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There exist patterns in large but otherwise arbitrary structures.

This is the main maxim of the Ramsey theory, but it is also widespread in other
areas of mathematics. Results that are addressed here can be collectively called
the Euclidean density theorems and they belong to the intersection of the arith-
metic combinatorics and the geometric measure theory. These results study large
sets, as this is what the word “density” stands for. In the present context, a mea-
surable subset A of the unit cube [0, 1]d is considered large if its Lebesgue measure
is positive. On the other hand, a measurable subset A of the whole space Rd is
considered large if it occupies a positive portion of the space, i.e., its (appropriately
defined) upper (Banach) density δ(A) is positive. The Euclidean density theorems
search inside A for congruent (i.e., isometric) copies of given configurations (pat-
terns) from a prescribed family P = {Pλ : λ ∈ (0,∞)}, indexed by a certain “size”
parameter λ. Typically, Pλ is the dilate by λ of a fixed point configuration P , i.e.,
Pλ = λP .

Using the Lebesgue density theorem one can easily find all kinds of finite con-
figurations inside a positive measure set A. Moreover, generalizing the Steinhaus
theorem one can even find inside A all sufficiently small dilates of a given finite
point configuration P . Therefore, we have to ask for more in order to obtain
a meaningful result in this setting. There are two types of results that we are
generally aiming for. The first one is the “all large scales” formulation.

ALS: For every measurable set A ⊆ Rd satisfying δ(A) > 0 there exists a number
λ0 = λ0(P, A) > 0 such that for every λ ≥ λ0 the set A contains a
congruent copy of Pλ.

This is a rather strong but only qualitative claim, as the number λ0 depends
on more than just the density δ(A). The second one is “an interval of scales”
formulation, sometimes also known as a compact formulation (after [1]).

IOS: Take a number 0 < δ ≪ 1 and a measurable set A ⊆ [0, 1]d with measure at
least δ. Then the set of scales λ ∈ (0,∞) such that A contains a congruent
copy of Pλ contains an interval of length at least ε = FP,d(δ).

This is a weaker but quantitative claim and it enables a competition to find better
dependencies of ε on δ.

This whole topic was initiated by a question of Székely [17] on whether a pos-
itive upper density set A ⊆ R2 realizes all sufficiently large distances (i.e., in our
terminology, whether an ALS result holds for P = {0, 1}), which has been subse-
quently popularized by Erdős [8]. It was answered affirmatively by Furstenberg,
Katznelson, and Weiss [11], and independently also by Falconer and Marstrand
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[10] and Bourgain [1]. Since then, a lot of work has been done in the aforemen-
tioned natural special case, when a fixed pattern P is scaled by the usual Euclidean
dilations. The most general known positive result, in both ALS and IOS formula-
tions, is due to Lyall and Magyar [16] and it holds when P = ∆1 × · · · ×∆m is a
Cartesian product of vertex-sets ∆j of nondegenerate simplices. The most general
negative result is still due to Graham [12], who showed that ALS (and similarly
IOS) results fail for configurations that cannot be inscribed in a sphere.

The purpose of this note is to inform the reader on where to look for the most
recent developments on the topic, which have become possible primarily due to
recent breakthroughs in the field of the multilinear harmonic analysis. We can
“change the rules” slightly in one of the following ways, in order to open new
interesting research directions.

Quantitative bounds. We might want to improve bounds in the IOS formula-
tions. Already when P is a set of vertices of an n-dimensional rectagular box and
A is a measurable subset of [0, 1]2n, the approach of Lyall and Magyar [16] gives
an interval of a very small length; namely ε−1 is a tower of exponentials of height
n of the number δ−3·2n . Durcik and the author [4] have increased this to a “more
reasonable” bound, ε = (exp(δ−C(n,P )))−1. A bound of the same type was later
shown, more generally, for products of simplices by Durcik and Stipčić [7].

Anisotropic dilations. One can start with a configuration P and generate the
collection P by applying to it anisotropic power-type scalings, namely (x1, . . . , xn)
7→ (λa1b1x1, . . . , λ

anbnxn), where aj , bj are fixed positive parameters. It was shown
in [13] that analogues of many classical results from [1, 15, 16] remain valid in this
modified context.

Sizes in ℓp. Already Bourgain [1] noted that ALS results fail for a triple of
collinear points P . Cook, Magyar, and Pramanik [2] came up with an idea to
study three-term arithmetic progressions x, x+ t, x+2t ∈ Rd, but evaluate sizes of
their gaps t in other ℓp norms. Thew showed the ALS formulation whenever p ̸=
1, 2,∞ and d is sufficiently large. This was generalized to corners (x, y), (x+ t, y),
(x, y + t) ∈ (Rd)2 by Durcik, Rimanić, and the author [5], but longer arithmetic
progressions are still an open problem at the time of writing. As opposed to that,
the IOS formulation (with a still “reasonable” length ε) was shown by Durcik and
the author [4]. It turns out that for n-term arithmetic progressions one needs
to avoid precisely the values 1, 2, . . . , n − 1,∞ for p. Finally, certain mixtures of
three-term progressions or corners and product-type configurations were explored
by the same authors in [3].

Very dense sets. Falconer, Yavicoli, and the author [9] considered measurable
sets with density δ(A) sufficiently close to 1 that A must contain all large dilates
of all n-point configurations. Nontrivial upper and lower bounds for the critical
density were shown in that paper, but its sharp asymptotics as n → ∞ is currently
still unknown.

Nonlinear configurations. Kuca, Orponen, and Sahlsten [14] showed that every
compact set K ⊆ R2 of Hausdorff dimension sufficiently close to 2 contains a pair
of distinct points of the form (x, y), (x, y) + (u, u2). This can be thought of as a
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continuous variant of the Furstenberg–Sárközy theorem (on R2 instead of Z). One
naturally wonders what stronger property of this type holds for sets of positive
Lebesgue measure. Durcik, Stipčić, and the author [6] showed, among other things,
that a positive measure set A ⊆ [0, 1]2 contains a point (x0, y0) ∈ A such that A
nontrivially intersects parabolae y−y0 = a(x−x0)

2 for a whole interval I ⊆ (0,∞)
of parameters a ∈ I. Larger nonlinear configurations could be an interesting topic
to study.
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[1] J. Bourgain, A Szemerédi type theorem for sets of positive density in Rk, Israel J. Math.
54 (1986), 307–316.
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[8] P. Erdős, Some combinatorial, geometric and set theory problems in measure theory, in D.

Kölzow and D. Maharam-Stone, editors, Measure Theory, Oberwolfach 1983: Proceedings
of the Conference held at Oberwolfach, June 26–July 2, 1983, volume 1089 of Lecture Notes

in Mathematics, pages 321–327, Springer, Berlin, Heidelberg, 1984.
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