Fatma Özdemir*, Istanbul Technical University, Turkey

On Conformally Recurrent Kahlerian-Weyl Spaces

An *m*-dimensional manifold $W_m(g_{ij}, T_k)$ with a conformal metric tensor g_{ij} and a symmetric connection ∇_k is called a Weyl space if the compatibility condition $\nabla_k g_{ij} - 2T_k g_{ij} = 0$ is satisfied, where T_k is a covariant vector field.

If the Weyl space W_m admits an almost Hermitian structure F_i^j that satisfies $\dot{\nabla}_k F_i^j = 0$ (for all i, j, k) then W_m is called a Kahlerian space.

We consider an m-dimensional Weyl space W_m (m = 2n) with Kahlerian structure. Let R_{ijkl} and $F^{ij} = g^{ih}F_h^j$ be the covariant curvature tensor of weight {2} and skew-symmetric tensor of type (2,0) of weight {-2} of W_m , respectively. Define the tensor G_{ij} of weight {0} by $G_{ij} = H_{ij} - H_{ji}$, where $H_{ij} = \frac{1}{2} R_{ijkl} F^{kl}$.

In this work, the properties related with the tensors H_{ij} and G_{ij} are given and it is proved that G_{ij} is proportional to F_{ij} if and only if the space W_m is an Einstein-Weyl space. Furthermore, for conformally recurrent Kahlerian-Weyl space we obtained that Kahlerian Weyl space will be a conformally recurrent if and only if it is a recurrent Weyl space.

Mathematics Subject Classicication: 53C55

^{*}This is a joint work with Gülçin Çivi Yildirim