Jury Lisica, Russian University of Peoples Friendship, Moscow, Russia Strong Border Homology and Cohomology

Let X be a Hausdorff topological space and G be an abelian group. For any ANRresolution in the sense of Mardešić $\underline{p} = (p_{\lambda}) : X \to \underline{X} = (X_{\lambda}, p_{\lambda\lambda'}, \Lambda)$ and an inverse system $\underline{C}_* = (C_*(X_{\lambda}; G), p_{\lambda\lambda'}, \Lambda)$ of the singular chain complexes $C_*(X_{\lambda}; G)$ of X_{λ} one can define the strong homology group of X with the coefficients in G by formula $\bar{H}_p(X;G) \stackrel{def}{=} H_p(\operatorname{holim} \underline{C}_*)$. (Denote for simplicity $\bar{C}_*(X;G) = \operatorname{holim} \underline{C}_*)$. Together with the Čech cohomology $\check{H}_p(X;G) = \lim_{\to \lambda} H^p(X_{\lambda};G)$ one has outer or projective (co)homology of X, which are strong shape invariants. There are dual *inner* or *injective* (co)homology of X, which are strong coshape invariants (moreover, strong shape with compact supports invariants). One of them is the strong homology with compact supports $\bar{H}_p^c(X;G) \stackrel{def}{=} \lim_{\to \mu} \bar{H}_p(K_{\mu};G)$ and another one is the strong cohomology group $\bar{H}^p(X;G) \stackrel{def}{=} H^p(\operatorname{holim} \underline{C}^*)$, where $\underline{K} = (K_{\mu}, i_{\mu\mu'}, M)$ is the direct system of all compact subspaces K_{μ} of X, $C^*(K_{\mu};G)$ is the Massey cohomology cochain complex and $\underline{C}^* = (C^*(X_{\mu};G), i^*_{\mu\mu'}, M)$ is and inverse system of cochain complexes. (Denote for simplicity $\bar{C}^*(X;G) = \operatorname{holim} \underline{C}^*)$.

There are two natural transformations $\mu_p: \bar{H}_p^c(X;G) \to \bar{H}_p(X;G)$ and $\lambda^p: \check{H}_p^r(X;G) \to \bar{H}^p(X;G)$. Moreover, one can define the strong border homology $\bar{H}_p^{br}(X;G)$ and the strong border cohomology $\bar{H}_{br}^p(X;G)$ of X, which do final relation between them as the following two long exact sequences:

$$\dots \to \bar{H}_p^c(X;G) \xrightarrow{\mu_p} \bar{H}_(X;G) \to \bar{H}_p^{br}(X;G) \to \bar{H}_{p-1}^c(X;G) \to \dots$$
(1)

$$\dots \to H^{p-1}_c(X;G) \to \bar{H}^p_{br}(X;G) \to \check{H}^p(X;G) \xrightarrow{\lambda^p} \bar{H}^p(X;G) \to \dots$$
(2)

Theorem. For any Hausdorff topological space X there exists an ANR-resolution $\underline{p}: X \to \underline{X} = (X_{\lambda}, p_{\lambda\lambda'}, \Lambda)$ and the family of ANR-subresolutions $\underline{q}_{\mu}: K_{\mu} \to \underline{K}_{\mu}$ in \underline{X} of the family of all compact subspaces K_{μ} of X.

Then one can define a chain complex $\bar{C}^{br}_*(X;G) = \lim_{\to\mu} (\bar{C}_*(X;G)/\bar{C}_*(K_{\mu};G))$ or $\bar{C}^{br}_*(X;G) = \underset{\to\lambda}{\text{holim}} (C_*(X_{\lambda};G)/\bar{C}^c_*(X;G)), \text{ where } \bar{C}^c_*(X;G) = \underset{\to\mu}{\lim} \bar{C}_*(K_{\mu};G) \text{ is the}$

strong chain complex with compact supports. Now put $\bar{H}_p^{br} \stackrel{def}{=} H_p(\bar{C}_*^{br}(X;G)).$

To define $\bar{H}_{br}^p(X;G)$ one can take any ANR-resolution $p = (p_{\lambda}): X \to \underline{X} = (X_{\lambda}, p_{\lambda\lambda'}, \Lambda)$ of X and for each $\lambda \in \Lambda$ consider the cylinder $X \coprod_{p_{\lambda}} X_{\lambda}$ of $p_{\lambda}: X \to X_{\lambda}$ and also the strong cochain complex $\bar{C}^*(X \coprod_{p_{\lambda}} X_{\lambda};G)$ of it. Then there is an epimorphism $\bar{C}^*(X \coprod_{p_{\lambda}} X_{\lambda};G) \to \bar{C}^*(X;G)$ on the strong cochain complex $\bar{C}^*(X;G)$ and we denote the kernel of it by $\bar{C}^*(X : X_{\lambda};G)$. Then put $\bar{C}_{br}^*(X;G) = \lim_{\to \lambda} \bar{C}^*(X : X_{\lambda};G)$. Now put $\bar{H}_{br}^p(X;G) \stackrel{def}{=} H^p(\bar{C}_{br}^*(X;G))$.