Andrei V. Prasolov, University of Tromsø, Norway

Coherent Homomorphisms of H-spaces

0. Let X and Y be H-spaces, associative up to coherent homotopies. We define a space $HOM_{ass}(X, Y)$ of "homomorphisms up to a coherent homotopy" $X \to Y$, and constructs a spectral sequence

$$_{(0)}E_2^{st} \Longrightarrow \pi_{-s-t}(\operatorname{HOM}_{\operatorname{ass}}(X,Y)).$$

A natural mapping $_{(0)}\varphi$: HOM_{ass} $(X, Y) \longrightarrow$ Map_{*}(BX, BY) is constructed where BX and BY are the deloopings of X and Y respectively. For a number of cases the morphism $_{(0)}\varphi$ is investigated and appears to be a homotopy equivalence.

1. Let now X and Y be "homotopy everything" H-spaces, such that the multiplication in both spaces is associative and commutative up to coherent homotopies. We define a space $HOM_{asscomm}(X, Y)$ similar to the space $HOM_{ass}(X, Y)$ above. The coherent homotopies involved should "interact" with the coherent homotopies of associativity and commutativity. One constructs also a spectral sequence

$$_{(1)}E_2^{st} \Longrightarrow \pi_{-s-t}(\operatorname{HOM}_{\operatorname{asscomm}}(X,Y)).$$

A natural mapping

 $_{(1)}\varphi \colon \operatorname{HOM}_{\operatorname{asscomm}}(X,Y) \longrightarrow \operatorname{Map}_{\operatorname{Spectra}}(Sp(X),Sp(Y))$

is considered where Sp(X) and Sp(Y) are the corresponding Ω -spectra that infinitely deloops X and Y. For a number of cases ${}_{(1)}\varphi$ appears to be a homotopy equivalence.

2. Finally, let X and Y be C-spaces where C is an operad in the sense of J. P. May. We construct a space $\operatorname{HOM}_{\mathcal{C}}(X,Y)$ and a spectral sequence ${}_{(2)}E_2^{st} \Longrightarrow \pi_{-s-t}(\operatorname{HOM}_{\mathcal{C}}(X,Y))$. For some cases, the terms ${}_{(2)}E_2^{st}$ are calculated.

Mathematics Subject Classicication: Primary: 55Pxx, 55P35, 55P45; Secondary: 18Gxx, 18G40, 18G55