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Relative and Pointed Versions of Lipscomb’s Embedding
Theorem

In his papers [3,4] S. L. Lipscomb defined the space J (τ) as a factor-space
of Baire’s universal 0-dimensional space and proved that any n-dimensional
metrizable space of weight τ , τ ≥ ℵ0, can be embedded in the subspace Ln(τ) =
{x ∈ J (τ)n+1 : at least one coordinate of x is irrational } of J (τ)n+1.

In an attempt to prove the relative version of the theorem, i.e. to prove that
any embedding f0 : X0 −→ Ln(τ), where X0 is a subspace of a n-dimensional
metric space X of weight τ , can be extended to an embedding f : X −→ Ln(τ),
we found simple examples showing that this is in general not true.

We succeeded to prove such a theorem for n = 0 and compact X0 [2]. But
for n > 0 even the case when X0 is a single point is not trivial.

Using the fact that J (τ) is naturally homeomorphic to a generalized Sier-
piński curve [5,6] and techniques of modification of Lipscomb’s decompositions
and indexing of the modified decompositions developed in [1,6], here we prove
the pointed version of Lipscomb’s embedding theorem, i.e. we show that the
embedding may be chosen in such a way that its value is given in advance at a
certain point (the base point). This is not trivial precisely because J (τ) splits
into the rational and the irrational part.
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