Sonja Štimac, University of Zagreb, Croatia

Topological Classification of Knaster Continua with Finitely Many Endpoints

In this work we develop a symbolic dynamics method which enables us to study properties of certain classes of inverse limits. We first consider the family of Knaster continua $K_s = \lim\{[0,1], f_s\}$, where $f_s \colon [0,1] \to [0,1]$ are tent functions with slope $s \in [\sqrt{2}, 2]$ and periodic extreme points. Continua of this family are represented as quotient spaces of two-sided admissible sequences of zeros and ones, with respect to a suitable equivalence relation. We are interested in the structure of the composant of the endpoint \bar{c} related to the kneading sequence of f_s . We define *p*-*i*-points characterized by the equivalence relation on the quotient space, and *p*-bridges, i.e. specially chosen arcs connecting certain *p*-*i*-points. We show that the first (p-1)-bridge in the structure of every *p*bridge is of the same type as the first bridge at an arbitrary level which contains the endpoint \bar{c} . We also show that if there exist two homeomorphic continua in the class we study, then there exists a mapping $h_{q,p}$ between composants of the endpoints and there exists an $r \in \mathbb{N}, r \geq p$, for which the mapping $h_{q,p}$ maps the first bridge at level q + 1 onto the first bridge at level r. From this fact we conclude that the kneading sequences of the corresponding tent functions are equal. In other words, for tent functions f_s and f_t , $s, t \in [\sqrt{2}, 2]$, with periodic extreme points, if $s \neq t$, than the continua K_s and K_t are not homeomorphic.

References:

- Brucks, K. M., Diamond, B., A symbolic representation of inverse limit space for a class of unimodal maps, Continua with the Houston problem book, Eds.: Cook, H. et al., Lecture notes in pure and appl. math. 170, Dekker (1995), 207-226
- Bruin, H., Inverse limit spaces of post-critically finite tent maps, Fund. Math. 165 (2000), 125-138
- 3. Kailhofer, L., A classification of inverse limit spaces of tent maps with periodic critical points, Preprint (2000)

Mathematics Subject Classicication: 37B10, 37B45