Vitali A. Chatyrko*, Linköping University, Linköping, Sweden

On Addition Theorems for Inductive Dimensions

The problem discussed here is: Given a space X which is represented as the union of two subsets X_1 and X_2 of known dimension, what can be said about the dimension of X? Results giving an estimate of the dimension of the union of two subspaces are known as addition theorems.

There are classical addition theorems for dimensions *ind* and Ind if X is hereditarily normal. Namely, $\operatorname{ind} X \leq \operatorname{ind} X_1 + \operatorname{ind} X_2$ and $\operatorname{Ind} X \leq \operatorname{Ind} X_1 + \operatorname{Ind} X_2$. The inequalities are known as Menger-Urysohn formulas. Here we present different addition theorems for these dimensions in more general cases if $\operatorname{Ind} X_1 = m$ and $\operatorname{Ind} X_2 = n$. For example, if X is normal then $\operatorname{ind} X \leq 2(m + n + 1)$.

The above result raises the problem of estimating ind X in terms of ind X_1 and ind X_2 . In particular one question is whether ind X is finite when both ind X_1 and ind X_2 are finite. The answer is negative if instead of ind one considers inductive dimensions ind₀ or Ind₀ introduced by Charalambous and Filippov. In particular, a hereditarily normal compact space which is the union of two dense zero-dimensional subspaces can be infinite-dimensional in the sense of these dimensions.

^{*}This is a joint work with M.G. Charalambous