Matematička logika i računarstvo
O kolegiju
- pristupni kolegij na zajedničkom doktorskom studiju matematike
- nastava: 30 tjedana po 2 sata predavanja (četvrtkom 13–15 sati, studeni 2022. – srpanj 2023.)
- prvih 15 tjedana (logika): Vedran Čačić
- drugih 15 tjedana (računarstvo): Marko Horvat
- predavanja se mogu pratiti:
- uživo u predavaonici 105 PMF–MO
- u realnom vremenu preko platforme Microsoft Teams (javite mi se za link)
- gledanjem snimki koje će biti objavljene na YouTubeu (link će biti poznat kasnije)
- na Meduzi se mogu naći snimke predavanja iz prethodnih akademskih godina:
- Primjer domaćih zadaća (iz akademske godine 2019/20.):
prva, druga, treća
- slajdovi s predavanja (javite mi se za zadnju verziju)
Gradivo
- elementarni modeli i proširenja, parcijalni izomorfizmi
- teorem kompaktnosti, Löwenheim–Skolemovi teoremi, metoda dijagrama
- Łoś–Vaughtov test, Robinsonov teorem konzistentnosti
- interpolacija, definabilnost, ultrafilteri, ultraprodukti
- teoremi o očuvanju, omašivanje tipova, eliminacija kvantifikatora, saturacija
- sintaksa i semantika modalne logike
- osnovne konstrukcije okvira i modela, bisimulacije
- standardna translacija, ultrafilterska proširenja, modalna saturacija
- hilbertovski sistemi, prirodna dedukcija, sistemi sekvenata, normalizacija
- teorija rekurzije, RAM-strojevi, Turingovi strojevi
- aritmetička hijerarhija, aritmetizacija, definabilnost i reprezentabilnost
- prvi i drugi Gödelov teorem nepotpunosti, Hilbert–Bernaysovi uvjeti
- vremenska i prostorna složenost, nedeterminizam, Savitchev teorem
- polinomna reducibilnost, problem SAT, NP-potpunost
- λ-račun, račun induktivnih konstrukcija, Coq, dokazi korektnosti softvera
Literatura
- Vuković: Primijenjena logika, skripta koja pokriva većinu gradiva kolegija (javite mi se za zadnju verziju)
- Ebbinghaus, Flum, Thomas: Mathematical Logic
- Chang, Keisler: Model Theory
- Blackburn, de Rijke, Venema: Modal logic (4th ed.)
- Vuković: Izračunljivost
- Čačić: Komputonomikon
- Sipser: Introduction to the Theory of Computation (Part 3: Complexity)