|
|
<type 'sage.rings.integer.Integer'> |
'1010' |
2 * 3 * 5 |
<type 'sage.rings.real_mpfr.RealNumber'> |
<type 'sage.rings.real_mpfr.RealNumber'> |
|
2.6253741264076874400e17 |
|
448.000000000000 |
-0.0026855468750000000000 |
|
|
{'fillalpha': 0.5, 'detect_poles': False, 'plot_points': 200, 'thickness': 1, 'alpha': 1, 'adaptive_tolerance': 0.01, 'fillcolor': 'automatic', 'adaptive_recursion': 5, 'exclude': None, 'legend_label': None, 'rgbcolor': (0, 0, 1), 'fill': False} |
|
![]() |
[x == -1/6*sqrt((3*(1/18*I*sqrt(3)*sqrt(229) + 1/2)^(2/3) + 4)/(1/18*I*sqrt(3)*sqrt(229) + 1/2)^(1/3))*sqrt(3) - 1/2*sqrt(-(1/18*I*sqrt(3)*sqrt(229) + 1/2)^(1/3) + 2*sqrt(3)/sqrt((3*(1/18*I*sqrt(3)*sqrt(229) + 1/2)^(2/3) + 4)/(1/18*I*sqrt(3)*sqrt(229) + 1/2)^(1/3)) - 4/3/(1/18*I*sqrt(3)*sqrt(229) + 1/2)^(1/3)), x == -1/6*sqrt((3*(1/18*I*sqrt(3)*sqrt(229) + 1/2)^(2/3) + 4)/(1/18*I*sqrt(3)*sqrt(229) + 1/2)^(1/3))*sqrt(3) + 1/2*sqrt(-(1/18*I*sqrt(3)*sqrt(229) + 1/2)^(1/3) + 2*sqrt(3)/sqrt((3*(1/18*I*sqrt(3)*sqrt(229) + 1/2)^(2/3) + 4)/(1/18*I*sqrt(3)*sqrt(229) + 1/2)^(1/3)) - 4/3/(1/18*I*sqrt(3)*sqrt(229) + 1/2)^(1/3)), x == 1/6*sqrt((3*(1/18*I*sqrt(3)*sqrt(229) + 1/2)^(2/3) + 4)/(1/18*I*sqrt(3)*sqrt(229) + 1/2)^(1/3))*sqrt(3) - 1/2*sqrt(-(1/18*I*sqrt(3)*sqrt(229) + 1/2)^(1/3) - 2*sqrt(3)/sqrt((3*(1/18*I*sqrt(3)*sqrt(229) + 1/2)^(2/3) + 4)/(1/18*I*sqrt(3)*sqrt(229) + 1/2)^(1/3)) - 4/3/(1/18*I*sqrt(3)*sqrt(229) + 1/2)^(1/3)), x == 1/6*sqrt((3*(1/18*I*sqrt(3)*sqrt(229) + 1/2)^(2/3) + 4)/(1/18*I*sqrt(3)*sqrt(229) + 1/2)^(1/3))*sqrt(3) + 1/2*sqrt(-(1/18*I*sqrt(3)*sqrt(229) + 1/2)^(1/3) - 2*sqrt(3)/sqrt((3*(1/18*I*sqrt(3)*sqrt(229) + 1/2)^(2/3) + 4)/(1/18*I*sqrt(3)*sqrt(229) + 1/2)^(1/3)) - 4/3/(1/18*I*sqrt(3)*sqrt(229) + 1/2)^(1/3))] |
[-0.727136084491197 + 0.430014288329716*I, -0.727136084491197 - 0.430014288329716*I, 0.727136084491197 + 0.934099289460529*I, 0.727136084491197 - 0.934099289460529*I] |
[sin(x) == cos(x)] |
29.059732045705587 |
[0.78539816339744839, 3.9269908169872414, 7.0685834705770345, 10.210176124166829, 13.351768777756622, 16.493361431346415, 19.634954084936208, 22.776546738526001, 25.918139392115794, 29.059732045705587] |
<code object find_root at 0x58bfc60, file "/opt/sage/local/lib/python2.6/site-packages/sage/numerical/optimize\ .py", line 16> |
|
|
<type 'sage.symbolic.expression.Expression'> |
4*x^3 |
12*x^2 |
1/5*x^5 |
1/5 |
1/5 |
1/5 |
1/5 |
1/5 |
(0.19999999999999993, 2.2204460492503123e-15) |
(69.454624666692752, 13.11226951649312) |
|
<type 'list'> |
(3, 3, 2, 1) |
p |
[1, '2', 5, p, 1, 4, 7, 4, 7] |
[p, 1, '2', 5] |
[1, 4, 5, 7, p, '2'] |
|
2 |
5 |
|
<type 'list'> |
7 [4, 5, 6, 7] |
[[1], [1, 2], [1, 2, 3], [1, 2, 3, 4], [1, 2, 3, 4, 5], [1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 5, 6, 7]] |
|
|
<type 'sage.modules.vector_integer_dense.Vector_integer_dense'> |
3 |
[1 2 3] |
(1, 0, 9) |
<type 'sage.matrix.matrix_integer_dense.Matrix_integer_dense'> |
[(1, 0), (2, 3)] |
(5, 6) |
(1, 8) |
Free module of degree 2 and rank 0 over Integer Ring Echelon basis matrix: [] |
[ 1.00000000000000 0.000000000000000 0.000000000000000] [0.000000000000000 1.00000000000000 0.000000000000000] [0.000000000000000 0.000000000000000 1.00000000000000] |