s ; & 1 \leqslant s \leqslant t, \\
a_{2}+b_{2} t+c_{2} s^{\frac{1}{p^{\prime}}} ; & s \leqslant 1 \leqslant t, \\
a_{3}+b_{3} t^{\frac{1}{p^{\prime}}}+c_{3} s^{\frac{1}{p^{\prime}}} ; & s \leqslant t \leqslant 1, \\
a_{4}+b_{4} t^{\frac{2}{q}} s^{\frac{1}{r}-\frac{1}{q}}+c_{4} s^{\frac{1}{p^{\prime}}} ; & t \leqslant s \leqslant 1, \\
a_{5}+b_{5} t^{\frac{2}{q}}+c_{5} t^{\frac{2}{9}} s^{1-\frac{2}{q}}+d_{5} s ; & t \leqslant 1 \leqslant s, \\
a_{6}+b_{6} t+c_{6} t^{\frac{2}{9}} s^{1-\frac{2}{q}}+d_{6} ; & 1 \leqslant t \leqslant s .
\end{array}\right.
\end{gathered}
$$

Adjust the coefficients so that γ is C^{1} on $(0, \infty)^{2}$.

Construction of the desired Bellman function

$$
\gamma(t, s)= \begin{cases}a+b t+c s ; & 1 \leqslant s \leqslant t \\ \frac{a(p-1)-c}{p-1}+b t+\frac{c p}{p-1} S^{\frac{1}{p^{\prime}}} ; & s \leqslant 1 \leqslant t \\ \frac{a(p-1)-(b+c)}{p-1}+\frac{b p}{p-1} t^{\frac{1}{p^{\prime}}}+\frac{c p}{p-1} S^{\frac{1}{p^{\prime}}} ; & t \leqslant t \leqslant 1 \\ \frac{a(p-1)-(b+c)}{p-1}+\frac{b q}{2} t^{\frac{2}{q}} S^{\frac{1}{r}-\frac{1}{q}+\frac{2 c p r-b p(q-r)}{2 r(p-1)} S^{\frac{1}{p^{\prime}}} ;} & t \leqslant s \leqslant 1 \\ \frac{2 a r(p-1)-b(q+r)}{2 r(p-1)}+\frac{b q^{2}}{2 p(q-2)} t^{\frac{2}{q}}+\frac{b q(q-r)}{2 r(q-2)} t^{\frac{2}{q}} S^{1-\frac{2}{q}} \\ a+\frac{b q}{p(q-2)} t+\frac{b q(q-r)}{2 r(q-2)} t^{\frac{2}{q}} S^{1-\frac{2}{q}}+\frac{2 c r-b(q-r)}{2 r} S ; & 1 \leqslant t \leqslant s\end{cases}
$$

Choose a, b, c appropriately.
Again similar to the function constructed by Nazarov and Treil (1996), used in the L^{p} bilinear embedding.

Square functions

SQUARE FUNCTION ESTIMATES

"Vertical" (Littlewood-Paley-Stein) square function, defined as

$$
\left(\mathcal{G}^{A} f\right)(x):=\left(\int_{0}^{\infty}\left|\left(\nabla T_{t}^{A} f\right)(x)\right|^{2} \mathrm{~d} t\right)^{1 / 2},
$$

is only bounded in a very restrictive range of exponents
$\left(p_{-}(A), p_{+}(A)\right)$.

Even for real elliptic A this range could be only $(1,2+\varepsilon)$.
(Auscher, 2007)

Consequently, there are no easy (maximal-square-square) shortcuts to trilinear embeddings.

SQUARE FUNCTION ESTIMATES

"Conical" square function, defined as

$$
\left(\mathcal{C}^{A} f\right)(x):=\left(\iint_{\{|x-y|<\sqrt{t}\}}\left|\nabla\left(T_{t}^{A} f\right)(y)\right|^{2} \frac{\mathrm{~d} y \mathrm{~d} t}{t^{d} / 2}\right)^{1 / 2}
$$

is bounded in the full range of exponents $(1, \infty)$ for real elliptic A. (Auscher-Hofmann-Martell, 2012)

The trilinear embedding reproves and sharpens their result.

AN APPLICATION OF THE TRILINEAR EMBEDDING

Consider the modified square function, defined as

$$
\left(\widetilde{\mathcal{G}}^{A} f\right)(x):=\left(\int_{0}^{\infty} T_{t}^{I}\left(\left|\nabla T_{t}^{A} f\right|^{2}\right)(x) \mathrm{d} t\right)^{1 / 2} .
$$

From the formula for the heat kernel on \mathbb{R}^{d} :

$$
\mathcal{C}^{A} f \leqslant e^{1 / 8}(4 \pi)^{d / 4} \widetilde{\mathcal{G}}^{A} f .
$$

For $p \in(2, \infty)$, from the trilinear embedding applied to matrix functions I, A, A and exponents $p /(p-2), p, p$ we obtain the bound

$$
\left\|\widetilde{\mathcal{G}}^{A} f\right\|_{\mathbb{L}^{p}\left(\mathbb{R}^{d}\right)} \lesssim\|f\|_{L^{p}\left(\mathbb{R}^{d}\right)}
$$

under the condition that A is p-elliptic. (A "dimensionless" estimate.)

Thank you for your attention!

