Sören Illman, University of Helsinki, Finland

Three Basic Results for Real Analytic Proper G-Manifolds

In this talk we will try to cover the main results of the paper Sören Illman and Marja Kankaanrinta, Three basic results for real analytic proper *G*-manifolds, *Math. Ann.* 316 (2000), 169–183,

and also say something about the paper

Sören Illman and Marja Kankaanrinta, A new topology for the set $C^{\infty,G}(M,N)$ of *G*-equivariant smooth maps.

By a real analytic proper G-manifold M we mean a real analytic manifold M on which a Lie group G acts by a real analytic and proper action. We wish to address the following three basic questions.

- (i) Given a real analytic proper G-manifold M, does there exist a G-invariant real analytic Riemannian metric on M?
- (ii) Let $f: M \to N$ be a *G*-equivariant C^r smooth map, $1 \le r \le \infty$, between two real analytic proper *G*-manifolds. Can one then always approximate f by a *G*-equivariant real analytic map $h: M \to N$?
- (*iii*) Suppose G is a linear Lie group and let M be a real analytic proper G-manifold with only finitely many isotropy types. Does there then exist a G-equivariant real analytic imbedding of M into some finite-dimensional linear representation space for G?

We say that a Lie group is *good* if it is isomorphic to a closed subgroup of a Lie group with only finitely many connected components. Note in particular that every linear Lie group is good. Our main results are as follows.

Theorem I. The answer to question (i) is affirmative when G is a good Lie group.

Concerning question (*ii*) we prove that if G is a good Lie then every Ginvariant C^r smooth map $f: M \to N$, $1 \leq r \leq \infty$, can be approximated arbitrarily well in the *strong-weak topology* by a G-equivariant real analytic map $h: M \to N$. More precisely we prove the following.

Theorem II. Let M and N be real analytic proper G-manifolds, where G is a good Lie group. Then $C_{SW}^{\omega,G}(M,N)$ is dense in $C_{SW}^{r,G}(M,N)$, $1 \le r \le \infty$.

As a corollary of Theorem II we obtain:

Corollary. Let M, N and G be as in Theorem II. If M and N are G-equivariantly C^1 diffeomorphic they are also G-equivariantly real analytically isomorphic.

Concerning question (iii) we prove:

Theorem III. The answer to question (iii) is affirmative.