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Introduction

This is a collection of problems I proposed to various math competitions over the past few years.
They vary in the level of originality. Most of the ideas behind the problems are certainly not new
(as otherwise these would be research papers), but there is a bit of creative work behind each
one. They also vary in difficulty. Some of the problems proved to be very hard (consider yourself
warned), having been successfully solved by only a few (if any) students at the corresponding
competitions. Both problems and solutions can be distributed freely, but a reference to this
document or my webpage will be appreciated. You are welcome to send me any comments.
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1 Problems

1.1 High school level competitions

1. Let △ABC be a triangle with sidelengths a, b, c and angles α, β, γ inside which there exist
points P and Q such that

<)BPC =<)CPA =<)APB = 120◦,

<)BQC = 60◦ + α, <)CQA = 60◦ + β, <)AQB = 60◦ + γ.

Prove the equality

AP +BP + CP

3
· 3
√

AQ ·BQ · CQ =
1

3

(
3
√
abc
)2

.

(Croatian National Math Competition, 2004, 4th grade, Problem 2)

2. (a) Let f :Z → R be a function satisfying the following inequalities:

(i) f(1) ≥ 1,

(ii) f(m2 + n3) ≥ f(m)2 + f(n)3 for all m,n ∈ Z.

Prove that f(23
k
) = 23

k
for every k ∈ N0.

(b) Show that infinitely many functions f :Z → R satisfy the conditions (i) and (ii).

(Croatian IMO team training, 2004)

3. Prove that there do not exist positive numbers a1, a2, . . . , a2004 satisfying

a1 + a2 + . . .+ a2004 ≥ a1a2 . . . a2004 ≥ a21 + a22 + . . .+ a22004.

(Croatian Math Olympiad, 2004)

4. Let A1, A2, . . . , An (n ≥ 3) be finite sets of positive integers. Prove that

n∑
i=1

|Ai|

n
+

∑
1≤i<j<k≤n

|Ai ∩Aj ∩Ak|(
n

3

) ≥ 2 ·

∑
1≤i<j≤n

|Ai ∩Aj |(
n

2

) .

Here |A| denotes the cardinality of A.

(Mediterranean Math Competition, 2005, Problem 3)

5. Let m,n be positive integers and let xi,j ∈ [0, 1] for all i = 1, . . . ,m; j = 1, . . . , n. Prove
that

n∏
j=1

(
1−

m∏
i=1

xi,j

)
+

m∏
i=1

(
1−

n∏
j=1

(1− xi,j)

)
≥ 1.

(Proposal for Mediterranean Math Competition, 2005)
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6. Let (a(n))n≥1 be a sequence of nonnegative reals such that

a(m+ n) ≤ 2a(m) + 2a(n) for all m,n ≥ 1

and

a(2k) ≤ 1

k4
for all k ≥ 1.

Prove that (a(n))n≥1 must be bounded.

(International Math Olympiad (IMO), 2007, Shortlist, Problem A5)

7. Suppose that functions f :R → R and g:R → R satisfy

f(x)− f(y)

x− y
= g
(x+ y

2

)
for all different real numbers x and y. Prove that f is a polynomial of degree at most 2.

(Proposal for Middle European Math Olympiad (MEMO), 2007)

8. Each positive integer is colored in one of finitely many given colors. Prove that there exist
four different positive integers a, b, c, d, all in the same color, and such that:

(1) ad = bc,

(2) b
a is a perfect power of 2,

(3) c
a is a perfect power of 3.

(Proposal for Middle European Math Olympiad (MEMO), 2008)

9. Let P be a polynomial with complex coefficients of degree at most n− 1 and suppose that
precisely k of its coefficients are nonzero, 1 ≤ k ≤ n. Let us also denote Q(z) = zn − 1.
Prove that polynomials P and Q have at most n− n

k common roots, i.e. there exist at most
n− n

k different complex numbers z satisfying P (z) = 0 = Q(z).

(Proposal for Middle European Math Olympiad (MEMO), 2008)

10. We say that a set of positive integers S is nice if it is a nonempty subset of {1, 2, 3, . . . , 2008}
and the product of numbers in S is a perfect power of 10.

(a) What is the size of the largest nice set?

(b) What is the size of the largest nice set without proper nice subsets?

(Proposal for some competition, 2008)

11. On every square of a 9 × 9 board a light bulb is placed. In one move we are allowed to
choose a square and toggle on/off the states of light bulbs on the chosen square and all its
horizontally and vertically adjacent squares. (Every square has 2, 3 or 4 adjacent squares.)
Initially all light bulbs are on, and suppose that after some number of moves precisely one
light bulb remains on. Prove that this light bulb must be positioned in the center of the
board.

(Proposal for International Math Olympiad (IMO), 2009)
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12. In some country there are n cities, where n ≥ 5. Some pairs of cities are connected by direct
two-way flights, and there are at most 3n− 7 such flights provided by the airline. A set of
5 cities with direct two-way flights between each two of them is called a 5-city tour. Prove
that it is possible to introduce a new flight (between two cities that are not already directly
connected) without making any new 5-city tours.

(Proposal for Middle European Math Olympiad (MEMO), 2009)

13. Initially, only number 44 is written on the board. We repeatedly perform the following
operation 30 times. At each step we simultaneously replace each number on the board, call
it a, by four numbers a1, a2, a3, a4 that only have to satisfy:

• a1, a2, a3, a4 are four different integers.

• Average of four new numbers (a1 + a2 + a3 + a4)/4 is equal to the erased number a.

After 30 steps we end up with n = 430 numbers on the board, call them b1, b2, . . . , bn. Prove
that

b21 + b22 + . . .+ b2n
n

≥ 2011 .

(Middle European Math Olympiad (MEMO), 2011)

14. At this year’s MEMO, there are 3n participants, there are n languages spoken, and each
participant speaks exactly 3 different languages. Prove that MEMO coordinators can choose
at least 2n

9 languages for the presentation of the official solutions, such that no participant
will understand the presentation in more than 2 languages.

(Middle European Math Olympiad (MEMO), 2011)
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1.2 College level competitions

1. Let p, q > 1 be relatively prime positive integers.

(a) Suppose that f : {1, 2, . . . , p+ q − 1} → {0, 1} is a periodic function with periods both
p and q. Prove that f is a constant.

(b) Show that there exist exactly 4 functions f : {1, 2, . . . , p + q − 2} → {0, 1} that are
periodic with periods both p and q.

(Proposal for International Math Competition for University Students (IMC), 2003)

2. Let A = [ai,j ] i=1,...,m
j=1,...,n

be an m × n real matrix with at least one non-zero entry. For each

i ∈ {1, . . . ,m} let Ri :=
∑n

j=1 ai,j denote the sum of entries in the i-th row of A and for
each j ∈ {1, . . . , n} let Cj :=

∑m
i=1 ai,j denote the sum of entries in the j-th column of A.

Prove that there exist indices i0 ∈ {1, . . . ,m}, j0 ∈ {1, . . . , n} such that

ai0,j0 > 0, Ri0 ≥ 0, Cj0 ≥ 0,

or ai0,j0 < 0, Ri0 ≤ 0, Cj0 ≤ 0.

(Vojtěch Jarńık International Math Competition, 2003, Category I, Problem 2)

3. A sequence (an)n≥0 of real numbers is defined recursively by

a0 := 0, a1 := 1, an+2 := an+1 +
an
2n

; n ≥ 0.

Prove the following:

(a) The sequence (an)n≥0 is convergent.

(b) lim
n→∞

an = 1 +

∞∑
n=1

1

2
n(n−1)

2 ·
∏n

k=1 (2
k − 1)

(c) The limit lim
n→∞

an is an irrational number.

(Vojtěch Jarńık International Math Competition, 2003, Category II, Problem 3)

4. Let f, g: [0, 1] → ⟨0,+∞⟩ be continuous functions such that f and g
f are increasing. Prove

that ∫ 1

0

∫ x
0 f(t) dt∫ x
0 g(t) dt

dx ≤ 2

∫ 1

0

f(t)

g(t)
dt.

(Vojtěch Jarńık International Math Competition, 2003, Category II, Problem 4)

5. Let G be a (multiplicatively written) group with identity e. If elements a, b ∈ G satisfy the
relations

a3 = e, ab2 = ba2, (a2b)2003 = e,

show that a = b.

(Selection test for the Croatian team for Vojtěch Jarńık, 2003)
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6. Prove that there do not exist a real number a and a function f :R → R continuous at 0
satisfying

f

(
x+ a

1− ax

)
> f(x)

for every x ∈ R such that ax ̸= 1.

(Proposal for International Math Competition for University Students (IMC), 2004)

7. Let n be a positive integer. A linear operator T :Mn(C) → Mn(C) is defined as follows. For
any A ∈ Mn(C), the (i, j)-th entry of T (A) equals the sum of the (i, j)-th entry of A and
all its neighbor entries in A. (Each entry has 3, 5 or 8 neighbors.) Prove that

σ(T ) =

{(
1− 2 cos

kπ

n+ 1

)(
1− 2 cos

lπ

n+ 1

)
: k, l = 1, . . . , n

}
.

(Proposal for International Math Competition for University Students (IMC), 2004)

8. Let (xn)n≥1 and (yn)n≥1 be two decreasing sequences of positive real numbers such that∏n
j=1 xj ≥

∏n
j=1 yj for every n ≥ 1. Prove that

∑n
j=1 xj ≥

∑n
j=1 yj for every n ≥ 1.

(Proposal for International Math Competition for University Students (IMC), 2005)

9. Let R be a finite ring with the following property:
For any a, b ∈ R, there exists c ∈ R (depending on a and b) such that a2 + b2 = c2.
Prove that:
For any a, b, c ∈ R, there exists d ∈ R such that 2abc = d2.
(Remarks. Here 2abc denotes abc+ abc. R is assumed to be associative but not necessarily
commutative.)

(Vojtěch Jarńık International Math Competition, 2005, Category II, Problem 4)

10. Let (Nn)n≥1 be a sequence of positive integers no smaller than 3. Inside a circle of radius r1
we inscribe a regular N1-gon. Next, inside the latter polygon we inscribe a circle of radius
r2 and in the latter circle we inscribe a regular N2-gon, and so on. Continuing in this way,
we obtain a sequence of circles and polygons. Prove that

lim
n→∞

rn = 0 if and only if

∞∑
n=1

1

N2
n

= ∞.

(Proposal for Vojtěch Jarńık International Math Competition, 2005)

11. A sequence of real numbers (xn)
∞
n=1 is defined by the equations

2x1 = 4, 22
x2

= 44, 22
2x3

= 44
4
, . . .

and generally

22
··
2xn

= 44
··
4

,
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where the left hand side contains n twos and the right hand side contains n fours. Prove
that the sequence converges and its limit satisfies

3 ≤ lim
n→∞

xn ≤ 10
3 .

(Proposal for International Math Competition for University Students (IMC), 2009)

12. Let k and n be positive integers such that k ≤ n − 1. Denote S = {1, 2, . . . , n} and let
A1, A2, . . . , Ak be nonempty subsets of S. Prove that it is possible to color some elements
of S using two colors, red and blue, such that the following conditions are satisfied.

(i) Each element of S is either left uncolored or is colored red or blue.

(ii) At least one element of S is colored.

(iii) Each set Ai (i = 1, 2, . . . , k) is either completely uncolored or it contains at least one
red and at least one blue element.

(Vojtěch Jarńık International Math Competition, 2009, Category I, Problem 3)

13. Let k,m, n be positive integers such that 1 ≤ m ≤ n and denote S = {1, 2, . . . , n}. Suppose
that A1, A2, . . . , Ak are m-element subsets of S with the following property. For every

i = 1, 2, . . . , k there exists a partition S = S
(i)
1 ∪ S

(i)
2 ∪ . . . ∪ S

(i)
m such that:

(i) Ai has precisely one element in common with each member of the above partition.

(ii) Every Aj , j ̸= i is disjoint from at least one member of the above partition.

Show that k ≤
(
n−1
m−1

)
.

(Vojtěch Jarńık International Math Competition, 2009, Category II, Problem 4)

14. Prove that for every complex polynomial P (z) = anz
n + . . .+ a1z+ a0 with |an| = |a0| = 1,

there exists a complex polynomial Q(z) = bnz
n + . . . + b1z + b0 with |bn| = |b0| = 1, such

that |Q(z)| ≤ |P (z)| for every z ∈ C, |z| = 1, and such that all complex roots of Q lie on
the unit circle S1 = {z ∈ C : |z| = 1}.

(Proposal for Vojtěch Jarńık International Math Competition, 2009)
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2 Solutions

2.1 High school level competitions

1. Problem. Let △ABC be a triangle with sidelengths a, b, c and angles α, β, γ inside which
there exist points P and Q such that

<)BPC =<)CPA =<)APB = 120◦,

<)BQC = 60◦ + α, <)CQA = 60◦ + β, <)AQB = 60◦ + γ.

Prove the equality

AP +BP + CP

3
· 3
√

AQ ·BQ · CQ =
1

3

(
3
√
abc
)2

.

Solution. Let us construct an equilateral triangle △CBD over the segment BC, outside of
△ABC. Let E be a point such that the triangles △BDE and △BCP are congruent and
equally oriented.

E

P

D

A

B C

Triangle △BEP is equilateral because of BP = BE and <)PBE = 60◦. From <)APB+
<)BPE = 120◦ + 60◦ = 180◦ and <)PEB+ <)BED = 60◦ + 120◦ = 180◦ we get that the
points A,P,E,D are collinear. Also note

AP +BP + CP = AP + PE + ED = AD. (1)

Let R be a point inside △ABC such that the triangles △ARC and △ABD are similar, i.e.
such that <)RAC =<)BAD < α and <)RCA =<)BDA =<)BCP < γ.

From this similarity we conclude
AR

AC
=

AB

AD
. (2)

Furthermore, from <)RAB =<)CAD and AR
AB = AC

AD we know that △ABR and △ADC
are similar too, so <)ARB =<)ACD = 60◦ + γ. Now from <)ARB = 60◦ + γ =<)AQB
and <)ARC =<)ABD = 60◦ + β =<)AQC we get R = Q. (Namely, by the Inscribed
Angle Theorem, the point Q lies on the circles circumscribed around triangles △ABR and
△ARC.)
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b
c

R

D

CB

A

From (1), (2), and Q = R we get

AQ

b
=

c

AP +BP + CP
, i.e. (AP +BP + CP ) ·AQ = bc

and analogously we would prove

(AP +BP + CP ) ·BQ = ca, (AP +BP + CP ) · CQ = ab.

Finally, multiplying we get

(AP +BP + CP )3 ·AQ ·BQ · CQ = a2b2c2,

and it remains to take the third root and divide by 3. �

Remark. Alternatively, we could have defined the point R as the isogonal conjugate of the
point P and then it would be easy to verify <)ARB = 60◦ + γ and <)ARC = 60◦ + β, from
which R = Q follows again.

Another remark. Alternative formulations of the problem could be

(AP +BP + CP )(AQ+BQ+ CQ) = ab+ bc+ ca,

or
AQ+BQ+ CQ ≥

√
ab+ bc+ ca.

Yet another remark. Nobody solved this problem at the competition. Some familiarity with
triangle centers is certainly useful:
http://faculty.evansville.edu/ck6/encyclopedia/ETC.html

2. Problem.

(a) Let f :Z → R be a function satisfying the following inequalities:

(i) f(1) ≥ 1,

(ii) f(m2 + n3) ≥ f(m)2 + f(n)3 for all m,n ∈ Z.

Prove that f(23
k
) = 23

k
for every k ∈ N0.
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(b) Show that infinitely many functions f :Z → R satisfy the conditions (i) and (ii).

Solution.

(a) In the chain of inequalities

f(1) = f(02 + 13) ≥(ii) f(0)
2 + f(1)3 ≥ f(1)3 ≥(i) f(1)

each inequality sign can be changed into the equality sign, so f(0) = 0 and f(1) = 1.
Therefore we have

0 = f(0) = f(12 + (−1)3) ≥(ii) f(1)
2 + f(−1)3 = 1 + f(−1)3 ⇒ f(−1) ≤ −1, (3)

1 = f(1) = f((−1)2 + 03) ≥(ii) f(−1)2 + f(0)3 = f(−1)2 ⇒ |f(−1)| ≤ 1, (4)

so (3) and (4) together give f(−1) = −1.

Now we gradually deduce equalities:

f(−2) = −2, f(3) = 3, f(2) = 2, f(8) = 8, f(−4) = −4. (5)

First,
f(2) = f(12 + 13) ≥(ii) f(1)

2 + f(1)3 = 2, (6)

f(3) = f(22 + (−1)3) ≥(ii) f(2)
2 + f(−1)3 ≥(6) 4− 1 = 3 (7)

and then

1 = f(1) ≥(ii) f(3)
2 + f(−2)3 ≥(7) 9 + f(−2)3 ⇒ f(−2) ≤ −2. (8)

Next,
f(3) = f((−2)2 + (−1)3) ≥(ii) f(−2)2 + f(−1)3 = f(−2)2 − 1 (9)

and observe that the right hand side in (9) is positive because of (8). Thus we can
compute

1 = f(1) = f(32 + (−2)3) ≥(ii) f(3)
2 + f(−2)3

≥(9)

(
f(−2)2 − 1

)2
+ f(−2)3 = f(−2)4 + f(−2)3 − 2f(−2)2 + 1,

so after factoring
f(−2)2 (f(−2)− 1) (f(−2) + 2) ≤ 0. (10)

From (8) we get f(−2)2 > 0 and f(−2)− 1 < 0, so (10) implies f(−2) + 2 ≥ 0, i.e.

f(−2) ≥ −2. (11)

Combining (8) and (11) we get f(−2) = −2.

Furthermore, we relatively easily prove other equalities in (5).

1 = f(1) ≥(ii) f(3)
2 + f(−2)3 = f(3)2 − 8 ⇒ |f(3)| ≤ 3, (12)
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so (7) and (12) together imply f(3) = 3. Moreover,

3 = f(3) ≥(ii) f(2)
2 + f(−1)3 = f(2)2 − 1 ⇒ |f(2)| ≤ 2 (13)

so combining (6) and (13) we get f(2) = 2. Now,

f(8) ≥(ii) f(0)
2 + f(2)3 = 8 ⇒ f(8) ≥ 8, (14)

f(−4) ≥(ii) f(2)
2 + f(−2)3 = 4− 8 = −4 ⇒ f(−4) ≥ −4 (15)

and
0 = f(82 + (−4)3) ≥(ii) f(8)

2 + f(−4)3 ≥(14),(15) 8
2 + (−4)3 = 0,

where we must have equality at every place. Thus, f(8) = 8 and f(−4) = −4.

Finally, we show that for every k ∈ N0 one has

f(23
k+1

) = 23
k+1

and f(−22·3
k
) = −22·3

k
. (16)

We have already shown the statement in the case k = 0, since then (16) becomes
f(8) = 8 and f(−4) = −4. Substituting m = 0 into (ii) we get

f(n3) ≥ f(n)3 for every n ∈ Z

and then by induction on k ∈ N we easily prove

f(n3k) ≥ f(n)3
k
for every n ∈ Z and k ∈ N. (17)

By substituting particularly n = 8 or n = −4 into (17), we conclude for each k ∈ N,

f(23
k+1

) ≥(17) f(8)
3k = 83

k
= 23

k+1 ⇒ f(23
k+1

) ≥ 23
k+1

, (18)

f(−22·3
k
) ≥(17) f(−4)3

k
= (−4)3

k
= −22·3

k ⇒ f(−22·3
k
) ≥ −22·3

k
. (19)

In the end, since (23
k+1

)2+(−22·3
k
)3 = 22·3

k+1 − 22·3
k+1

= 0, from the chain of inequal-
ities

0 = f(0) = f
(
(23

k+1
)2 + (−22·3

k
)3
)
≥(ii) f(2

3k+1
)2 + f(−22·3

k
)3 ≥(18),(19)

≥(18),(19) (2
3k+1

)2 + (−22·3
k
)3 = 0

we derive f(23
k+1

)2 = (23
k+1

)2 and f(−22·3
k
)3 = (−22·3

k
)3. Because of f(23

k+1
) > 0

we have (16). �
(b) We first show the following auxiliary statement, which claims that at least one integer

(concretely number 7) is not representable in the form m2 + n3; m,n ∈ Z.

Lemma. The equation m2 + n3 = 7 has no solution in the integers m,n.

Proof of the lemma. Suppose that m,n ∈ Z are such that m2 + n3 = 7. The number
n must be odd, since otherwise m2 ≡ 3 (mod 4). The equation can be written in the
form m2 +1 = 8−n3, i.e. m2 +1 = (2−n)(4+ 2n+n2). Take p to be a prime divisor
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of 2 − n that is of the form 4k + 3; k ∈ N0. Then p divides m2 + 1 and by taking
powers in m2 ≡ −1 (mod p) we get(

m2
) p−1

2 ≡ (−1)
p−1
2 (mod p). (20)

By Little Fermat’s theorem mp−1 ≡ 1 (mod p) so, because p−1
2 = 2k + 1 is odd, the

congruence (20) becomes 1 ≡ −1 (mod p), which is impossible. Therefore, 2 − n has
all prime divisors of the form 4k+1; k ∈ N and consequently 2−n itself has the same
form, i.e.

2− n ≡ 1 (mod 4) ⇒ n ≡ 1 (mod 4). (21)

Consider the equality m2 + n3 = 7 modulo 4 after taking (21) into account:

m2 + 1 ≡ 3 (mod 4) ⇒ m2 ≡ 2 (mod 4),

but that is not possible. This proves the lemma.

Let us return to the original problem. We claim that for any real number α ∈ [−7, 7]

the function f :Z → R defined by f(z) :=

{
z if z ̸= 7
α if z = 7

satisfies the condition (ii).

From the lemma, f(m2 + n3) = m2 + n3 for all m,n ∈ Z, so the condition (ii) takes
one of the following four shapes:

m2 + n3 ≥ m2 + n3 when m,n ̸= 7

72 + n3 ≥ α2 + n3 when m = 7, n ̸= 7

m2 + 73 ≥ m2 + α3 when m ̸= 7, n = 7

72 + 73 ≥ α2 + α3 when m,n = 7

All these inequalities are satisfied because α is chosen so that α2 ≤ 72 and α3 ≤ 73.
Therefore, for every α ∈ [−7, 7] the corresponding function f satisfies the required
conditions. �

Remark. Alternative formulation of part (a) could be the following.
Let P be a polynomial with real coefficients satisfying:

(i) P (1) ≥ 1,

(ii) P (m2 + n3) ≥ P (m)2 + P (n)3 for all m,n ∈ Z.

Prove that P (x) ≡ x.

Another remark. This problem/solution was generally received simply as “awful”. Further
comments are unnecessary.

3. Problem. Prove that there do not exist positive numbers a1, a2, . . . , a2004 satisfying

a1 + a2 + . . .+ a2004 ≥ a1a2 . . . a2004 ≥ a21 + a22 + . . .+ a22004.

12



Solution. Suppose that such a1, a2, . . . , a2004 actually exist. By the inequality between
quadratic and arithmetic means we have(

a21 + a22 + . . .+ a22004
2004

) 1
2

≥ a1 + a2 + . . .+ a2004
2004

,

i.e.

a21 + a22 + . . .+ a22004 ≥
1

2004
(a1 + a2 + . . .+ a2004)

2 .

Let α and β be positive numbers such that α+ β = 2. (We will choose them later.) By the
inequality between arithmetic and geometric means,

a1 + a2 + . . .+ a2004
2004

≥ (a1a2 . . . a2004)
1

2004 ,

and the first inequality from the problem statement, we conclude

1

2004α
(a1 + a2 + . . .+ a2004)

2 =

(
a1 + a2 + . . .+ a2004

2004

)α

(a1 + a2 + . . .+ a2004)
β

≥ (a1a2 . . . a2004)
α

2004 (a1 + a2 + . . .+ a2004)
β

≥ (a1a2 . . . a2004)
α

2004 (a1a2 . . . a2004)
β = (a1a2 . . . a2004)

α
2004

+β .

Now we also impose the condition α
2004 + β = 1, which together with α + β = 2 leads to

the choice α = 2004
2003 , β = 2002

2003 . Thus, we got

a21 + a22 + . . .+ a22004 ≥ 2004α−1 a1a2 . . . a2004 > a1a2 . . . a2004

(since α− 1 = 1
2003 > 0), which is in the contradiction with the second inequality from the

statement of the problem. �

Remark. All members of the Croatian IMO team solved this problem. Congrats!

4. Problem. Let A1, A2, . . . , An (n ≥ 3) be finite sets of positive integers. Prove that

n∑
i=1

|Ai|

n
+

∑
1≤i<j<k≤n

|Ai ∩Aj ∩Ak|(
n

3

) ≥ 2 ·

∑
1≤i<j≤n

|Ai ∩Aj |(
n

2

) .

Here |A| denotes the cardinality of A.

Solution. Choose a positive integer m large enough so that
∪n

i=1Ai ⊆ {1, 2, . . . ,m}. Con-
sider an m × n table, assign 1, . . . ,m to its rows and A1, . . . , An to its columns. A square
at the position (i, j) is painted black if i ∈ Aj , otherwise it is painted white. Let Ni denote
the number of black squares in the i-th row of the table.

Now we count in two ways

• the total number of black squares:
n∑

j=1

|Aj | =
m∑
i=1

Ni,

13



1

2

3

m

..

.

.. . AAA 1 2 n

1m _

• pairs of black squares in the same row:
∑

1≤i<j≤n

|Ai ∩Aj | =
m∑
i=1

(
Ni

2

)
,

• triples of black squares in the same row:
∑

1≤i<j<k≤n

|Ai ∩Aj ∩Ak| =
m∑
i=1

(
Ni

3

)
.

Thus, the inequality can be rewritten as∑m
i=1Ni

n
+

∑m
i=1Ni(Ni − 1)(Ni − 2)

n(n− 1)(n− 2)
≥ 2 ·

∑m
i=1Ni(Ni − 1)

n(n− 1)
.

It is sufficient to verify

Ni

n
+

Ni(Ni − 1)(Ni − 2)

n(n− 1)(n− 2)
≥ 2 · Ni(Ni − 1)

n(n− 1)

for i = 1, . . . ,m, but this is equivalent to

Ni(n−Ni)(n−Ni − 1)

n(n− 1)(n− 2)
≥ 0,

which obviously holds. �

5. Problem. Let m,n be positive integers and let xi,j ∈ [0, 1] for all i = 1, . . . ,m; j = 1, . . . , n.
Prove that

n∏
j=1

(
1−

m∏
i=1

xi,j

)
+

m∏
i=1

(
1−

n∏
j=1

(1− xi,j)

)
≥ 1.

Solution. The inequality will be proved in three steps.

Step 1. For a, b, c, d ∈ [0, 1] we have

(1− ab)(1− cd) +
(
1− (1− a)(1− c)

)(
1− (1− b)(1− d)

)
≥ 1. (22)

14



Proof.

(1− ab)(1− cd) +
(
1− (1− a)(1− c)

)(
1− (1− b)(1− d)

)
− 1

= ad+ bc− abc− abd− acd− bcd+ 2abcd

= ad(1− b)(1− c) + bc(1− a)(1− d) ≥ 0

Step 2. If ui, vi ∈ [0, 1]; i = 1, . . . ,m, then(
1−

m∏
i=1

ui

)(
1−

m∏
i=1

vi

)
+

m∏
i=1

(
1− (1− ui)(1− vi)

)
≥ 1. (23)

Proof. We give a proof by induction on m. The inequality is trivial for m = 1 and the
induction step is proved as follows.

m+1∏
i=1

(
1− (1− ui)(1− vi)

)
≥ [by the induction hypothesis]

≥

(
1−

(
1−

m∏
i=1

ui

)(
1−

m∏
i=1

vi

))(
1− (1− um+1)(1− vm+1)

)
=

[
a = 1−

∏m
i=1 ui, b = 1−

∏m
i=1 vi

c = 1− um+1, d = 1− vm+1

]
= (1− ab)(1− cd) ≥ [using (22)]

≥ 1−
(
1− (1− a)(1− c)

)(
1− (1− b)(1− d)

)
= 1−

(
1−

m∏
i=1

ui · um+1

)(
1−

m∏
i=1

vi · vm+1

)

= 1−
(
1−

m+1∏
i=1

ui

)(
1−

m+1∏
i=1

vi

)

Step 3. Statement of the problem.
Proof. We will prove the statement by induction on n. It obviously holds for n = 1. We
turn to the induction step.

n+1∏
j=1

(
1−

m∏
i=1

xi,j

)
≥ [by the induction hypothesis]

≥

1−
m∏
i=1

(
1−

n∏
j=1

(1− xi,j)

)(1− m∏
i=1

xi,n+1

)

=

[
ui = 1−

∏n
j=1(1− xi,j)

vi = xi,n+1

]
=

(
1−

m∏
i=1

ui

)(
1−

m∏
i=1

vi

)
≥ [using (23)]

≥ 1−
m∏
i=1

(
1− (1− ui)(1− vi)

)
15



= 1−
m∏
i=1

(
1−

n∏
j=1

(1− xi,j) · (1− xi,n+1)
)

= 1−
m∏
i=1

(
1−

n+1∏
j=1

(1− xi,j)
)

The proof is complete. �

6. Problem. Let (a(n))n≥1 be a sequence of nonnegative reals such that

a(m+ n) ≤ 2a(m) + 2a(n) for all m,n ≥ 1

and

a(2k) ≤ 1

k4
for all k ≥ 1.

Prove that (a(n))n≥1 must be bounded.

Solution. To simplify arguments we define a(0) = 0. The following formulae are easy to
prove by mathematical induction on r ≥ 1:

a
( r∑

j=1

nj

)
≤

r∑
j=1

2ja(nj) (24)

a
( 2r∑

j=1

nj

)
≤ 2r

2r∑
j=1

a(nj) (25)

for all nonnegative integers n1, n2, n3, . . . .

Now take an arbitrary positive integer m and write its binary representation:

m =
∑
j≥0

εj · 2j ,

where each εj is 0 or 1 and only finitely many of them are nonzero. Moreover, decompose
the latter sum dyadically as

m = ε0 · 20 +
t∑

k=0

∑
2k≤j<2k+1

εj · 2j = ε0 +
t∑

k=0

mk,

where we have put mk =
∑

2k≤j<2k+1

εj ·2j and t ≥ 0 is large enough.

Applying (25) we get

a(mk) ≤ 2k
∑

2k≤j<2k+1

a(2j) ≤ 2k
∑

2k≤j<2k+1

1

j4
≤ 2k ·2k · 1

(2k)4
=

1

22k
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and then applying (24) we obtain

a(m) ≤ 2a(1) +
t∑

k=0

2k+2a(mk) ≤ 2a(1) + 4
t∑

k=0

2k · 1

22k
=

= 2a(1) + 4

t∑
k=0

1

2k
= 2a(1) + 4

(
2− 1

2t

)
< 2a(1) + 8.

Therefore, a(m) is bounded independently of m. �

Remark. It can be shown that the condition a(2k) ≤ 1
k4

may be relaxed to
∑∞

k=1

√
a(2k) <

∞. For an alternative solution, see Djukić, Janković, Matić, Petrović: The IMO Com-
pendium.

7. Problem. Suppose that functions f :R → R and g:R → R satisfy

f(x)− f(y)

x− y
= g
(x+ y

2

)
for all different real numbers x and y. Prove that f is a polynomial of degree at most 2.

Solution. Observe that for any s ∈ R and t > 0 we have

f(s+ 2t)− f(s− 2t) = g(s) · 4t,

while on the other hand we have

f(s+ 2t)− f(s) + f(s)− f(s− 2t) = g(s+ t) · 2t+ g(s− t) · 2t.

Therefore

g(s) =
g(s+ t) + g(s− t)

2
,

which gives

g
(x+ y

2

)
=

g(x) + g(y)

2
(26)

for all real numbers x and y. (This is trivial if x = y.)

By taking y = 0 in the initial functional equation and using g(x2 ) =
1
2g(x)+

1
2g(0) we obtain

f(x) =
1

2
xg(x) +

1

2
g(0)x+ f(0). (27)

If we prove that g is an affine function (a polynomial of degree at most 1), it will immediately
follow that f is a polynomial of degree at most 2.

By putting (27) into the original functional equation and using (26) we obtain

1

2
xg(x) +

1

2
g(0)x− 1

2
yg(y)− 1

2
g(0)y =

1

2
(g(x) + g(y))(x− y)

which simplifies to
xg(y)− yg(x) = g(0)(x− y).

17



By taking y = 1 we obtain

g(x) = (g(1)− g(0))x+ g(0),

so g is really an affine function. �

Remark. Conversely, if f(x) = ax2 + bx + c is a polynomial of degree at most 2, then it
satisfies the functional equation with g(x) = 2ax+ b.

8. Problem. Each positive integer is colored in one of finitely many given colors. Prove that
there exist four different positive integers a, b, c, d, all in the same color, and such that:

(1) ad = bc,

(2) b
a is a perfect power of 2,

(3) c
a is a perfect power of 3.

Solution. Let us consider only numbers of the form 2u3v for some integers u ≥ 0, v ≥ 0,
and to each such number assign a point from the integer lattice (u, v) ∈ N × N. (Here
N = {0, 1, 2, 3, . . .}.)
The three conditions in the statement of the problem simply mean that four points assigned
to numbers a, b, c, d make vertices of a rectangle with sides parallel to coordinate axes.
Indeed, if a = 2u3v, b

a = 2s, c
a = 3t, then these four points are (u, v), (u + s, v), (u, v + t),

(u+ s, v + t).

Suppose that the total number of colors is k. Consider only points in the grid {1, 2, . . . ,m}×
{1, 2, . . . , n}, where m = k+1 and n = kk+1+1. Every horizontal “line” {1, 2, . . . ,m}×{j}
can be colored in km = kk+1 ways. Since n > kk+1, there exist two identically colored lines:
{1, 2, . . . ,m} × {j1} and {1, 2, . . . ,m} × {j2}, for some j1 < j2. Since m > k, there exist
points on the first line (i1, j1) and (i2, j1), i1 < i2, that have the same color. Finally, (i1, j1),
(i2, j1), (i1, j2), (i2, j2) form vertices of a rectangle and all have the same color. �

9. Problem. Let P be a polynomial with complex coefficients of degree at most n − 1 and
suppose that precisely k of its coefficients are nonzero, 1 ≤ k ≤ n. Let us also denote
Q(z) = zn − 1. Prove that polynomials P and Q have at most n − n

k common roots, i.e.
there exist at most n− n

k different complex numbers z satisfying P (z) = 0 = Q(z).

Solution. If we denote ω = cos 2π
n + i sin 2π

n , then all roots of Q are 1, ω, ω2, . . . , ωn−1. We
write P (z) = a0 + a1z + a2z

2 + . . . + an−1z
n−1 for some complex numbers a0, a1, . . . an−1.

Let us first prove the following identity:

n−1∑
j=0

|P (ωj)|2 = n

n−1∑
l=0

|al|2. (28)

For the proof we first expand the left hand side as

n−1∑
j=0

|P (ωj)|2 =

n−1∑
j=0

P (ωj)P (ωj) =

n−1∑
j=0

( n−1∑
l=0

al ω
jl
)( n−1∑

m=0

am ω−jm
)

=
n−1∑
l=0

n−1∑
m=0

alam

( n−1∑
j=0

ωj(l−m)
)

18



and then observe that for l ̸= m

n−1∑
j=0

ωj(l−m) =
ωn(l−m) − 1

ωl−m − 1
= 0,

while for l = m the corresponding sum equals n. This completes the proof of (28).

If we had P (1) = P (ω) = P (ω2) = . . . = P (ωn−1) = 0, then P would be a nonzero
polynomial of degree at most n− 1, with n different roots, which is impossible. Denote by
M the maximum of the numbers |P (1)|, |P (ω)|, |P (ω2)|, . . . , |P (ωn−1)|. From the previous
remark we conclude M > 0. Also observe that simply by triangle inequality

|P (ωj)| ≤
n−1∑
l=0

|alωjl| =
n−1∑
l=0

|al|,

so

M ≤
n−1∑
l=0

|al|. (29)

Let J be the set of all indices 0 ≤ j ≤ n− 1 such that P (ωj) ̸= 0 and let L be the set of all
indices 0 ≤ l ≤ n− 1 such that al ̸= 0. Observe the trivial estimate

n−1∑
j=0

|P (ωj)|2 =
∑
j∈J

|P (ωj)|2 ≤ M2|J |. (30)

Finally, using the arithmetic mean–quadratic mean inequality we get

1

|L|
∑
l∈L

|al| ≤
( 1

|L|
∑
l∈L

|al|2
) 1

2

and combining this with (28), (29), (30) we obtain

M2

|L|
≤ 1

|L|

(∑
l∈L

|al|
)2

≤
∑
l∈L

|al|2 =
1

n

∑
j∈J

|P (ωj)|2 ≤ M2|J |
n

.

This gives |J | ≥ n
|L| =

n
k , i.e. at least n

k of the numbers P (1), P (ω), P (ω2), . . . , P (ωn−1)

are nonzero, so at most n− n
k of them are equal to 0. �

10. Problem. We say that a set of positive integers S is nice if it is a nonempty subset of
{1, 2, 3, . . . , 2008} and the product of numbers in S is a perfect power of 10.

(a) What is the size of the largest nice set?

(b) What is the size of the largest nice set without proper nice subsets?
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Solution. We see that all elements of a nice set must be of the form 2k5l for some nonnegative
integers k and l. Moreover, 2k5l ≤ 2008 leaves us only the following possibilities:

l = 0 and 0 ≤ k ≤ 10

l = 1 and 0 ≤ k ≤ 8

l = 2 and 0 ≤ k ≤ 6

l = 3 and 0 ≤ k ≤ 4

l = 4 and 0 ≤ k ≤ 1

For each number of the form 2k5l we can consider the quantity k − l and call it value of
the number 2k5l. Observe that the value of the product of two such numbers is equal to the
sum of their values. Denote by Tj the set of all numbers listed above with value equal to j.
It is easily seen that

|T−4| = 1, |T−3| = |T−2| = 2, |T−1| = 3, |T0| = |T1| = 4

|T2| = |T3| = |T4| = 3, |T5| = |T6| = |T7| = 2, |T8| = |T9| = |T10| = 1

and all other sets Tj are empty. Let us also denote T− =
∪

j<0 Tj and T+ =
∪

j>0 Tj , so that

|T−| = 8, |T+| = 22.

Elements of T− have negative values, elements of T+ have positive values, while all elements
of T0 have value 0.

(a) Let S be a nice set. The condition that product of its elements is a power of 10 can be
restated as the condition that sum of values of its elements is 0. (We simply use the
fact that number of the form 2k5l is a power of 10 if and only if k = l, i.e. k − l = 0.)
The sum of values of all numbers in T− is

3 · (−1) + 2 · (−2) + 2 · (−3) + 1 · (−4) = −17,

so the total value of S ∩ T− is at least −17, and consequently the total value of S ∩ T+

is at most 17. By a greedy strategy we respectively take elements from T1, T2, . . . , T10,
until their total value exceeds 17. Since

4 · 1 + 3 · 2 + 3 · 3 = 19 > 17,

we cannot take all elements from T1 ∪ T2 ∪ T3, so S ∩ T+ has at most 4+ 3+ 3− 1 = 9
elements. On the other hand if we take all elements form T1 ∪T2, one element from T3

and one element from T4, the total value of S ∩ T+ will be exactly

4 · 1 + 3 · 2 + 1 · 3 + 1 · 4 = 17.

Therefore the largest nice set has

|T−|+ |T0|+ 4 + 3 + 1 + 1 = 21

elements.
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(b) If we consider the set S that consists of T10 ∪T−1 ∪T−2 and an arbitrary element from
T−3 we get a nice set with 7 elements since

1 · (−3) + 2 · (−2) + 3 · (−1) + 1 · 10 = 0.

This set S has no proper nice subsets because if we exclude the element from T10, the
total value of remaining elements would be negative, and if we include the element
from T10 but exclude some other elements, the total value would be positive.

Now suppose that S is a nice set with no proper nice subsets and and that it has at
least 8 elements. Then S ∩ T0 = ∅ and S ∩ T− and S ∩ T+ are nonempty.

If S ∩ T+ has exactly one element, then S ∩ T− has at least 7 elements. Thus S ∩ T−
has total value at most

3 · (−1) + 2 · (−2) + 2 · (−3) = −13,

and since S ∩ T+ has total value at most 10, we get a contradiction with the fact that
S is nice. Therefore S ∩ T+ must have at least 2 elements.

If S has at least one element from all 4 sets T−1, T−2, T−3, T−4, then all integers
−10,−9, . . . ,−2,−1 appear as values of subsets of S ∩ T−, so none of the numbers
1, 2, . . . , 9, 10 can appear as a value of an element in S ∩ T+, which is a contradiction.
Therefore S does not intersect at least one of the sets T−1, T−2, T−3, T−4. In particular
S ∩ T− has total value at least −14 and consequently S ∩ T+ has total value at most
14.

If S contains at least one element from T−1, T−2 and T−3, then similarly all integers
−6,−5,−4,−3,−2,−1 appear as values of subsets of S ∩ T−, so none of the numbers
1, 2, 3, 4, 5, 6 can appear as values of elements in S∩T+. Thus, every element of S∩T+

has value at least 7 and its total value is at least 14. This is possible only when
S ∩ T+ = T7, but then S ∩ T− could not have another element from any of sets T−1,
T−2 and T−3, since otherwise −7 would be attained as a value of one of its subsets.

In the same way we get a contradiction when S intersects T−1, T−2 and T−4 and in the
case when S contains at least 2 elements from T−1 and at least one element from T−3

and T−4.

If S contains exactly one elements from T−1 and at least one element from T−3 and
T−4, then it cannot have an element from T−2, so the cardinality of S ∩ T− is at most
4. Consequently S ∩ T+ has at least 4 elements and they can only be from T2, T6, T9,
T10, since −8,−7,−5,−4,−3,−1 all appear as values of some subsets of S ∩ T−. Also
note that S cannot contain two elements from T2 since sum of their values would be
4. Therefore the total value of S ∩ T+ is at least 2 + 6 + 6 + 9 = 23 > 14, which is a
contradiction.

If S contains at least one element from T−2, T−3 and T−4, then S ∩ T+ can contain
only elements with values 1, 8 and 10. Since it cannot contain 2 elements from T1, its
total value is at least 1 + 8 + 10 = 19 > 14, which is a contradiction.

We conclude that S intersects at most 2 of the sets T−1, T−2, T−3, T−4. In particular
S ∩ T− has the total value at least −10, so S ∩ T+ has the total value at most 10.

Suppose that S does not intersect T−1. Then S ∩T− has at most 4 elements, so S ∩T+

has at least 4 elements.
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If S intersects T−2 and T−3, then S can have at most one element from T1 and no
elements from T2 and T3. Therefore S∩T+ must have total value at least 1+4+4+4 =
13 > 10, which gives a contradiction.

If S intersects T−2 and T−4, then S can have at most one element from T1 ∪T3 and no
elements from T2 and T4. Thus S∩T+ has the total value at least 1+5+5+5 = 16 > 10,
which is again a contradiction.

If S intersects T−3 and T−4, then S has at most one element from T1 ∪ T2 and no
elements from T3 and T4, so the value of S ∩ T+ is at least 1 + 5 + 5 + 5 = 16 > 10, a
contradiction.

If S is a subset of T−2, T−3 or T−4, then S ∩ T− has at most 2 elements and its value
at least −6. Consequently, S ∩ T+ has at least 6 elements and the total value at most
6, which is impossible.

We conclude that S has to intersect T−1.

If S contains exactly one element from T−1, then S ∩ T+ has at least 5 elements and
its total value is at least 2 + 2 + 2 + 3 + 3 = 12 > 10, which is a contradiction.

If S contains exactly 2 elements from T−1, then S∩T+ has at least 4 elements and it is
disjoint from T1 and T2. Thus the total value of S ∩T+ is least 3+3+3+4 = 13 > 10,
a contradiction.

If S contains all 3 elements from T−1, then S ∩ T+ has at least 3 elements and it is
disjoint from T1, T2 and T3. Consequently, the value of S∩T+ is least 4+4+4 = 12 > 10,
which is also impossible.

We have obtained a contradiction in all cases above, so |S| ≥ 8 is impossible. Therefore,
the largest set as in the problem has 7 elements.

Remark. At this point I got busy with problems for “grown-up” mathematicians, so I didn’t
ask for a feedback on this problem. I don’t know whether it appeared anywhere and I am
a bit skeptical about its reception.

11. Problem. On every square of a 9×9 board a light bulb is placed. In one move we are allowed
to choose a square and toggle on/off the states of light bulbs on the chosen square and all its
horizontally and vertically adjacent squares. (Every square has 2, 3 or 4 adjacent squares.)
Initially all light bulbs are on, and suppose that after some number of moves precisely one
light bulb remains on. Prove that this light bulb must be positioned in the center of the
board.

Solution. Consider all configurations on the 9×9 board consisting of a chosen square and its
horizontal and vertical neighbors. (Each of those constellations contains 3, 4 or 5 squares.)
Let us label squares on the board using numbers 0, 1, 2, 3, so that every such configuration:
either contains odd number of 1’s, odd number of 2’s, and odd number of 3’s; or it contains
even number of 1’s, even number of 2’s, and even number of 3’s.

One possible construction is given in the table below.
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1 0 0 0 2 0 0 0 3

1 1 0 2 2 2 0 3 3

1 0 3 0 0 0 1 0 3

0 3 3 1 2 3 1 1 0

2 0 2 0 0 0 2 0 2

2 3 1 3 2 1 3 1 2

3 0 3 0 0 0 1 0 1

1 3 2 0 2 0 2 1 3

1 0 2 0 2 0 2 0 3

Such example is certainly not unique. To come to the above construction, one only has to
guess entries for the first row: 1, 0, 0, 0, 2, 0, 0, 0, 3. After that we proceed towards the
bottom row, and all other entries are uniquely determined by the above condition. However,
one has to be warned that the choice of the first row is rather subtle, as we might get stuck
when reaching the bottom row.

At any given moment, let N1 denote the number of light bulbs on squares labeled by 1 that
are currently turned on. Similarly we define quantities N2 and N3. Since initially all light
bulbs are on, we have N1 = 16, N2 = 18, and N3 = 16, and notice that all three of these
numbers are even. At every move we either change parities of all three numbers N1, N2,
N3, or leave their parities unchanged. Since in the end we have N1 +N2 +N3 ≤ 1 and all
three numbers must have the same parity, we conclude that actually N1 = N2 = N3 = 0,
i.e. the remaining light bulb must be on one of 31 squares labeled by 0.

Finally observe that the above table is “quite asymmetrical”, and the same argument can
be carried by labeling squares on the board using the table obtained by flipping the above
one vertically or diagonally, or by rotating it through 90◦, 180◦, or 270◦. (Actually diagonal
reflections are enough.) This eliminates all 0’s except for the central one, and completes the
proof. �

Remark. It is not very hard to see that “only the center light bulb is on” and “all light bulbs
are off” are achievable positions. One can show that precisely 273 out of 281 positions are
achievable. For more general n×n boards the situation depends on n in a very complicated
way.

The problem was inspired by the classic puzzle game Lights Out, usually played on a 5× 5
board. For more references see the web page at MathWorld
http://mathworld.wolfram.com/LightsOutPuzzle.html

and Wikipedia
http://en.wikipedia.org/wiki/Lights_Out_(video_game)

12. Problem. In some country there are n cities, where n ≥ 5. Some pairs of cities are connected
by direct two-way flights, and there are at most 3n− 7 such flights provided by the airline.
A set of 5 cities with direct two-way flights between each two of them is called a 5-city tour.
Prove that it is possible to introduce a new flight (between two cities that are not already
directly connected) without making any new 5-city tours.
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Solution. Denote the cities by C = {C1, C2, . . . , Cn} and let F be the set of all (unordered)
pairs of cities that are connected by a direct two-way flight. Suppose that the statement in
the theorem is false, so that for every pair {A1, A2} ̸∈ F there exist cities B1, B2, B3 such
that in the 5-element set S = {A1, A2, B1, B2, B3} all pairs except for {A1, A2} belong to
F .

Imagine that a person chooses a route visiting each city precisely once. In other words, the
person chooses a permutation σ of {1, 2, . . . , n} and visits cities in the order: Cσ(1), Cσ(2),
. . . , Cσ(n). For a fixed pair {A1, A2} ̸∈ F let the set S be as above. We say that a route
(i.e. permutation) respects the pair {A1, A2} if the person visits both A1 and A2 before
visiting any of the cities from C \ S. In other words, A1 and A2 can only be preceded by
A1, A2, B1, B2, B3 in the above ordering of the cities for a given σ.

Let us count how many routes (i.e. permutations) respect the fixed pair {A1, A2} ̸∈ F . It is
easier to think in terms of positions in the ordering Cσ(1), Cσ(2), . . . , Cσ(n). We first choose
3 positions for B1, B2, B3 in n(n−1)(n−2) ways. Among the remaining n−3 positions the
first 2 are reserved for A1, A2, and the last n − 5 are reserved for elements of C \ S. Since
they can come in an arbitrary order, we see that the number of such routes is

n(n− 1)(n− 2) · 2! · (n− 5)! .

By the condition in the problem we have |F| < 3n−6, so the number of pairs not connected

by direct flights is |Fc| >
(
n
2

)
− (3n − 6) = (n−3)(n−4)

2 . The total number of relations “a
route respects a pair” is thus

n(n− 1)(n− 2) · 2! · (n− 5)! · |Fc| > n(n− 1)(n− 2) · 2! · (n− 5)! · (n−3)(n−4)
2 = n! ,

i.e. strictly greater than the total number of routes/permutations. Therefore by the pigeon-
hole principle there must be a permutation σ that respects at least two different pairs from
Fc. Name those pairs {A1, A2}, {A′

1, A
′
2}, and let S, S ′ be the corresponding sets as above.

(Some of their elements could coincide.)

By definition, A1, A2 precede all cities from C \S, while A′
1, A

′
2 precede all cities from C \S ′.

We claim that either {A1, A2} ⊆ S ′, or {A′
1, A

′
2} ⊆ S. Otherwise we could find indices

i, j ∈ {1, 2} such that Ai ∈ C \ S ′ and A′
j ∈ C \ S, which would imply that A′

j precedes Ai

and that Ai precedes A
′
j , a contradiction.

WLOG suppose that we are in the first case, i.e.

{A1, A2} ⊆ S ′ = {A′
1, A

′
2, B

′
1, B

′
2, B

′
3} .

Then the set S ′ contains two different pairs not belonging to F , namely {A1, A2} and
{A′

1, A
′
2}. This is in contradiction with its construction. �

13. Problem. Initially, only number 44 is written on the board. We repeatedly perform the
following operation 30 times. At each step we simultaneously replace each number on the
board, call it a, by four numbers a1, a2, a3, a4 that only have to satisfy:

• a1, a2, a3, a4 are four different integers.

• Average of four new numbers (a1 + a2 + a3 + a4)/4 is equal to the erased number a.
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After 30 steps we end up with n = 430 numbers on the board, call them b1, b2, . . . , bn. Prove
that

b21 + b22 + . . .+ b2n
n

≥ 2011 .

Solution. Let us first prove an auxiliary statement.

Lemma. If a1, a2, a3, a4 are four different integers such that their average a = (a1 + a2 +
a3 + a4)/4 is also an integer, then

a21 + a22 + a23 + a24
4

− a2 ≥ 5

2
.

Proof. Note that the expression on the left hand side can be transformed as

a21 + a22 + a23 + a24
4

− a2

=
a21 + a22 + a23 + a24 − 8a2 + 4a2

4

=
a21 + a22 + a23 + a24 − 2a(a1 + a2 + a3 + a4) + 4a2

4

=
(a1 − a)2 + (a2 − a)2 + (a3 − a)2 + (a4 − a)2

4
.

Now, a1−a, a2−a, a3−a, a4−a are four different integers that add up to 0. We claim that
sum of their squares is at least 10. If none of these integers is 0, then that sum is at least
12+(−1)2+22+(−2)2 = 10. On the other hand, if one of the integers is 0, than the remaining
three cannot be only from the set {1,−1, 2,−2}, because no three different elements of that
set add up to 0. Therefore, the sum of their squares is at least 32 + 12 + (−1)2 = 11. This
completes the proof of the lemma.

Returning to the given problem, we denote by Sk the average of squares of the numbers on
the board after k steps. More precisely,

Sk =
b2k,1 + b2k,2 + . . .+ b2

k,4k

4k
,

where bk,1, bk,2, . . . , bk,4k are the numbers appearing on the board after the operation is
performed k times. Applying the above lemma to each of the numbers, adding up these
inequalities, and dividing by 4k, we obtain

Sk+1 − Sk ≥ 5

2
,

so in particular

S30 ≥ S0 + 30 · 5
2

= 442 + 30 · 5
2

= 2011 .

�
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14. Problem. At this year’s MEMO, there are 3n participants, there are n languages spoken,
and each participant speaks exactly 3 different languages. Prove that MEMO coordinators
can choose at least 2n

9 languages for the presentation of the official solutions, such that no
participant will understand the presentation in more than 2 languages.

Solution. The coordinators decide to approach this problem by splitting the set of n available
languages into easy, medium, and hard, according to how they perceive the difficulty of
understanding math in each of the given languages. However, they cannot agree about this
classification, so they are only aware that there are 3n possibilities in total, as each language
can be tagged as easy, medium, or hard. For each classification, let A be the number of easy
languages and let B be the number of students who speak 3 easy languages.

If we add up quantities A over all possible classifications, the resulting sum will be
∑

A =
n3n−1. In order to verify that, we realize that the result should be the same for medium
and hard languages too, but all three of these sums add up to

3
∑

A = number of classifications × number of languages = 3n · n .

On the other hand, we use “double counting trick” to compute the sum of quantities B over
all possible categorizations. For each student there are 3n−3 possibilities that allow him to
speak 3 easy languages, as we only have the choice to classify each of the n − 3 languages
that the student does not speak. Therefore, the desired sum is∑

B = 3n · 3n−3 = n3n−2 .

We claim that there exists a classification such that A − B ≥ 2n
9 . If each possibility had

A−B < 2n
9 , then summing over all 3n of them would give

n3n−1 − n3n−2 =
∑

A−
∑

B < 3n · 2n
9

,

i.e. 2n3n−2 < 2n3n−2, which is contradiction.

Let us consider any categorization of languages satisfying A − B ≥ 2n
9 . The organizers

first choose all A easy languages. Then they find all B students who can speak 3 of these
languages, and for each of them they remove one of the languages the student speaks. This
leaves the organizers with a choice of at least 2n

9 languages. �

Remark. Classification of languages simply as easy or hard would not give the desired
bound. It would lead to a choice of at least n

8 languages only. Taking more than three
language classes would not be a better strategy either.
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2.2 College level competitions

1. Problem. Let p, q > 1 be relatively prime positive integers.

(a) Suppose that f : {1, 2, . . . , p+ q − 1} → {0, 1} is a periodic function with periods both
p and q. Prove that f is a constant.

(b) Show that there exist exactly 4 functions f : {1, 2, . . . , p + q − 2} → {0, 1} that are
periodic with periods both p and q.

Solution. Let us construct a simple undirected graph G with a set of vertices {0, 1, 2, . . . ,
p + q − 1} and an edge between i and j if and only if |i− j| = p or |i− j| = q. We claim
that G is indeed a cycle of length p+ q.

Note that every vertex i has degree 2: Exactly 2 of the numbers i−p, i+q, i−q, i+p belong to
{0, 1, . . . , p+ q− 1}, because of the equalities |(i+ q)− (i− p)| = p+ q, |(i+ p)− (i− q)| =
p+ q. Therefore, G is a union of (vertex-)disjoint cycles.

Suppose that G contains a cycle C of length less than p + q, and let
−→
C be an arbitrary

orientation of C. A directed edge from i to j will be called a k-edge if j − i = k.�������
7-edge7-edge

7-edge-12-edge

WLOG there is a p-edge in
−→
C . Obviously, a p-edge or a −q-edge in

−→
C is again followed

by p-edge or −q-edge. Thus,
−→
C contains only p-edges (denote their number by m) and −q-

edges (denote their number by n). The sum of labels along all of the edges of
−→
C equals 0, so

mp−nq = 0. It follows that m is divisible by q, n is divisible by p and p+q ≤ m+n < p+q
leads to a contradiction. Hence, we have proved that G is one “big” cycle of length p + q.
(Figures illustrate the case p = 7, q = 12.)

Finally, we come to the proof of (a) and (b). For some S ⊆ {0, 1, . . . , p+ q − 1}, a function
f :S → {0, 1} is both p-periodic and q-periodic if and only if it assigns the same value (0
or 1) to all vertices of the same component of S (considered as the subgraph of G). The
number of such functions is 2ω(S), where ω(S) denotes the number of components of S.

(a) After deleting the vertex 0 from G, the graph becomes a path, which is connected.

(b) Note that vertices 0 and p + q − 1 are not adjacent in G. After deleting them, the
graph becomes a union of 2 (vertex-)disjoint paths. The latter graph has exactly 2
components.
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2. Problem. Let A = [ai,j ] i=1,...,m
j=1,...,n

be an m × n real matrix with at least one non-zero entry.

For each i ∈ {1, . . . ,m} let Ri :=
∑n

j=1 ai,j denote the sum of entries in the i-th row of A
and for each j ∈ {1, . . . , n} let Cj :=

∑m
i=1 ai,j denote the sum of entries in the j-th column

of A. Prove that there exist indices i0 ∈ {1, . . . ,m}, j0 ∈ {1, . . . , n} such that

ai0,j0 > 0, Ri0 ≥ 0, Cj0 ≥ 0,

or ai0,j0 < 0, Ri0 ≤ 0, Cj0 ≤ 0.

Solution. Consider the following sets of indices (which may be empty):

I+ := {i ∈ {1, . . . ,m} |Ri ≥ 0} ,
I− := {i ∈ {1, . . . ,m} |Ri < 0} ,
J+ := {j ∈ {1, . . . , n} |Cj > 0} ,
J− := {j ∈ {1, . . . , n} |Cj ≤ 0} .

Suppose that the statement of the problem does not hold. Then for every (i, j) ∈ I+ × J+

we have ai,j ≤ 0 and for every (i, j) ∈ I− × J− we have ai,j ≥ 0. Let us write the sum∑
(i,j)∈ I−×J+

ai,j in two different ways.

∑
(i,j)∈ I−×J+

ai,j =
∑
i∈I−

 n∑
j=1

ai,j −
∑
j∈J−

ai,j

 =
∑
i∈I−

Ri −
∑

(i,j)∈ I−×J−

ai,j ≤ 0

28



∑
(i,j)∈ I−×J+

ai,j =
∑
j∈J+

 m∑
i=1

ai,j −
∑
i∈I+

ai,j

 =
∑
j∈J+

Cj −
∑

(i,j)∈ I+×J+

ai,j ≥ 0

Therefore,
∑

(i,j)∈ I−×J+

ai,j = 0 and we have only equalities in the two formulae above. This

is only possible if
∑
i∈I−

Ri = 0,
∑
j∈J+

Cj = 0, so I− = ∅, J+ = ∅, which means Ri ≥ 0;

i = 1, . . . ,m and Cj ≤ 0; j = 1, . . . , n. Moreover, from

0 ≤
m∑
i=1

Ri =
m∑
i=1

n∑
j=1

ai,j =
n∑

j=1

m∑
i=1

ai,j =
n∑

j=1

Cj ≤ 0

we conclude Ri = 0; i = 1, . . . ,m and Cj = 0; j = 1, . . . , n. Because A is non-zero matrix,
there are indices i0, j0 such that ai0,j0 ̸= 0, Ri0 = 0, Cj0 = 0, and this leads to a contradiction
to the assumption that the statement of the problem is false. �

Remark. The problem was solved by most of the students and seems to have been the easiest
in that category.

3. Problem. A sequence (an)n≥0 of real numbers is defined recursively by

a0 := 0, a1 := 1, an+2 := an+1 +
an
2n

; n ≥ 0.

Prove the following:

(a) The sequence (an)n≥0 is convergent.

(b) lim
n→∞

an = 1 +

∞∑
n=1

1

2
n(n−1)

2 ·
∏n

k=1 (2
k − 1)

(c) The limit lim
n→∞

an is an irrational number.

Solution.

(a) Obviously, an ≥ 0 for every n ≥ 0. The sequence (an)n≥0 is increasing since an+2 −
an+1 =

an
2n ≥ 0 for every n ≥ 0. It suffices to show that (an)n≥0 is bounded from above.

For each k ≥ 0 we have ak+2 ≤ ak+1

(
1 + 1

2k

)
. Using the inequality between geometric

and arithmetic mean, for every n ≥ 1 we obtain

an+2 ≤
n∏

k=0

(
1 +

1

2k

)
= 2

n∏
k=1

(
1 +

1

2k

)

≤ 2

(
1

n

(
n+

n∑
k=1

1

2k

))n

≤ 2

(
n+ 1

n

)n

≤ 2e.
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(b) Consider the power series
∑∞

n=0 anz
n. Since lim sup

n→∞
n
√

|an| ≤ lim
n→∞

n
√
2e = 1, its radius

of convergence is R ≥ 1. Therefore, on the open unit disc with center 0 it converges to a
holomorphic function f(z) :=

∑∞
n=0 anz

n. Inductively we obtain an+2 =
∑n

k=0
ak
2k

+ 1;

n ≥ 0, so lim
n→∞

an =
∑∞

k=0
ak
2k

+ 1 = f
(
1
2

)
+ 1 and we have to find f

(
1
2

)
.

Now we use the recurrent relation for (an)n≥0 to obtain a functional equation for f .

We multiply an+2 := an+1 +
an
2n by zn+2 and sum over all n ≥ 0 to get

∞∑
n=0

an+2z
n+2 = z

∞∑
n=0

an+1z
n+1 + z2

∞∑
n=0

an

(z
2

)n
,

that is
f(z)− z = z f(z) + z2 f

(z
2

)
,

or
(1− z)f(z) = z2 f

(z
2

)
+ z; |z| < 1. (31)

We substitute z = 1
2n ; n = 1, . . . , N (N ≥ 1 fixed) into (31), then multiply the n-th

equality by some constant sn > 0 and finally sum up those N equalities.(
1− 1

2

)
f

(
1

2

)
=

(
1

2

)2

f

(
1

4

)
+

1

2
/ · s1(

1− 1

4

)
f

(
1

4

)
=

(
1

4

)2

f

(
1

8

)
+

1

4
/ · s2

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·(
1− 1

2n

)
f

(
1

2n

)
=

(
1

2n

)2

f

(
1

2n+1

)
+

1

2n
/ · sn(

1− 1

2n+1

)
f

(
1

2n+1

)
=

(
1

2n+1

)2

f

(
1

2n+2

)
+

1

2n+1
/ · sn+1

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·(
1− 1

2N

)
f

(
1

2N

)
=

(
1

2N

)2

f

(
1

2N+1

)
+

1

2N
/ · sN

s1
2
f

(
1

2

)
=

sN
22N

f

(
1

2N+1

)
+

N∑
n=1

sn
2n

To obtain cancellation of terms that contain f
(

1
2n

)
; n = 2, . . . , N we choose (sn)n≥0

such that

s0 := 1,

(
1

2n

)2

sn =

(
1− 1

2n+1

)
sn+1; n ≥ 0. (32)

Equalities (32) lead to

sn =

n−1∏
k=0

sk+1

sk
=

n−1∏
k=0

(
1
2k

)2
1− 1

2k+1

=

n−1∏
k=0

1

2k−1 (2k+1 − 1)
=

1

2
n(n−1)

2
−n∏n

k=1 (2
k − 1)

for every n ≥ 1. Finally, we have

f

(
1

2

)
=

sN
22N

f

(
1

2N+1

)
+

N∑
n=1

sn
2n
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=
f
(

1
2N+1

)
2

N(N−1)
2

+N ∏N
k=1 (2

k − 1)
+

N∑
n=1

1

2
n(n−1)

2
∏n

k=1 (2
k − 1)

.

The first summand tends to 0 when N → ∞, so

f

(
1

2

)
=

∞∑
n=1

1

2
n(n−1)

2
∏n

k=1 (2
k − 1)

. (33)

(c) The proof of lim
n→∞

an ∈ R\Q is based on the fact that the series in (33) converges “very

rapidly”. Suppose that its sum equals p
q for some positive integers p and q. For each

integer N ≥ 1 denote

qN := 2
N(N−1)

2

N∏
k=1

(
2k − 1

)
, pN := qN

N∑
n=1

1

2
n(n−1)

2
∏n

k=1 (2
k − 1)

.

Obviously, pN and qN are positive integers. We manage to estimate p qN − q pN .

qN = 2
N(N−1)

2

N∏
k=1

(
2k − 1

)
< 2

N(N−1)
2

N∏
k=1

2k = 2N
2

p

q
− pN

qN
=

∞∑
n=N+1

1

2
n(n−1)

2
∏n

k=1 (2
k − 1)

≤
∞∑

n=N+1

1

2
n(n−1)

2
∏n

k=1 2
k−1

=

∞∑
n=N+1

1

2n(n−1)
≤

∞∑
m=N(N+1)

1

2m
=

1

2N2+N−1
<

1

2N−1qN

Thus, 0 < p qN − q pN < q
2N−1 , so (p qN − q pN )N≥1 is a sequence of positive integers

that converges to 0. This is a contradiction and we are done.

�

Remark. Only part (b) was posed at the competition. Still, only one student solved it
completely.

4. Problem. Let f, g: [0, 1] → ⟨0,+∞⟩ be continuous functions such that f and g
f are increasing.

Prove that ∫ 1

0

∫ x
0 f(t) dt∫ x
0 g(t) dt

dx ≤ 2

∫ 1

0

f(t)

g(t)
dt.

Solution. At first, we estimate the expression under the integral sign on the left side of the
given inequality. By the Chebycheff’s inequality for integrals applied to increasing functions
f and g

f on the segment [0, x] (where x ∈ ⟨0, 1] is fixed), we get(
1

x

∫ x

0
f(t) dt

)(
1

x

∫ x

0

g(t)

f(t)
dt

)
≤ 1

x

∫ x

0
g(t) dt,
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that is, ∫ x
0 f(t) dt∫ x
0 g(t) dt

≤ x∫ x
0

g(t)
f(t) dt

(34)

for every x ∈ ⟨0, 1]. From the integral form of the Cauchy-Schwarz inequality on the segment
[0, x], we have (∫ x

0

g(t)

f(t)
dt

)(∫ x

0

t2f(t)

g(t)
dt

)
≥
(∫ x

0
t dt

)2

=
x4

4
,

or
1∫ x

0
g(t)
f(t) dt

≤ 4

x4

∫ x

0

t2f(t)

g(t)
dt. (35)

From (34) and (35) we obtain ∫ x
0 f(t) dt∫ x
0 g(t) dt

≤ 4

x3

∫ x

0

t2f(t)

g(t)
dt. (36)

Finally, it remains to integrate (36) over x ∈ ⟨0, 1] and to reverse the order of integration.∫ 1

0

∫ x
0 f(t) dt∫ x
0 g(t) dt

dx ≤
∫ 1

0

(∫ x

0

4t2f(t)

x3g(t)
dt

)
dx =

∫ 1

0

(∫ 1

t

4t2f(t)

x3g(t)
dx

)
dt

=

∫ 1

0

4t2f(t)

g(t)

(∫ 1

t

dx

x3

)
dt =

∫ 1

0

4t2f(t)

g(t)

(
1

2t2
− 1

2

)
dt

= 2

∫ 1

0

f(t)

g(t)

(
1− t2

)
dt ≤ 2

∫ 1

0

f(t)

g(t)
dt

�

Remark. The constant 2 on the right side of the given inequality is optimal, i.e. the least
possible. Consider f(t) := 1, g(t) := t+ ε, for some fixed ε > 0.∫ 1

0

∫ x
0 f(t) dt∫ x
0 g(t) dt

dx =

∫ 1

0

x
1
2x

2 + εx
dx = 2

∫ 1

0

dx

x+ 2ε
= 2 ln(1 + 2ε)− 2 ln 2− 2 ln ε∫ 1

0

f(t)

g(t)
dt =

∫ 1

0

dt

t+ ε
= ln(1 + ε)− ln ε

The quotient of those expressions can be made arbitrarily close to 2 since

lim
ε↘0

2 ln(1 + 2ε)− 2 ln 2− 2 ln ε

ln(1 + ε)− ln ε
= 2 lim

ε↘0

− ln(1+2ε)
ln ε + ln 2

ln ε + 1

− ln(1+ε)
ln ε + 1

= 2.

Another remark. Unfortunately, nobody solved this problem. Indeed, no student got more
than 2 points, out of 10. Seems that the graders are too harsh sometimes.
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5. Problem. Let G be a (multiplicatively written) group with identity e. If elements a, b ∈ G
satisfy the relations

a3 = e, ab2 = ba2, (a2b)2003 = e,

show that a = b.

Solution. First observe that

(a2b)2 = a2(ba2)b = a2(ab2)b = a3b3 = b3,

so
e = a2b(a2b)2002 = a2b(b3)1001 = a2b3004 = a−1b3004.

Therefore, a = b3004 and in particular a and b commute. Thus, ab2 = ba2 implies b = a. �

6. Problem. Prove that there do not exist a real number a and a function f :R → R continuous
at 0 satisfying

f

(
x+ a

1− ax

)
> f(x)

for every x ∈ R such that ax ̸= 1.

Solution. Denote S := R \
{
π
2 + kπ : k ∈ Z

}
and define

g:S → R, g(t) := f(tan t); t ∈ S.

Note that g is π-periodic and continuous at 0. Let α ∈
⟨
−π

2 ,
π
2

⟩
be such that a = tanα. If

x = tanβ, β ∈ S, β + α ∈ S, then we have

x+ a

1− ax
=

tanβ + tanα

1− tanα tanβ
= tan(β + α),

so the inequality from the statement of the problem can be rewritten as

g(β + α) > g(β); whenever β ∈ S and β + α ∈ S.

We distinguish two cases.

(a) α
π is rational.

Suppose α = m
n π, m,n ∈ Z, n > 0. Take any β ∈ R such that β

π /∈ Q. We have

g(β) = g(β +mπ) = g(β + nα) > g(β),

a contradiction.

(b) α
π is irrational.
Since {nα : n ∈ Z+} is dense in

⟨
−π

2 ,
π
2

⟩
modulo π, we can find a sequence of integers

(kj)j and a strictly increasing sequence of positive integers (nj)j such that

lim
j→∞

(njα− kjπ) = 0.

From the continuity of g at 0 it follows that

lim
j→∞

g(njα) = lim
j→∞

g(njα− kjπ) = g(0).

But the sequence (g(njα))j is increasing and g(n1α) > g(0), a contradiction.

�
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7. Problem. Let n be a positive integer. A linear operator T :Mn(C) → Mn(C) is defined as
follows. For any A ∈ Mn(C), the (i, j)-th entry of T (A) equals the sum of the (i, j)-th entry
of A and all its neighbor entries in A. (Each entry has 3, 5 or 8 neighbors.) Prove that

σ(T ) =

{(
1− 2 cos

kπ

n+ 1

)(
1− 2 cos

lπ

n+ 1

)
: k, l = 1, . . . , n

}
.

Solution. Let us denote

J =



1 1 0
1 1 1

1 1
1

1 1 1
0 1 1


n×n

With this notation, T (A) := JAJ for every A ∈ Mn(C).
We claim that

σ(T ) = {αβ : α, β ∈ σ(J)} .

Since J is symmetric (hermitian), it is similar to a diagonal matrix, i.e. there exist S,D ∈
Mn(C), S regular, D diagonal, such that J = S−1DS. If ν ∈ σ(T ), then the equality JAJ =
νA (for some non-zero A ∈ Mn(C)) can be rewritten as DBD = νB, where B := SAS−1 ̸=
0. Suppose that D = diag(d1, . . . , dn) and B = [bi,j ]. Then dibi,jdj = νbi,j for all indices i,j.
Since B is non-zero, we have ν = didj for some i,j. Obviously, {d1, . . . , dn} = σ(D) = σ(J).

Conversely, take arbitrary α, β ∈ σ(J). Let x, y be the corresponding eigenvectors (vectors-
columns). Then A := xyτ is non-zero and

JAJ = JAJτ = JxyτJτ = (Jx)(Jy)τ = (αx)(βy)τ = (αβ)A,

so αβ ∈ σ(T ).

Finally, we have to calculate σ(J). Let pn(λ) be the characteristic polynomial of J (depend-
ing on n).

pn(λ) = det(J − λI) =

∣∣∣∣∣∣∣∣∣∣∣∣

1− λ 1 0
1 1− λ 1

1 1− λ
1

1 1− λ 1
0 1 1− λ

∣∣∣∣∣∣∣∣∣∣∣∣
n×n

Using the Laplace formula we obtain a recurrent relation

pn(λ) = (1− λ)pn−1(λ)− pn−2(λ); n ≥ 3,

p1(λ) = 1− λ, p2(λ) = λ2 − 2λ.

By induction on n we show that

pn(1− 2 cos t) =
sin(n+ 1)t

sin t
; for every positive integer n and 0 < t < π.
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For n = 1 and n = 2 this is straightforward. The induction step is

pn(1− 2 cos t) = 2 cos t pn−1(1− 2 cos t)− pn−2(1− 2 cos t) =

= 2 cos t
sinnt

sin t
− sin(n− 1)t

sin t
=

sin(n+ 1)t

sin t
.

(Alternatively, we could solve the recurrence relation to obtain

pn(1− λ) =
1√

λ2 − 4

(
λ+

√
λ2 − 4

2

)n+1

− 1√
λ2 − 4

(
λ−

√
λ2 − 4

2

)n+1

and then substitute λ = 2 cos t, or we could use the recursion to prove that pn(1− 2λ) are
Chebycheff’s polynomials of the second kind.)

Note that t = kπ
n+1 ; k = 1, . . . , n satisfy the equality pn(1 − 2 cos t) = sin(n+1)t

sin t = 0. Since
pn(λ) has at most n distinct roots, it follows that{

1− 2 cos
kπ

n+ 1
: k = 1, . . . , n

}
is precisely the set of zeros of pn(λ), i.e. the spectrum of J , and we are done. �

Remark. The statement about σ(T ) can be generalized as follows. For fixed B,C ∈ Mn(C)
the operator T :Mn(C) → Mn(C) defined by T (A) := BAC has

σ(T ) = {βγ : β ∈ σ(B), γ ∈ σ(C)} .

The proof in the text is easier because B = C = J are symmetric.

8. Problem. Let (xn)n≥1 and (yn)n≥1 be two decreasing sequences of positive real numbers
such that

∏n
j=1 xj ≥

∏n
j=1 yj for every n ≥ 1. Prove that

∑n
j=1 xj ≥

∑n
j=1 yj for every

n ≥ 1.

Solution. We first note that for n ≥ 1 and integers α1 ≥ α2 ≥ . . . ≥ αn ≥ 0 we have

xα1
1 xα2

2 . . . xαn
n ≥ yα1

1 yα2
2 . . . yαn

n .

This is immediate from the problem hypothesis after rearranging factors:

(x1 . . . xn)
αn(x1 . . . xn−1)

αn−1−αn . . . (x1x2)
α2−α3xα1−α2

1

≥ (y1 . . . yn)
αn(y1 . . . yn−1)

αn−1−αn . . . (y1y2)
α2−α3yα1−α2

1 .

Furthermore, note that

yα1
1 yα2

2 . . . yαn
n ≥ y

ασ(1)

1 y
ασ(2)

2 . . . y
ασ(n)
n

for any permutation σ of {1, 2, . . . , n}.
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For every integer N ≥ 1 by using the multinomial theorem we obtain

(x1 + x2 + . . .+ xn)
N =

∑
α1, α2, . . . , αn ≥ 0 integers
α1 + α2 + . . .+ αn = N

N !

α1!α2! . . . αn!
xα1
1 xα2

2 . . . xαn
n

≥
∑

α1 ≥ α2 ≥ . . . ≥ αn ≥ 0 integers
α1 + α2 + . . .+ αn = N

N !

α1!α2! . . . αn!
xα1
1 xα2

2 . . . xαn
n

≥
∑

α1 ≥ α2 ≥ . . . ≥ αn ≥ 0 integers
α1 + α2 + . . .+ αn = N

N !

α1!α2! . . . αn!
yα1
1 yα2

2 . . . yαn
n

≥ 1

n!
(y1 + y2 + . . .+ yn)

N

since each n-tuple (α1, α2, . . . , αn) has at most n! distinct rearrangements.

Thus x1+...+xn
y1+...+yn

≥ N

√
1
n! and by taking N → ∞ we obtain x1 + . . .+ xn ≥ y1 + . . .+ yn. �

9. Problem. Let R be a finite ring with the following property:
For any a, b ∈ R, there exists c ∈ R (depending on a and b) such that a2 + b2 = c2.
Prove that:
For any a, b, c ∈ R, there exists d ∈ R such that 2abc = d2.
(Remarks. Here 2abc denotes abc+ abc. R is assumed to be associative but not necessarily
commutative.)

Solution. Let us denote S =
{
x2 : x ∈ R

}
. The property of R can be rewritten as S+S ⊆ S.

For each y ∈ S the function S → S, x 7→ x+ y is injective, but since S is finite it is indeed
bijective. Therefore, S is also closed under subtraction, so S is an additive subgroup of R.

Now for any x, y ∈ R we have xy + yx = (x+ y)2 − x2 − y2, so

xy + yx ∈ S.

We take arbitrary a, b, c ∈ R and substitute:

x = a, y = bc ⇒ abc+ bca ∈ S (37)

x = c, y = ab ⇒ cab+ abc ∈ S (38)

x = ca, y = b ⇒ cab+ bca ∈ S (39)

If we add (37), (38) and subtract (39), we shall obtain 2abc ∈ S. �

Remark. The problem was well-received and many students solved it completely.

10. Problem. Let (Nn)n≥1 be a sequence of positive integers no smaller than 3. Inside a circle of
radius r1 we inscribe a regular N1-gon. Next, inside the latter polygon we inscribe a circle
of radius r2 and in the latter circle we inscribe a regular N2-gon, and so on. Continuing in
this way, we obtain a sequence of circles and polygons. Prove that

lim
n→∞

rn = 0 if and only if
∞∑
n=1

1

N2
n

= ∞.
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Solution. Elementary trigonometry gives
rn+1

rn
= cos

π

Nn
, so

rn+1 = r1 ·
n∏

k=1

cos
π

Nk

and taking logarithm we get

ln rn+1 = ln r1 +
n∑

k=1

ln cos
π

Nk
.

Note that ln cos π
Nk

< 0, so

lim
n→∞

rn+1 = 0 ⇔ lim
n→∞

ln rn+1 = −∞ ⇔
∞∑
k=1

∣∣∣∣ln cos π

Nk

∣∣∣∣ = +∞.

We distinguish two cases.

(a) Suppose limn→∞Nn = ∞.
We use the Limit Comparison Test to compare

∑∞
n=1

1
N2

n
with

∑∞
n=1 | ln cos

π
Nn

|.

lim
n→∞

| ln cos π
Nn

|
1
N2

n

= lim
x→0

− ln cos(πx)

x2
= lim

x→0

ln cos(πx)

cos(πx)− 1
· lim
x→0

1− cos(πx)

(πx)2
· π2 =

π2

2

Therefore,
∑∞

n=1
1
N2

n
and

∑∞
n=1 | ln cos

π
Nn

| are either both convergent or both divergent.

(b) If (Nn)n≥1 does not converge to ∞, then it contains a constant subsequence.
Clearly,

∑∞
n=1

1
N2

n
and

∑∞
n=1 | ln cos

π
Nn

| both diverge.

�

11. Problem. A sequence of real numbers (xn)
∞
n=1 is defined by the equations

2x1 = 4, 22
x2

= 44, 22
2x3

= 44
4
, . . .

and generally

22
··
2xn

= 44
··
4

,

where the left hand side contains n twos and the right hand side contains n fours. Prove
that the sequence converges and its limit satisfies

3 ≤ lim
n→∞

xn ≤ 10
3 .

Solution. Taking logarithms we immediately get x1 = 2 and x2 = 3.

Also from the general defining relation we obtain:

22
··
2xn︸ ︷︷ ︸

n−1 2′s

= log2

(
44

··
4︸︷︷︸

n 4′s

)
= 2 · 44

··
4︸︷︷︸

n−1 4′s

= 2 · 22·
·2
xn−1︸ ︷︷ ︸

n−1 2′s

> 22
··
2
xn−1︸ ︷︷ ︸

n−1 2′s
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which implies that (xn)
∞
n=1 is increasing.

Let us now prove that the sequence is bounded from above by 10
3 . For this we need the

following auxiliary statement.

Lemma. Suppose that u > v ≥ 3 and ε > 0 are such that 2u − 2v ≤ ε. Then u− v ≤ ε
4 .

Proof of the lemma. Observe that 2x ≥ 1 + 1
2x for x > 0, which follows immediately from

2x = 4
x
2 > e

x
2 = 1 + x

2 +
∑∞

k=2
xk

2kk!
> 1 + x

2 . Now suppose that u − v > ε
4 and estimate:

2u − 2v > 2v+
ε
4 − 2v = 2v(2

ε
4 − 1) ≥ 23 · ε

8 = ε, but this is a contradiction.

Taking logarithms once more in the computation above we get:

22
··
2xn︸ ︷︷ ︸

n−2 2′s

− 22
··
2
xn−1︸ ︷︷ ︸

n−2 2′s

= 1.

By applying the lemma n− 2 times we obtain

xn − xn−1 ≤ 1
4n−2 for n ≥ 3,

which inductively implies

xn ≤ x2 +
∑n−2

k=1
1
4k

= 3 + 1
3(1−

1
4n−2 ) <

10
3 .

Since (xn)
∞
n=1 is increasing and bounded from above by 10

3 , it has a limit and

3 = x2 ≤ lim
n→∞

xn ≤ 10
3 .

�

Remark. The sequence in question converges “very rapidly”, and for instance, already the
fourth term approximates the limit to more than 100 decimal places. The exact value of
the limit is:

lim
n→∞

xn = 3.1703761763375607 . . .

12. Problem. Let k and n be positive integers such that k ≤ n − 1. Denote S = {1, 2, . . . , n}
and let A1, A2, . . . , Ak be nonempty subsets of S. Prove that it is possible to color some
elements of S using two colors, red and blue, such that the following conditions are satisfied.

(i) Each element of S is either left uncolored or is colored red or blue.

(ii) At least one element of S is colored.

(iii) Each set Ai (i = 1, 2, . . . , k) is either completely uncolored or it contains at least one
red and at least one blue element.

Solution. Consider the following system of k linear equations in n real variables x1, x2, . . . , xn:∑
j∈Ai

xj = 0; for i = 1, 2, . . . , k.
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Since k < n, this system has a nontrivial solution (x1, x2, . . . , xn), i.e. a solution with at
least one nonzero xj . Now color red all elements of the set {j ∈ S : xj > 0}, color blue all
elements of the set {j ∈ S : xj < 0}, and leave uncolored all elements of {j ∈ S : xj = 0}.
Since the solution is nontrivial, at least one element is colored. If Ai contains some red
element j ∈ S then xj > 0, and from

∑
j∈Ai

xj = 0 we see that there exists some j′ ∈ Ai

such that xj′ < 0, i.e. j′ is colored blue. Thus Ai must have elements of both colors.
Analogously we argue when Ai contains a blue element. Therefore we see that the above
coloring satisfies all requirements. �

Remark. It is easy to see that the condition k ≤ n − 1 is tight, i.e. there exist k = n
sets A1, A2, . . . , An that do not allow such a coloring of S. One can simply take Ai = {i}
for i = 1, 2, . . . , n, and observe that all numbers i would have to be left uncolored, which
contradicts (ii).

Perhaps more interesting is that the condition k ≤ n− 1 is tight even when we require that
sets Ai have at least 2 elements. When n ≥ 3 we can take Ai = {i, n} for i = 1, 2, . . . , n− 1
and An = {1, 2}. Not all of the sets A1, A2, . . . , An−1 can be left uncolored, so we conclude
in particular that number n has to be colored. Without loss of generality number n is
colored red, but then numbers 1 and 2 have to be colored blue, which gives a completely
blue set An and contradicts (iii).

Another remark. The problem was solved completely by 7 students, out of 87.

13. Problem. Let k,m, n be positive integers such that 1 ≤ m ≤ n and denote S = {1, 2, . . . , n}.
Suppose that A1, A2, . . . , Ak are m-element subsets of S with the following property. For

every i = 1, 2, . . . , k there exists a partition S = S
(i)
1 ∪ S

(i)
2 ∪ . . . ∪ S

(i)
m such that:

(i) Ai has precisely one element in common with each member of the above partition.

(ii) Every Aj , j ̸= i is disjoint from at least one member of the above partition.

Show that k ≤
(
n−1
m−1

)
.

Solution. Without loss of generality assume that 1 ∈ S
(i)
1 for all i = 1, 2, . . . , k, because

otherwise we simply rename members of each partition.

For every i = 1, 2, . . . , k define the polynomial

Pi(x2, x3, . . . , xn) =
m∏
l=2

( ∑
s∈S(i)

l

xs

)

and regard it as a polynomial over R in variables x2, x3, . . . , xn.

Observe that Pi is a homogenous polynomial of degree m−1 in n−1 variables. Also observe
that all monomials in Pi are products of different x’s, i.e. there are no monomials with

squares or higher powers. The last statement follows simply from the fact that S
(i)
2 , . . . , S

(i)
m

are mutually disjoint. Such polynomials form a linear space over R of dimension
(
n−1
m−1

)
and

polynomials Pi belong to that space. If we prove that polynomials Pi, i = 1, 2, . . . , k are
linearly independent, the inequality k ≤

(
n−1
m−1

)
will follow from the dimension argument.
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For any i = 1, 2, . . . , k let χi be the characteristic vector of A∩{2, 3, . . . , n}. In other words,
χi ∈ {0, 1}n−1 where the j-th coordinate of χi equals 1 if j + 1 ∈ A, and 0 otherwise.

For every i we know that each Ai ∩ S
(i)
l has exactly one element and therefore

Pi(χi) =
m∏
l=2

|Ai ∩ S
(i)
l | =

m∏
l=2

1 = 1.

On the other hand, if j ̸= i then either some Aj ∩S
(i)
l , l ≥ 2 is empty, or all Aj ∩S

(i)
l , l ≥ 2

are nonempty but Aj ∩ S
(i)
1 = ∅. In the latter case we must have |Aj ∩ S

(i)
l | = 2 for some

l ≥ 2. In any case we have at least one even factor in the following product, and so

Pi(χj) =

m∏
l=2

|Aj ∩ S
(i)
l | ≡ 0 (mod 2).

Therefore all diagonal entries in the matrix [Pi(χj)]i,j=1,2,...,k are odd, while all non-diagonal
entries are even. Consequently, its determinant is an odd integer, in particular it is not 0,
and thus the matrix is regular. If polynomials Pi were linearly dependent, we would conclude
that rows of [Pi(χj)]i,j=1,2,...,k are also linearly dependent, but this is not the case. Therefore
Pi, i = 1, 2, . . . , k must be linearly independent and this completes the proof. �

Remark. The solution is an example of the polynomial method in combinatorics, popularized
by Noga Alon.

Another remark. The problem proved to be very difficult and no student solved it completely.

14. Problem. Prove that for every complex polynomial P (z) = anz
n + . . . + a1z + a0 with

|an| = |a0| = 1, there exists a complex polynomial Q(z) = bnz
n + . . . + b1z + b0 with

|bn| = |b0| = 1, such that |Q(z)| ≤ |P (z)| for every z ∈ C, |z| = 1, and such that all complex
roots of Q lie on the unit circle S1 = {z ∈ C : |z| = 1}.

Solution. If P is a constant polynomial, then we can simply take Q = P . Therefore assume
n ≥ 1. By the fundamental theorem of algebra we can write

P (z) = an(z − z1)(z − z2) . . . (z − zn),

where zj ∈ C \ {0} are complex roots of P . If we write each zj in the polar form: zj = rjωj ,
rj > 0, |ωj | = 1, then the factorization of P becomes

P (z) = an(z − r1ω1)(z − r2ω2) . . . (z − rnωn).

Observe that by Viète’s formulae

r1r2 . . . rn = |z1z2 . . . zn| =
∣∣∣a0
an

∣∣∣ = 1.

We define polynomial Q to be

Q(z) = an(z − ω1)(z − ω2) . . . (z − ωn).
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Its roots are ωj and they lie on the unit circle. Moreover, the first and the last coefficient
in Q are the same as in P . Finally, take some z ∈ C, |z| = 1. For each j = 1, 2, . . . , n we
estimate

|z − rjωj |2 = |z|2 + |rjωj |2 − 2Re(zrjωj) = 1 + r2j − 2rjRe(zωj)

= 1 + r2j − 2rj + rj

(
|z|2 + |ωj |2 − 2Re(zωj)

)
= (1− rj)

2 + rj |z − ωj |2 ≥ rj |z − ωj |2.

Multiplying for j = 1, 2, . . . , n we get

|P (z)|2 =
n∏

j=1

|z − rjωj |2 ≥
( n∏

j=1

rj

)( n∏
j=1

|z − ωj |2
)
= |Q(z)|2.

�
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