Jury Lisica, Russian University of Peoples Friendship, Moscow, Russia

The Slant Product for Strong (Co)Homology, Homology with Compact Supports and Čech Cohomology

The homology slant product and the cohomology slant product for singular homology H_* and singular cohomology H^* are well-defined if X and Y are polyhedra. One can dualize this construction for Steenrod homology \bar{H}_* and Čech cohomology \check{H}^* if X and Y are compact Hausdorff spaces.

The target problem is to generalize it for arbitrary Hausdorff topological spaces X and Y and seems to be very difficult. The first step in this direction is the following theorem.

Theorem 1. If X is a compact Hausdorff space and Y is a polyhedron, then there exist the following slant products (natural transformations):

$$\backslash : \bar{H}_p(X;G_1) \otimes \bar{H}^{p+q}(X \times Y;G_2) \longrightarrow H^q(Y;G_1 \otimes G_2) \tag{1}$$

$$\backslash : \bar{H}_p(X;G_1) \otimes \check{H}^{p+q}(X \times Y;G_2) \longrightarrow H^q(Y;G_1 \otimes G_2)$$
(2)

$$\langle : \check{H}^p(X;G_1) \otimes \bar{H}^c_{p+q}(X \times Y;G_2) \longrightarrow H_q(Y;G_1 \otimes G_2)$$
(3)

$$\langle : \check{H}^{p}(X;G_{1}) \otimes \bar{H}_{p+q}(X \times Y;G_{2}) \longrightarrow H_{q}(Y;G_{1} \otimes G_{2})$$

$$(4)$$

$$\langle : H_p(Y;G_1) \otimes H^{p+q}(Y \times X;G_2) \longrightarrow H^q(X;G_1 \otimes G_2)$$
(5)

$$\langle : H_p(Y;G_1) \otimes H^{p+q}(Y \times X;G_2) \longrightarrow H^q(X;G_1 \otimes G_2)$$
(6)

$$\backslash : H^p(Y;G_1) \otimes H^c_{p+q}(Y \times X;G_2) \longrightarrow H_q(X;G_1 \otimes G_2)$$
(7)

$$\langle : H^p(Y;G_1) \otimes \bar{H}_{p+q}(Y \times X;G_2) \longrightarrow \bar{H}_q(X;G_1 \otimes G_2)$$
(8)

which satisfy all known properties [1]. Here \bar{H}_* is the strong homology, \bar{H}_*^c is the homology with compact supports and \bar{H}^* is the strong cohomology.

The proofs are standard, but different. Nevertheless, the proofs of formulas (4) and (8) need nontrivial special ANR-resolution for product $X \times Y$ constructed recently by S. Mardešić.

The second step is to change X or Y by an arbitrary Hausdorff space. One can do it for (1) and (3). The last formula is a special case of more general theorem:

Theorem 2. If X and Y are arbitrary Hausdorff spaces, then there exist the following slant product (natural transformation):

$$\setminus: \bar{H}^p(X;G_1) \otimes \bar{H}^c_{p+q}(X \times Y;G_2) \longrightarrow \bar{H}^c_q(Y;G_1 \otimes G_2).$$
(9)