Gülçin Çivi Yildirim, İstanbul Technical University, Turkey

Chebyshev Nets Formed by Ricci Curves in a 3-Dimensional Weyl Space

An *n*-dimensional differentiable manifold W_n is said to be a Weyl space if it has a conformal metric tensor g_{ij} and a symmetric connection ∇_{γ} satisfying the compatibility condition given by the equation

$$abla_\gamma \, g_{lphaeta} - 2 \, T_\gamma \, g_{lphaeta} = 0 \; ,$$

where T_{γ} denotes a covariant vector field. Under the renormalization

$$\widetilde{g} = \lambda^2 g$$

of the metric tensor g, T is transformed by the law

$$\widetilde{T}_{\gamma} = T_{\gamma} + \partial_{\gamma} \ln \lambda$$

where λ is a function defined on W_n .

Let R_{ij} be the components of the Ricci tensor of the 3-dimensional Weyl space $W_3(g,T)$ and let $R_{(ij)}$ be the symmetric part of R_{ij} . Let the principal directions and the corresponding principal values of $R_{(ij)}$ be denoted, respectively, by v_1 , v_2 , v_3 and M, M, M. Then, We get

$$(R_{(ij)} + M_r g_{ij}) v^i = 0$$
, $(i, r = 1, 2, 3)$

We call v_1 , v_2 and v_3 the Ricci's principal directions and the integral curves of theese vector fields will be named as the Ricci curves of $W_3(g,T)$. Theese curves may be considered as the generalization of Ricci curves in a Riemannian space.

In this paper, it is shown that any 3-dimensional Chebyshev net formed by the three families of Ricci curves in a $W_3(g,T)$ having a definite metric and a Ricci tensor is either a geodesic net or it consists of a geodesic subnet the member of which have vanishing second curvatures. In the case of an indefinite Ricci tensor only one of the members of the geodesic subnet under consideration has a vanishing second curvature.

Key words and phrases: Weyl space, Chebyshev net, Ricci Curve Mathematics Subject Classicication: Primary: 53A40, Secondary: 53A30