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The Slant Product for Strong (Co)Homology, Homology
with Compact Supports and Čech Cohomology

The homology slant product and the cohomology slant product for singular
homology H∗ and singular cohomology H∗ are well-defined if X and Y are
polyhedra. One can dualize this construction for Steenrod homology H̄∗ and
Čech cohomology Ȟ∗ if X and Y are compact Hausdorff spaces.

The target problem is to generalize it for arbitrary Hausdorff topological
spaces X and Y and seems to be very difficult. The first step in this direction
is the following theorem.

Theorem 1. If X is a compact Hausdorff space and Y is a polyhedron, then
there exist the following slant products (natural transformations):

\ : H̄p(X;G1) ⊗ H̄p+q(X × Y ;G2) −→ Hq(Y ;G1 ⊗ G2) (1)
\ : H̄p(X;G1) ⊗ Ȟp+q(X × Y ;G2) −→ Hq(Y ;G1 ⊗ G2) (2)
\ : Ȟp(X;G1) ⊗ H̄c

p+q(X × Y ;G2) −→ Hq(Y ;G1 ⊗ G2) (3)

\ : Ȟp(X;G1) ⊗ H̄p+q(X × Y ;G2) −→ Hq(Y ;G1 ⊗ G2) (4)
\ : Hp(Y ;G1) ⊗ H̄p+q(Y × X;G2) −→ Ȟq(X;G1 ⊗ G2) (5)
\ : Hp(Y ;G1) ⊗ Ȟp+q(Y × X;G2) −→ Ȟq(X;G1 ⊗ G2) (6)
\ : Hp(Y ;G1) ⊗ H̄c

p+q(Y × X;G2) −→ H̄q(X;G1 ⊗ G2) (7)

\ : Hp(Y ;G1) ⊗ H̄p+q(Y × X;G2) −→ H̄q(X;G1 ⊗ G2) (8)

which satisfy all known properties [1]. Here H̄∗ is the strong homology, H̄c
∗ is

the homology with compact supports and H̄∗ is the strong cohomology.
The proofs are standard, but different. Nevertheless, the proofs of formu-

las (4) and (8) need nontrivial special ANR-resolution for product X × Y
constructed recently by S. Mardešić.

The second step is to change X or Y by an arbitrary Hausdorff space. One
can do it for (1) and (3). The last formula is a special case of more general
theorem:

Theorem 2. If X and Y are arbitrary Hausdorff spaces, then there exist
the following slant product (natural transformation):

\ : H̄p(X;G1) ⊗ H̄c
p+q(X × Y ;G2) −→ H̄c

q (Y ;G1 ⊗ G2) . (9)


