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Abstract

We prove the group configuration theorem in simple theories, a very abstract result
reconstructing a group (action) from a certain independence-theoretic configuration
of points, and argue that such a result gives rise to ‘geometric simplicity theory’ (i.e.
analogues of methods and results of geometric stability theory).

The proof involves studying the behaviour of multivalued algebraic structures like
polygroups and polyspaces, a development of the theory of independence for almost
hyperimaginaries, and a sophisticated blowup procedure.

Some of the corollaries of the group configuration theorem we obtain include find-
ing the group associated to a polygroup in a simple theory, interpreting a vector space
over a finite field inside a one-based w-categorical theory of SU-rank 1, and showing
how pseudolinearity implies one-basedness under the assumption of w-categoricity.
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Introduction

In the beginning, there was Morley’s theorem from the 1960’s, stating that if a
complete countable first order theory T is categorical in an uncountable cardinality,
it must in fact be categorical in all uncountable cardinalities.

After that came Shelah’s monumental programme ([S]), concerned with classifying
theories in terms of structure/non-structure dichotomies, where a structure theorem
states that a theory has relatively few models and thus it makes sense to try and
classify its models (Morley’s theorem being the first example of such a theorem),
while a non-structure theorem asserts that a theory has a maximal number of models
in a given cardinality, their classification thus being hopeless.

On the other hand, Zil’ber developed in the 1970’s a variety of methods and results
which became known as geometric stability theory, oriented more towards the quali-
tative classification of theories. After showing many results concerning wi-categorical
theories, he conjectured that if M is a model of such a theory, then M must essentially
be either a vector space, or an algebraically closed field, or a degenerate structure (see
[21]-]Z6]). We will refer to this conjecture as Zil’ber’s trichotomy. The methods con-
sisted of studying the combinatorial pregeometries arising on strongly minimal sets
inside a given structure, and the relationship between the properties (e.g. (non) local
modularity, triviality, etc.) of those pregeometries and the structure as a whole. In-
terpretability of nice algebraic structures (e.g. groups or fields) inside a structure had
significant consequences.

In 1980’s, Hrushovski brought geometric stability theory to its peak ([HO]-[H8]).
He showed in particular that Zil’ber’s conjecture does not hold in full generality ([H5]),
and then later with Zil’ber that it does hold in Zariski geometries [HZ]. Also, his work
on the Mordell-Lang and Manin-Mumford conjectures ([H6], [H8]) clearly demon-
strated that ‘excursions’ outside the classical model theory of stable structures can
answer fundamental questions about the classical structures themselves. Some of the
theories he considered we now know to be simple.

Simple theories were defined by Shelah in [S93], but only became a subject of
intense investigation after Kim managed to prove symmetry and transitivity of forking
in [Ki] and especially after Kim and Pillay’s proof of the Independence Theorem. The
program was apparent: to generalise well-understood methods of stability in this new
and mysterious context. With more or less difficulty, the usual techniques of forking
calculus, canonical bases, orthogonality, regularity, coordinatisation, type-definable
groups and Hrushovski’s amalgamation construction were translated into simplicity.
There were extremely difficult problems intrinsic to simple theories which were also
resolved, e.g. elimination of hyperimaginaries for supersimple theories ([BPW]).

However, for a long time, there was no results reminiscent of geometric stability
theory. In particular, there was no group existence theorems. And yet, it was apparent
there should be, since at least in all the known examples, speaking loosely, we either
have a stable ‘reduct’ controlling forking (e.g. random graph, vector space over a finite
field with a bilinear form, algebraically closed fields with an automorphism), or the



structure can be ‘embedded’ into a stable one (pseudofinite fields), so the ‘geometry’
should come from these stable structures.

The first attempts on the group configuration theorem (for stable theories first
recognised by Zil’ber and then in full generality by Hrushovski) in simple theories by
Ben-Yaacov [BY] and myself [To] yielded some partial results and indicated the way
to proceed. The collaboration of Ben-Yaacov, Wagner and myself gave a satisfactory
solution to the problem in [BTW]. Furthermore, there were several different lines
of attack on the binding group theorem by Hart, Shami and Wagner. It seemed
for a while that it was just a matter of guessing the right definition of the group
of automorphisms, but then Wagner reduced the problem to the group configuration
([W2]), showing that it is indeed the only group existence theorem around. Since then
there were other developments in the direction of geometric simplicity, see [Va] and
[dPK]. My purpose in this thesis is to present the proof of the group configuration
theorem for simple theories, as well as its application in developing geometric simplicity
theory, with a view to Zil’ber-type trichotomy for simple theories.

In Chapter 1, we deal with prerequisites needed to develop further chapters, to
make the exposition as self-contained as possible. Thus, on one hand, we discuss sim-
ple theories, independence relations and combinatorial pregeometries arising within,
and on the other, we define and study basic properties of polygroups, because even
though they appear quite naturally, we cannot really consider them to be standard
mathematical objects.

In Chapter 2, we develop the theory of germs of type-definable generic partial
multiactions needed for the proof of the group configuration theorem. In the stable
case, germs can be developed quickly and efficiently, as shown in the introduction to
the chapter. In the simple case, however, the situation is very intricate so the whole
chapter is dedicated to it, based on [BY]. It is shown how a polygroup chunk arises
from the usual algebraic quadrangle (group configuration), thus completing the first
step towards constructing a group. In the stable case, at this stage a group chunk
would be derived, and a direct application of the Hrushovski-Weil style group chunk
theorem would yield a group. A polygroup chunk proves to be much more troublesome.

To overcome the difficulties with the polygroup chunk, in Chapter 4, we present
a variety of blowup procedures which give a group chunk, where the group chunk
theorem will apply and provide us with the sought-after group. The construction is
of algebraic-geometric nature (hence the name) and has a surprising similarity to the
reconstruction of the division ring from a projective geometry (maybe not so surprising
if we remind ourselves that the group configuration is a highly abstract analogue of the
very same classical construction). Three variants of the construction due to myself are
given (it should be noted here that the idea by Ben-Yaacov of using the core relation
in a ‘blowup-like’ context resulted in the first successful blowup construction): the
first is as hyperdefinable as possible, the second is written to look like von Neumann’s
proof from [vN], and the third to be as universal as possible-in fact, to have the usual
universal property of blowing-up from algebraic geometry.

Unfortunately, the construction of Chapter 4 works only up to a certain invariant
relation, thus giving what we call a gradedly almost hyperdefinable, and not neces-
sarily hyperdefinable group chunk, so in Chapter 3 we develop the machinery (our
presentation modifies slightly Ben-Yaacov’s notes for the purpose of [BTW]) needed
to handle almost hyperimaginary elements, gradedly almost hyperdefinable polygroups
and polygroup chunks. In particular, gradedly almost hyperdefinable polygroups are
defined, as well as their generic elements, whose existence and basic properties are
shown (for hyperdefinable polygroups in supersimple theories this was originally done



in [Tol]). The group (space) chunk theorem is proved in this category as well, based
on ideas of [To|, Ben-Yaacov noting it preserves almost hyperdefinability.

In Chapter 5 we give a few applications of the group configuration framework.
Firstly, we show how each gradedly almost hyperdefinable polygroup has a group
closely related to it, solving a fundamental problem of classical hypergroup theory.
There are two approaches to the problem, the first by Wagner and myself, the second
by Ben-Yaacov. We then demonstrate that no problems with almost definability arise
in an w-categorical theory where the group configuration gives an interpretable group
(action). This result is due to myself. Then, we find a vector space interpreted in an
one-based SU-rank 1 simple theory and argue that this partially solves the well-known
stable forking hypothesis, and also leads towards a Zil’ber trichotomy-type result for
simple theories. And, finally, we reconstruct the original group action and prove that
pseudolinearity implies one-basedness under the assumption of w-categoricity. These
last three applications are due to Wagner and myself.






CHAPTER 1

Preliminaries

This chapter is devoted to fixing notation and stating the facts necessary for the
rest of the thesis. Even though it is impossible to give a brief outline of the theory
of simplicity without repeating e.g. the entire thesis of Kim ([Ki]) and quite a few
research papers, or the first several chapters of Wagner’s book ([W]), in Section 1.2
we attempt to at least set out the facts we will need, assuming the reader is somewhat
familiar with basic first order model theory and stability. In Section 1.3 we study
combinatorial (pre)geometries which are important for developing geometric stability
(and later simplicity) theory. In Section 1.4 we expound the definitions and basic
notions of the classical theory of polygroups, since most mathematicians are not likely
to have encountered it.

1.1. Conventions and notation

Let T be a first order theory with infinite models in a language L, € the corre-
sponding monster model (highly saturated and strongly homogeneous model of the
theory) and €®? the associated enrichment by imaginaries.

Arbitrary small (we do not wish to be precise about the meaning of ‘small’ which
is after all a common practice in stability theory, mostly it will mean ‘of cardinality
less than |€]’) tuples of elements of €°4 will usually be denoted by a, b. .., and ‘small’
subsets of €*? will be denoted by A, B... The concatenation of tuples a and b is usually
written as ab (or occasionally a"b), and the union of sets A and B is sometimes written
simply as AB. The group of automorphisms of € fixing a set A is denoted by Aut4(€).
We write a =4 b to express that tp(a/A) = tp(b/A). Our assumptions on € allow us
to use principles of the kind: a =4 b if and only if there is an automorphism of €°4
fixing A and taking a to b. By dcl(A) we denote the set of all elements of €°d which
are fixed by any automorphism fixing A, and acl(A) is used for the set of elements of
¢®? which have only finitely many conjugates by automorphisms fixing A.

Furthermore, we write A ~ B for AN B # @, which becomes extremely useful
when dealing with multivalued algebraic objects. If R is an equivalence relation, we
write A =~p Bif A/RNB/R# 0, and A =p B if A/R = B/R as sets. The partitive
set of A is denoted by P(A), and the nonempty subsets of A by P*(A).

1.2. Simplicity

I leave to several futures (not to all) my garden of forking paths.
JORGE LUIS BORGES, The Garden of Forking Paths

The concept of forking was introduced by Shelah in early 1970s, and a smooth the-
ory was developed in a stable setting in [S], showing that it gives a good notion of
independence in the sense that if ¢p(a/B) does not fork over A (C B), then a satis-
fies no more dependency relations with elements of B than with elements of A. In
1977, Lascar and Poizat gave an alternative approach to forking [LPo] which replaced
Shelah’s ‘combinatorial’ definition, and resulted in popularization of forking, followed
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by books by Pillay [P1], Lascar [L4], and papers by Harnik and Harrington [HH| and
Makkai [MKk].

Then, in [S93], Shelah introduced a new class of theories generalizing stable the-
ories called simple, and noticed that the theory of forking might behave well in this
context, but he didn’t prove all the good properties of forking and was forced to intro-
duce the concept of weak dividing which allowed him to solve a combinatorial problem
he considered in that paper. However, work of Hrushovski in certain algebraic exam-
ples of simple theories [H3], Hrushovski and Pillay [HP1], [HP2] and Hrushovski and
Chatzidakis [ChH], showed that there is indeed a good notion of independence in all
cases, and an important result called the Independence Property was isolated.

The greatest contribution to the theory of forking in simple context came with
work of Kim and Pillay, when first Kim proved the symmetry of dividing in presence
of simplicity in [Ki], and then Kim and Pillay were able to prove all the relevant
good properties, including the above mentioned Independence Theorem, see [KP],
[KP1], [Kil]. Some of the important problems that have been investigated are the
equivalence of the notions of Lascar strong type and strong type, connected to the
problem of eliminating hyperimaginaries ([PP], [BPW], [LP], [P5]), and the existence
of canonical bases ([HKP]) in €.

A natural question, motivated by the lack of examples, posed by Hart and others,
was whether forking in simple theories (under certain reasonable assumptions like
elimination of hyperimaginaries) is in some way represented or determined by stable
formulae; this became known as the stable forking hypothesis. Needless to say, all the
known simple theories satisfy this in one way or another. Kim an Pillay offer a solution
to an interesting approximation to the problem, as well as a better understanding of
canonical bases in the supersimple case, see [KP2]. Also, we shall prove in Chapter 5
that certain structures have stable reducts ‘preserving’ forking, thus showing a very
strong form of stable forking.

We start with Shelah’s original definition of forking in terms of dividing in an
arbitrary theory.

Definition 1.2.1. - A formula ¢(z,b) divides over A, if there exist {b;|i < w}
and k < w such that for every i < w, tp(b;/A) = tp(b/A) and the set
{p(z,b;)|i < w} is k-contradictory.

- A (partial) type p divides over A if there is a formula ¢(z,b) with p - p(z,b)
and ¢(z,b) divides over A.

- A formula @(z,b) forks over A if there are n < w and {p;(z,b%)|i < n} such
that ¢(z,b) b V<, i(x,b") and for every i < n, ;(,b") divides over A.

- A (partial) type p forks over A if there exists a formula ¢(z,b) such that
pt ¢(z,b) and ¢(z,b) forks over A.

Definition 1.2.2. A theory T has the tree property, if there is a formula ¢(z,y) with
the tree property, i. e., there are k < w and {a,|n € “”w} such that

- for every € “w, the set {¢(z,an)|l < w} is consistent;
- for every n € “Zw, the set {¢(z,a,n)|n < w} is k-contradictory.

Shelah originally defined a theory to be simple, if it did not have the tree property.

Let us write A \LfC B (to be read ‘A is (forking-)independent from B over C’) if
for every finite a € A, tp(a/BC) does not fork over C. Kim has shown that in theories
without the tree property, forking coincides with dividing and it is possible to prove
properties listed in the definition below for this notion of independence. There are
many beautiful accounts of this, see [Ki|, [KP], [KP1], [P4], or [W]. We shall, however,
adopt an axiomatic approach to simple theories.



Definition 1.2.3. A theory is simple if it has an independence relation, i.e. a ternary
relation | on subsets of the monster model satisfying:

[Invariance] L is invariant under automorphisms of ¢;

[Finite Character] A |, B if and only if for all finitea € A, b€ B, a |, b;
[Transitivity] Al ,BCifandonlyif A | ,Band A | ,,C;
[Symmetry] Al Bifandonlyif B |, A4;

[Extension] for all A, B, E, there is A’ with A'=p A and A" | B;
[Local Character] for every finite a and all B, there is E C B with |E| < |T|

such that a |, B.
[Independence Theorem] if M isa model, ag =jps a1, a; | 2 bi for 2 < 2 and bo L P
there is a \LM biby with a =pzp, ao and a =, a1.
A theory is supersimple, if in ‘Local Character’ above, E can in fact be found
finite. The property replacing the Independence Theorem in the characterization of
stable theories is Stationarity: for a model M and a set B, if ag =js a1 and ag J/M B,

a1 \LMB’ then ag =pmB Q1.
A justification for such a definition can be found in [KP] (or [W], 2.6.1):

Theorem 1.2.4. Let T be simple in the sense of 1.2.3. Then T does not have the tree
property and | = | f.

One of the particularly useful properties of independence which can be derived
from the others, is invariance under algebraic closure, i.e. A | cB if and only if

acl(AC) \Lacl(C) acl(BC).

Definition 1.2.5. An infinite sequence (a; : i < @) is indiscernible over a set A (some-
times called A-indiscernible), if for every n < w, for every iy < --- < i,_1 < a and
Jo < v+ <jn—1 < o, tp(aig,---,ai,_; [A) = tp(ajy, ..., aj,_,/A).

Indiscernible sequences of arbitrary length can be found (and the existing ones can
be made longer) inside our model by the well-known combinatorial argument using
Ramsey’s theorem, giving this subject a combinatorial/set theoretic flavour. The
following lemma, however, a complete proof of which can be found in [GIL], can be
used in producing indiscernible sequences with special properties:

Lemma 1.2.6. For every set A and sequence {(a; : i < 3(2(|T|+|A|+,\))+) of tuples of length
A, there exists an A-indiscernible sequence (b, : n < w) such that for every n < w
there are iy < -+ < in—1 with tp(bo,-..,bn—1/A) = tp(aiy,.--,ai, ,/A).

Definition 1.2.7. We say that a set X is independent over A, if for every z € X,
z | ,X—{z}.

Using the properties of independence, it is easy to see that a sequence (a; : i < «)
is A-independent if and only if for each i < o, a; | ,{a; : j <1).

Definition 1.2.8. A sequence (a; : i < ) is a Morley sequence over A if it is both
A-indiscernible and A-independent.

The existence of Morley sequences is shown by refining a long independent se-
quence (which exists by Extension) using 1.2.6. These sequences play a crucial role in
Kim’s arguments.

Definition 1.2.9. Let A be a set. The group of Lascar strong automorphisms of €
over A is the subgroup of Aut4(€) generated by all automorphisms fixing some model
M D A, usually denoted LAut 4(€). Two tuples a and b have the same Lascar strong
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type over A, denoted a Eﬁ b, if they are conjugate by a Lascar strong automorphism
over A. The equality of Lascar strong types over A is clearly an equivalence relation,
the equivalence class of a denoted by lstp(a/A).

It can be shown that LAut4(€) is a normal subgroup of Aut 4(€), and that equality
of Lascar strong types over A is the finest bounded A-invariant equivalence relation,
see [W]. The notion of Lascar strong type was studied in [L3]. Lascar points out that
in stable theories, Istp(a/A) = Istp(b/A) if and only if stp(a/A) = stp(b/B). In any
case, it is clear that the role of strong types from stability is taken over by Lascar
strong types in simplicity since it is possible to prove the Independence Theorem for
Lascar strong types ([KP], see also [Sha] and [P4] for more elegant proofs):

Theorem 1.2.10. Let ag =4 ay, a; \|/Ab,- for i < 2 and by J,Abl; there is a\LAblbg
with a = ap, ao and a =4y, a1.

While canonical bases in stable theories exist in €*%, in simple theories it became
apparent ([HKP]) that we need to expand somewhat our universe.

Definition 1.2.11. Let z and y be a tuples of (possibly infinite, but small) order type
a, and let E(z,y) be a type-definable equivalence relation. We call E countable if the
partial type defining E is, and finitary if « is finite. A hyperimaginary element of
type E is just an equivalence class ag for some a of length a. A hyperimaginary is
countable or finitary if the corresponding relation is.

Lemma 1.2.12. In any complete theory, every type-definable equivalence relation is the
intersection of countable equivalence relations.

It should be noted that it is no longer possible to treat hyperimaginaries as el-
ements of the structure, as it was for imaginaries, see W], 3.1.6. In spite of that
fact, we denote by €€ the collection of all countable hyperimaginaries, and it is still
possible to make sense of (Lascar strong) types of hyperimaginaries and develop the
theory of independence satisfying the same axioms as the ones mentioned above; we
refer the reader to [W].

The closure operators from €°? extend naturally, since every automorphism of &
extends uniquely to P,

Definition 1.2.13. (1) We say that a € dcl(A) for hyperimaginary a and A, if a
is fixed by all the automorphisms fixing A. As an object, we define dcl(A)
to be the set of all countable hyperimaginaries which are fixed under all
A-automorphisms (the reason for allowing only countable hyperimaginaries
being our desire to keep dcl(A) small, which is not a serious restriction by
1.2.12).

(2) We say that a € bdd(A) if a has only boundedly many conjugates under A-
automorphisms. We let bdd(A) be the set of all countable hyperimaginaries
which are bounded over A.

The bounded closure takes on the role of algebraic closure in the hyperimaginary

universe; in particular, a | b if and only if bdd(ac) |, , d(c) bdd(bc). Furthermore, in
a simple theory, a =L b if and only if a =bdd(a) b-
Definition 1.2.14. The SU-rank, sometimes called the Lascar rank, is the least function
from the collection of all types (over parameters in the monster model) to OnU{oo},
such that for every «, SU(p) > «a + 1 if there is a forking extension ¢ of p with
SU(q) > a.

The properties of SU-rank can be summarised in ([W], Section 5.1):
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Proposition 1.2.15. SU-rank in a simple theory T has the following properties (where
@ denotes the Cantor commutative sum of ordinals):

(1) SU is automorphism invariant;

(2) q F p implies SU(q) < SU(p);

(3) SU(p) =0 if and only if p is bounded;

(4) if SU(p) < 0o and a < SU(p), then p has an extension q with SU(q) = «;

(5) if g - p and SU(q) < oo, then g is a nonforking extension of p if and only if
SU(q) = SU(p);

(6) T is supersimple if and only if SU(p) < oo for every (real) type p;

(7) SU(a/bA) + SU(b/A) < SU(ab/A) < SU(a/ba) ® SU(b/A);

(8) ifa | , b, then SU(ab/A) = SU(a/A) ® SU(b/A).

Let us consider now the definability of various objects discussed above. Regarding
definability of independence (see [W], 2.3.15, 3.2.9), we will use the following without
explicit mention. Sometimes it is possible to show definability even if p is not complete
([W], proof of 4.7.1).

Lemma 1.2.16. The condition 3z[z = p Az | ,b A ®(z,b)], for a complete (hyper-
imaginary) type p over A and any partial type ®(z,y), is type-definable.

For the definability of equality of Lascar strong types for hyperimaginaries, see
e.g. [W], 3.2.12:

Lemma 1.2.17. The relation LS(y, z;y',z'), true if x = x' and y =L /' is a hyperdefin-
able equivalence relation.

We say that a type p(z,a) (where a is a hyperimaginary element) is an amalgama-
tion base if (the hyperimaginary version of) the Independence Theorem holds over p,
i.e. any two nonforking extensions of p over a-independent sets can be amalgamated.
In particular, all Lascar strong types are amalgamation bases.

Definition 1.2.18. Let p be an amalgamation base.

- The amalgamation class of p is P, = {r|r is an amalgamation base and there
are amalgamation bases po, . . . , pp, such that p = pg, r = p,, and for every ¢ <
n, p; and p;+1 have a common nonforking extension}.

- We call a set B of (hyper)imaginaries a canonical base for p, if every auto-
morphism fixes P, setwise if and only if it fixes B pointwise.

It is clear that any two canonical bases for a fixed amalgamation base p are inter-
definable, so we sometimes abuse the language and speak about ‘the’ canonical base,
denoted by Cb(p). The following very important theorem is from [HKP)].

Theorem 1.2.19. In a simple theory, every (hyperimaginary) amalgamation base p over
A has a hyperimaginary canonical base Ag, i.e., Ay has the following properties:

(1) p does not fork over Ay.

(2) p la, Is an amalgamation base.

(3) If q is an amalgamation base over B such that p and q have a common
nonforking extension, then Ay C dcl(B).

(4) If q is over B and p and q have a common nonforking extension, then Ay C

bdd(B).

The proof goes roughly by defining a generically transitive relation on the conju-
gates of parameters of A, identifying A and A’ if p(z, A) and p(z, A’) have a common
nonforking extension. Then, the canonical base will be the class of A and it will be a
hyperimaginary by the following lemma ([W], 3.3.1).
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Lemma 1.2.20. Suppose Ry is type-definable reflexive symmetric relation on a partial
type m, generically transitive in the sense that whenever a,a’,a" = m with a’ | a"
and Ry(a,a’) and Ry(a,a”) hold, then Ry(a',a") holds. Then, the transitive closure
R of Ry equals the 2-step iteration of Ry and is thus a type-definable equivalence
relation. Furthermore, R(a,b) holds for some a,b |= = if and only if there is some
cEmwithe | bandc |, asuch that Ry(a,c) and Ro(c,b) hold.

Definition 1.2.21. A theory T is one-based, if a J/bdd(a) b for any a,b.

Nbdd (b)
A characterisation of one-based theories is given by ([W], 3.5.18):

Proposition 1.2.22. A theory is one-based if and only if every real type tp(a/A) is based
on bdd(a), i.e. Cb(a/A) € bdd(a).

We might ask ourselves whether hyperimaginaries are really neccessary in simple
theories, motivating the following definition. We say that a theory admits elimination
of hyperimaginaries if every hyperimaginary is interdefinable with a sequence of imag-
inary element. Now we can state all the known results connecting these concepts. In
[BPW], using a quite involved analysability argument, the authors managed to prove:

Theorem 1.2.23. Any supersimple theory admits elimination of hyperimaginaries.

Elimination of hyperimaginaries, being equivalent to the statement that on the set
of realizations of a fixed complete type, every type-definable equivalence relation is an
intersection of definable equivalence relations, was proved for stable theories already
in [PP]. Also, the equivalence of Lascar strong types and strong types was proved by
Buechler in [Bu] for a certain class of simple theories he called low.

Now, elimination of hyperimaginaries clearly implies the existence of canonical
bases in €°?, and the converse is also true for simple 7', as shown in [LP]. Also,
elimination of hyperimaginaries easily implies the equivalence of Lascar strong types
and strong types (since, of course, acl = bdd becomes true).

The definition of canonical bases as given above is not completely satisfactory,
especially when compared to the stable case, where canonical base of a stationary type
p(z) € S(A) in €°? is given by Cb(p) = dcl(U{"dpzp(z,y) ¢(z,y) € L(T)}), where
by dpzp(z,y) we denote the ¢-definition of p and by "X we denote the canonical
parameter or name of a definable set X.

In their efforts to understand the stable forking hypothesis, one form of which
could say that, in a simple theory, canonical bases of amalgamation bases can be
obtained as unions of names of definitions corresponding to stable formulae (similarly
as above in stable theories), Kim and Pillay proved a very close approximation to it
in [KP2].

Definition 1.2.24. (1) A complete type p over A is foreign to an A-invariant family
of partial types %, if for all @ |= p, B | 4 @, and realisations ¢ of possibly

forking extensions of types in ¥ over B, we always have a |, e
(2) A type is regular if it is unbounded and foreign to all its forking extensions.

Clearly, any type p with SU(p) = 1 is regular, since all its forking extensions are
bounded types.

Having fixed the terminology above, let us proceed by giving examples of simple
theories. Firstly, all the stable theories are simple, including e.g. the theory of the
trivial structure (with just equality), theory of vector spaces over division rings, alge-
braically closed fields, separably closed fields, etc. Below are some examples of simple
unstable theories.
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Example 1.2.25. The theory of the random graph, i. e., the theory of an irreflexive
symmetric binary operation such that for all n, for all distinct z1,...,Zn, Y1,---,Yn
there is z such that R(z,z;) for i € {1,...,n} and —R(z,y;) for all i € {1,...,n}.
This theory is w-categorical, with quantifier elimination, and it can be shown that any
complete 1-type does not divide over a finite set (in fact over the empty set if p is not
algebraic). Thus, by 1.2.3, this theory is simple (in fact supersimple of SU-rank 1).
It is not stable because the formula R(z,y) has the order property (it is even more
obvious that it has the independence property).

Example 1.2.26. Let V be an infinite vector space over a finite field, and (,) a non-
degenerate bilinear form on V. Then, (V,(,)) is unstable, because using a variant
of the Gramm-Schmidt procedure we can find an orthogonal basis and then easily
a formula having the independence property. It is supersimple of SU-rank 1 and
w-categorical.

Example 1.2.27. A field F is pseudofinite if F' is perfect, for every n > 1, F has a
unique algebraic extension of degree n and F is pseudo-algebraically closed (PAC),
i. e., every (absolutely irreducible) variety over F' has an F-rational point. It can be
shown that these properties are first-order axiomatizable; call the resulting theory Psf.
Psf was shown to be decidable by Ax, Duret [Du] proved it unstable, the structure of
definable sets was then studied in detail by Chatzidakis, Macintyre and van den Dries
in [ChMv]. In pseudofinite fields, dimension corresponds to SU-rank and is actually
the algebraic-geometrical dimension of the Zariski closure, and so forking corresponds
to algebraic independence. This was essentially known to Hrushovski in [H3], where
he proved the Independence Theorem for types over relatively algebraically closed
subfields (after adding a fixed suitable set of constants). From this, simplicity is clear
and it also follows that Istp = stp, canonical bases exist in the real world, which also
implies elimination of imaginaries.

Example 1.2.28. ACFA is the model companion of the theory of fields with a distin-
guished automorphism o (i.e. the theory of existentially closed fields with an automor-
phism). The existence of the model companion is due to van den Dries, Macintyre and
Wood ([Ma]), and a deep model-theoretic analysis of ACFA can be found in [ChH].

Let (F,0) = ACFA be saturated. For A C F, let (A) be the smallest subfield
of F closed under 0. Chatzidakis and Hrushovski introduce the following relation
of independence: B | , C if (AB) is algebraically independent from (AC) over (A),
and prove the Independence Theorem for types p(z) € S(A) where A equals the field
theoretic algebraic closure of (A4). It follows that ACFA is simple and this notion
of independence coincides with nonforking. It can also be seen that canonical bases
exist in the real world, which implies elimination of imaginaries. In fact, ACFA is
supersimple.

Example 1.2.29. Theories with ‘generic’ predicates and/or automorphisms, as studied
in [ChP]. We begin with a complete theory T with quantifier elimination in a language
L. Let P (resp. o) be a new predicate (resp. function) symbol. If 7' has a model
companion in L(P) (resp. L(o)), we call it Tp (resp. T,). It can be shown that if T
is simple, Tp is simple and if T' is stable, T, is simple.

Thus, the ACFA example above is a special case of this construction.

Example 1.2.30. A smoothly approximable structure, as introduced by Lachlan, is a
countable relational w-categorical structure M which is the union of an increasing
chain of finite homogeneous substructures of M (such a substructure is a subset A of
M such that for every finite tuples a,b € A, tp;s(a) = tp,s(b) if and only if there is
an automorphism of M fixing A setwise and taking a to b). By [CHL], w-categorical,
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w-stable structures are smoothly approximable. A monumental treatise of smoothly
approximable structures is currently in preparation by Hrushovski and Cherlin [CH].

A rank notion giving rise to a notion of independence can be defined for which the
Independence Theorem over algebraically closed sets can be proved and thus we get
simplicity.

It is a remarkable fact that in spite of all the work being done in simple theories, the
above list of examples remains exhaustive; there are (virtually) no more examples of
simple unstable theories, apart from Hrushovski’s amalgamation construction modified
for simple theories, see [H7], [E], [Pou] (where stable forking for structures obtained
from the amalgamation construction is shown), for general framework compare with
[W1]; there’s also an extensive work of Baldwin on the topic, for bibliography see
http://www.math.uic.edu/~jbaldwin/. In particular, we haven’t got any ‘bad’ examples
where Istp = stp, elimination of hyperimaginaries or stable forking property would
fail.

1.3. Combinatorial geometries

In this section we recall some definitions regarding combinatorial geometries needed
for understanding the concepts of geometric stability (and simplicity) theory. For more
details, we refer the reader to [P3].

Definition 1.3.1. A (combinatorial) pregeometry (or a matroid) is a pair (S, cl) consist-
ing of a set S and a closure operation cl : P(S) — P(S) such that:

(1) X Ccl(X);

(2) cl(cl(X)) = cl(X);

(3) if a € cl(Xb) — cl(X) then b € cl(Xa) (Steinitz exchange);

(4) if a € cl(X) then a € cl(Y) for some finite Y C X.
The pregeometry (5, cl) is a geometry, if c1(0) = 0 and cl({a}) = {a} for every a € S.
It is homogeneous if for every closed subset X of S and a,b € § — X, there is an
automorphism of S (a cl-preserving permutation of S) fixing X and taking a to b.

Remark 1.3.2.
(1) To any pregeometry (S, cl) we can associate a canonical geometry (S, cl'), where
S'={c({a}) :a €S —cl(B)}, and for X C S, cl'({cl({a}) : a € X}) = {cl({b}) : b €
cl(X)}.
(2) If (S, cl) is a pregeometry and A C S, we can localize at A to obtain (S, cla), where
cla(X) :=cl(AX) for X C S.
(3) We invoke the reader’s knowledge of linear algebra in order to remark that Steinitz
exchange axiom gives rise to notions of independence and dimension. Thus, if we are
in a pregeometry (S, cl), we say that a set A is independent over a set B, if for every
a € A, a ¢ cl((A— {a}) UB). We say that Ay C A is a basis for A over B, if
Ay is independent over B and A C cl(AypB). All bases for A over B will have the
same cardinality denoted dim(A/B). We say that A is independent from B over C
if dim(A'/CB) = dim(A’/C) for all finite A’ C A. This is easily shown to be a
symmetric relation.
Definition 1.3.3. Let (S, cl) be a pregeometry. It is said to be:

- trivial or degenerate, if for every X C S, cl(X) = [J{cl({a}) : a € X};

- modular, if for any closed sets X,Y C S, X is independent from Y over

X NY, or, equivalently, if for any finite-dimensional closed sets X and Y,
dim(X) + dim(Y) = dim(XY) + dim(X NY);
- locally modular, if some localization at a point is modular;
- projective, if it is non-trivial and modular;
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- locally finite, if cl(A) is finite for any finite A.

Example 1.3.4. Let S be a nonempty set and let cl(A) = A for any A C S. Then (S, cl)
is a trivial homogeneous (pre)geometry.

Example 1.3.5. Let F be a division ring and V be a x-dimensional vector space over
F. For ACV,let cl(A) :=spanp(A). Then (V,cl) is a homogeneous modular prege-
ometry and its associated geometry is called (x — 1)-dimensional projective geometry
over F. If we let affcl(A) be the smallest F-affine subspace of V' containing A, we
get a geometry (V,affcl) which is locally modular (localisation at 0 takes us into the
situation above) but not modular.

Example 1.3.6. If K is an algebraically closed field of infinite transcendence degree
over its prime subfield, and if we let cl(A) be the field-theoretic algebraic closure of A
in K, (K,cl) is a homogeneous geometry which is not locally modular.

The above are the classical examples of pregeometries which are stable. We can
add some random structure to make them simple unstable and less well-behaved, in
view of the examples given in the previous section; see also [Va] and [dPK]. Moreover,
we have the following.

Lemma 1.3.7. Let p be a (complete) regular type over A in a simple theory and let D
be the set of realisations of p. For B C D, we let cI(B) :={b€ D:b J , B}. Then,
(D,cl) is a pregeometry.

Proof. The only difficult part is showing that cl(cl(B)) C cl(B). If b € cl(cl(B)), then
b [ ,cl(B), so there is ¢ € cl(B) such that b/ , B¢ and for every i, ¢; / , B. If
b L , B, it follows by regularity that b | ,,cand b | , Bc, which is a contradiction.

O

Remark 1.3.8. In particular, if SU(p) = 1 in the above, the closure operation becomes
just cl(B) := DNacl(BA). Furthermore, if we denote by G(D) the set of all SU-rank
1 elements (over A) in D® := dcl(D U A) C €%, G(D) is a pregeometry with full
acl(- U A) (in €°9).

Proof. The first part is trivial. To see that G(D) is a pregeometry with cl(X) :=
acl(X A), the property cl(cl(B)) C cl(B) for every B follows from the fact that acl is
a closure operator, and Steinitz exchange follows from symmetry of forking since for
a € G(D), as SU(a/A) =1, a € cl(B) if and only ifa / , B. O

Definition 1.3.9. Let D be a set of realisations of some p over A with SU(p) = 1. A
plane curve in D is a Lascar strong type g = Istp(ab/A) with SU(q) = 1, and {a,b, A}
pairwise independent. We say that D is k-linear if there is a plane curve g with
SU(Cb(q)) = k and for every plane curve ¢', SU(Cb(q’)) < k. It is pseudolinear if it
is k-linear for some k. If the set is 1-linear, we just call it linear.

For quite some time it was unclear which is the ‘right’ definition of ‘local modu-
larity’ in simple theories. The following result from [dPK] resolves the ambiguity.

Theorem 1.3.10. The following statements are equivalent for a solution set D of an
SU-rank 1 Lascar strong type:

(1) D (D*?) is one-based;

D is linear;

D) is linear;
D) is modular;
D)4 is linear, for any (some) small A;
D) 4 is modular, for any (some) small A.

(2)

(3) G(
(4) G(
(5) G(
(6) G(
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1.4. Polygroups

The study of hypergroups and multivalued mathematical structures was initiated
in 1934 by Marty [Mar]|. It was noticed around that time that certain structures like
double coset spaces maintain some group theoretic behaviour. For more information
we refer the reader to [Co].

Definition 1.4.1. A hypergroup is a pair (H, *) consisting of a set H and a hyperoper-
ation * : H x H — P*(H) (with each pair of elements (a,b) we associate a nonempty
set a x b), such that

-foralla€e Hyax H =H xa = H;
- for all a,b,c € H, ax (b*c) = (a*b) *c (as sets).
A hypergroup (H, %) is a polygroup if additionally
- there is a scalar identity e € H, i. e. for every a € H, axe = e xa = {a};
- for each b € H there is a unique b~ € H such that for each a € H, a b~ ! =
{reH|acz*b}andb 'va={z € H|a €bxx}.

The way to interpret ‘(a * b) * ¢’ above, since a * b is a set, is to take | c o d * C.
We do not wish to consider hypergroups any further, because the requirement that
something be a hypergroup carries too little algebraic information: just consider the
trivial example of (A, ), where A # @ and a x b := {a,b} (although there are some
interesting hypergroups which are not polygroups).

Definition 1.4.2. A polyspace (P, X,*) consists of a polygroup (P, *), a set X, and a
multivalued map * : P x X — P*(X), such that:

(1) for every a,be P,z € X, (axb)*xz =ax (b*x);

(2) for every z € X, exz = {z};

(3) foreverya € P,z € X,y €axzifand only if z € a ! x y.

The next two examples are the principal examples of polygroups and have played
an important role in the development of the blowup construction from Chapter 4.

Example 1.4.3. Let G be a group, and H a (not necessarily normal) subgroup. The
double coset space G // H is a polygroup with the multioperation HaH * HbH :=
{HahbH : h € H}.

Example 1.4.4. A projective geometry is an incidence system (P, L, I) consisting of a
set of points P, a set of lines L and an incidence relation I C P x L satisfying the

following axioms:
(1) any line contains at least three

points;

(2) two distinct points a, b are con-
tained in a unique line denoted
by L(a,b);

(3) if a, b, ¢, d are distinct points and
L(a,b) intersects L(c,d), then
L(a,c) must intersect L(b,d)
(Pasch axiom), as shown in the .
figure. N

Let P’ := P U {e}, where e is not in P, and define:
-fora#b€ P,aob:= L(a,b) \ {a,b};
- for a € P, if any line contains exactly three points, put aca := {e}, otherwise
aoa:={a,e};
-fora€e P'yeoca=aoe:={a}.
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Then it is easily verified that (P’,0) is a polygroup; compare to 1.3.5 and 5.4.6.

Lemma 1.4.5. Let (P, *) be a polygroup. Then the following properties are equivalent
to associativity:

(1) (Second form of associativity). For every a,b,c € P and a' € axb, ¢ € bx*c,
ad*xc~axc.

(2) (Transposition). a * d = bx c if and only if ' *x a =~ ¢ x d~! (notice the
similarity to the Pasch axiom in 1.4.4).

Proof.

(1) Assume the usual associativity, and let @’ € a* b, ¢ € bxc. Then, a € @’ xb~! C

a % (cxd )= (a *xc)xc !, so we can find d € @’ x c such that a € d x ¢ .
Assume now the second form of associativity, and let d € (a * b) x c. There will be

a' €axbwithd €a' xc. We have b € a=! *a’, so there willbe d € bxcNa~! *d, i.e.

deax(bxc).

(2) is similar. O

Notice that the second form of associativity (for every a,b € P, z € X and every
a € axband 2’ € b*xz, a *z ~ ax*z') is equivalent to the associativity of the
multiaction in polyspaces as well.

Definition 1.4.6. An equivalence relation R on a hypergroup H is reqular on the right
if for every x,y € H, xRy implies that for every a € H, z xa =g y * a. It is strongly
reqular on the right if xRy implies that for all a, 2’ € zxa and y' € y x a, z'Ry’.
Analogously we define (strong) regularity on the left. An equivalence is (strongly)
regular if it is (strongly) regular both on the left and right.

It is an immediate consequence of the definition that if an equivalence relation R
is regular, then agr xbg C (a * b)g for all a,b € H.

Lemma 1.4.7. If (P, ) is a polygroup and R is regular, then (P/R, o) is a polygroup,
where ag o bg := (a xb)/R. If R happens to be strongly regular, the quotient will be
a group.

The product is clearly well-defined and all the properties of polygroups descend
to quotients.

Definition 1.4.8. If (P, *) is a polygroup, we call Q C P a subpolygroup if @ is itself a
polygroup with the same multioperation x*.

Remark 1.4.9. It should be remarked here that in model-theoretic language, the above
definition is a substructure in the ‘functional’ sense, since * on @ is the same as on P,
which is a much stronger condition than e.g. requiring that (Q,*[g) be a polygroup,
which would yield a substructure in a ‘relational’ sense.

This strong definition allows us to talk about the indez of () in P, as the number
of (left) cosets of @) covering P, since it is clear that different cosets are disjoint.

Definition 1.4.10. Let (P, %) be a polygroup. A subpolygroup N < P is called normal,
if for every a € P, a* N = N % a.

Lemma 1.4.11. Let us say that a and b are equivalent modulo N, if a * N = N % b.
This is a regular equivalence relation.

Proof. It is clearly reflexive and symmetric, by normality of N. For transitivity, let
a* N~Nxbandbx N~ Nxc. Thenbe N 1x(axN)N(N*c)* N !, soby the
transposition property, a * N * N = N * N x ¢, i.e. a* N = N * c. If we denote the
coset a x N by ap, it is clear that ay * by C (a * b) y, showing regularity. O
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Thus, we can quotient by normal subpolygroups.

Definition 1.4.12. We shall say that a map ¢ : P — P’ between two polygroups is
a homomorphism, if p(a * b) C p(a) * ¢(b) and p(a™!) = ¢(a)~! for all a,b € P.
Denoting a, := ¢~ !(¢(a)), we say that a homomorphism ¢ is of
-+ type 1, if 71 (p(a) * (b)) = (ap * by)y;
- type 2, if (axb), = ¢~ (p(a)* (b)) (which in turn implies a,*b, C (a*b),);
-+ type 3, if 0™ (p(a) * (b)) = ay, * by;
- type 4, if it is of type 2 and type 3.
It is an isomorphism, if it is bijective and ¢(a * b) = @(a) * ©(b).

Clearly, type j implies type ¢ for ¢ < j, and type 1 is equivalent to the induced
structure (P/¢, *,) being a polygroup, where a, *, b, := {c, : ¢ € ay, * b,}. Also,
for type 2, the corresponding equivalence relation (whose classes are a,) is regular.
We shall not need any further results about polygroups in chapters to follow, but
let us just mention a few results from [Ja], showing that the theory is reasonably
well-behaved.

Proposition 1.4.13. (1) (First isomorphism theorem). Let ¢ : P — P’ be a
surjective homomorphism of type 2 between polygroups P and P'. Then
P/ker(p) =2 P'.

(2) (Second isomorphism theorem). In a polygroup, suppose M is a subpoly-
group, and N normal subpolygroup. Then (M,N)/N = M/M N N, where
(M, N) is the subpolygroup generated by M U N.

(3) (Third isomorphism theorem). Suppose M < N are normal subpolygroups
of a polygroup P. Then P/N = (P/M)/(M/N).

(4) (Jordan-Hélder theorem). In a polygroup, let M < N be subpolygroups.
Suppose M = Ky C---C K, =Nand M =Ly C --- C L; = N, where each
K, is maximal proper normal subpolygroup in K, for i < k, and similarly
for L;. Then there is a bijective correspondence between {K;1/K; : i < k}
and {Lj;1/L; : j <1} such that the correspondents are isomorphic.
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CHAPTER 2

Germs and group configuration

The main tool for proving the group configuration theorem in the stable case is
the machinery of germs of definable functions. They can be developed as follows:

Definition 2.1. Let T be a stable theory.

(1) Let p and g be stationary types over (). We say that a strong type r(z,y)
over some f defines a function from p to ¢ if:
(a) r(z,y) = p(z) A a(y);
(b) if r(a,b), then a | f, b | f, b € dcl(fa) and in such a case we may
write b = f(a); if also a € dcl(fb), we say the function is invertible.

(2) Two functions 71,72 : p — ¢ (defined over fi, f3) are equivalent if there is
a |, fife such that fi(a) = f2(a), i.e. if r; and r9 have a common nonforking
extension, which is a definable equivalence relation, and clearly the class of
r, called the germ of r is in fact o := Cb(r). Furthermore, o again defines a
function p — ¢ since definability descends: if b € dcl(af) and o = Cb(ab/f),
it is still true that b € dcl(ao).

(3) To see that germs can be composed, let o : p — ¢ and 7 : ¢ — s be germs.
If we define 7 - 0 := Cb(ar(o(a))/oT) for some a | 7o, thisis a germ p — s
and the fact that tp(a7(o(a))/o7) is stationary implies 7 - o € dcl(70o).

What are the obstacles in the simple case? Firstly, definability does not descend
(the most we can conclude from b € dcl(af), if 0 = Cb(ab/f), is that b € acl(ao)):

Example 2.2. (Pillay) Suppose we have three sorts, called P, Q and R and let @ be
a 2-cover of P, i.e. there is a surjection 7w : Q — P with each fibre of size 2. Write
7~ (a) as {a1,as}. Let S be a random bipartite graph S between P and R and let
fsg: P x R — @ be functions such that if S(b,a), then f(b,a) = a1 and g(b,a) = ay;
otherwise, f(b,a) = ay and g(b,a) = a;. It can be shown that (P, @, R, f, g) is a simple
structure (notice we have ‘forgotten’ S). Consider now tp(aai/b), where e.g. S(b,a);
clearly f(b,a) = a; and a; € dcl(ab). But Cb(aa;/b) = 0, and obviously a; ¢ dcl(a).

Secondly, in the simple case, there is no hope for a property similar to (3) above,
see 2.3.4 which expresses this in a more specific language.

To overcome the first (in fact nonessential) difficulty, we consider multifunctions
instead of functions, and to deal with the second, we need to complete after each
composition.

Material in the first three sections is almost all from [BY], with a few modifications
and simplifications (e.g. we consider completions and reductions in any of the vari-
ables, thus replacing Ben-Yaacov’s ‘strongness on the left and right’). For Section 2.4,
I had a proof scheme in the simple case (in particular I had recognised the importance
of what in the present language is called ‘r with 7~! o 7 generic’) but was lacking the
right definition of germs. However, upon seeing Ben-Yaacov’s definition, I managed
to reprove the results of that section independently.

2.1. Partial generic multiactions

From now onwards, we shall be working in a simple theory.
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Definition 2.1.1. Let m;(z;), ¢ < « be partial types (in hyperimaginary sorts) over a
hyperimaginary parameter e. Their product, @), , mi({z; : i < «)) is the partial
type, if one exists, which is true of (a; : i < «) if and only if for every i, m(a;), and
(a; 1 < ) is independent over e.

Definition 2.1.2. A partial type 7 over e has definable independence if for every ' over
e, T Q. 7 exists.

The following is straightforward from the definition.

Proposition 2.1.3. (1) Every complete type has definable independence over its
domain.
(2) If m; has definable independence for all i < «, then )
definable independence.
(3) If m has definable independence and ©' - m, then 7' has it too.
(4) If 7 has definable independence over e, ~ is an e-hyperdefinable equivalence
relation, w is ~-invariant, then w/~ has definable independence over e.

ica Ti €xists and has

Definition 2.1.4. Let m(z,y, z) be a partial type in three hyperimaginary sorts over (.
We say that 7 defines a partial generic multiaction if:

(1) m I4, 7 [y and 7 [, have definable independence;

(2) m(x,y,z) implies that z, y, z are pairwise independent;

(3) for any f, a, there are at most boundedly many b such that 7(f,a,b), and in
that case we write b € f(a) or b = f(a).

We shall use the following notation: Fun(n) = 7 [, Arg(m) = 7 [, Val(7) =7 [,,
and if f € Fun(w), T'(f)(y,2) := 7(f,y,2) and usually we will identify f with its

graph, writing ‘zy |= f’ in place of ‘zy = T'(f)’.

In the above, it is enough to require that just Fun(7) and Arg(nr) have definable
independence, since for b € Val(w) and any e, b | e if and only if there are f € Fun(m)
and a € Arg(w) with fa | e.

Definition 2.1.5. Let 7 be a partial generic multiaction.

(1) 7 is invertible, if for every b there is at most boundedly many a’s with
7(f,a,b), i.e. if 771 is a generic action, where 7~!(f,b,a) if and only if
7(f,a,b);

(2) 7 is complete in z if for any f € Fun(w), T'(f) is a Lascar strong type (or an
amalgamation base) over f; similarly we define completeness in y or z; if we
just say ‘complete’ without mentioning a variable, it will mean ‘complete in
x’;

(3) m is reduced (in z) if it is complete (in z) and whenever there is a | fg
with f(a) = g(a), then f = g; it is reduced in y, if it is complete in y and
whenever there is f | aa’ with f(a) = f(a'), then a = @'; if 7 is invertible
and complete in z, we say it is reduced in z if whenever there are f | b,
and a such that b0’ € f(a), then b=1'.

(4) = is trivial, if w(a, b, c¢) implies that {a, b, c} is independent.

Definition 2.1.6. Two partial generic actions 7(z,y, 2) and 7'(z’,y, 2) are isomorphic
if there is a hyperdefinable bijection ¢ : Fun(r) — Fun(n') such that for every f €

Fun(r), T'(f) = T(e(f))-

Two constructions, yielding examples of complete and reduced multiactions, are
discussed in the next section.
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2.2. Completion and reduction

Definition 2.2.1. Let w(z,y,2) be a partial generic multiaction. Let z be the sort
(yz,z)/LS, where LS(yz,z,y'z',z') is the hyperdefinable equivalence relation from
1.2.17 saying that x = 2’ and yz =L ¢/2’. An element of this sort can be identified
with a pair fp,, where f is of the z sort, and p is a Lascar strong type over f in the yz
sort. Let 7((y'7,z)/LS,y,2) = n(z,y,2) ALS(yz, z,y'2', x), i.e. ©(fp,a,b) if and only
if b € f(a) and Istp(ab/f) = p. This m we shall call the completion of 7 (in z).

For f € Fun(w), we define f := {(ab, f)Ls : b € f(a)}, which is obviously a
bounded hyperdefinable set. In the same way, we can complete with respect to y and
z.

Proposition 2.2.2. (1) The completion of a partial generic multiaction (in any of
the variables) is a complete partial generic multiaction (in the respective
variable).

(2) If a multiaction (z,y,z) is complete in some variable, (e.g. =), the com-
pletion with respect to some other variable (say y) will still be complete in
z.

Proof. Part (1) is easy. For (2), let m(z,y,2) be complete in x, and let m, be the
completion with respect to y. We need to show that m, is still complete in z.
Suppose m,(f,ap,b) and m,(f,a,,b'); then (f,a,b), Istp(fb/a) = p, n(f,a’,V') and
Istp(fb'/a’) = p'. By assumption of completeness in z, let ¢ : ab EI)? a't!. But then,
by invariance of Lascar strong types, ¢(p) = p', so in fact ¢ : apb EJLc a;,b' . O

Definition 2.2.3. Let m(z,y,z) be a complete multiaction, f,g € Fun(w). Let f ~1 g
(or sometimes we write ~7) if there is a |, fg such that f(a) ~ g(a), and let ~ be
the transitive closure of ~;. It is clear by the definable independence of Fun(w) that
~1 is hyperdefinable, as well as reflexive and symmetric, and we will show below that
~ is also hyperdefinable. The class of a function f, denoted f, we call the germ of f,
and we define the reduction of , 7(Z,y, z) (where £ = z/~, the sort of germs) as the
partial type such that 7(f,a,b) if and only if there is f € f with 7(f,a,b). The set of
all germs of 7 is denoted Germ(7). In a similar way, we can reduce with respect to y
and z, by dividing by the corresponding relations ~¥, ~* (a ~Y @' if there is f | ad/,
f(a) = f(a'), b ~% b if there is f | bb' and a | f such that b,b' € f(a)).

Lemma 2.2.4. Relations ~¥, and ~{ are generically transitive. If w is invertible, so is
~% and we have that ~Y and ~* are such that any two elements which are related are
in fact interbounded. Thus, ~* and ~Y are hyperdefinable, and so is ~* when 7 is
invertible.

Proof. First of all, let us show that f ~7 ¢ if and only if I'(f) and I'(g) have a
common nonforking extension. Ifa | fg with b € f(a)Ng(a), then obviously ab | 19

and ab | f so ab realises a common nonforking extension of I'(f) and I'(g). The

converse is also straightforward.
Assume now f ~1 g, g ~1 h and f \|/gh. In other words, I'(f) and I'(g) have a

common nonforking extension, the same as I'(g) and I'(h). By completeness, I'(g) is
a Lascar strong type. Thus, since f \|/g h, we can apply the Independence Theorem

and get that I'(f) and I'(h) have a common nonforking extension and thus ~7 is

generically transitive.
To see the same for e.g. ~Y when 7 is complete in y, let a ~¥ o/, a ~¥ d”,
a' | a". Therewillbesome f | aa’andb, f’ | aa" and b’ such that b € f(a)Nf(a'),
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¥ € f'(a) N f'(a"). Then fb =L f'¥, fb L,d, f't L, a"and o' | a", so by the
Independence Theorem we may assume fb= f'b L, a'a" and thus o’ ~Y d”.

When 7 is invertible, if e.g. a ~Y d’, let f | aa’ and b such that b € f(a) N f(a').
Then in particular f | ', and, since o’ € bdd(fa) (o’ € f7(b), b € f(a)), we get
a' [ a' soad €bdd(a).

Finally, use 1.2.20, to get that ~ is hyperdefinable, for ? € {z,y, z}. O

Definition 2.2.5. In view of the above considerations, if 7 is not necessarily complete,
for f € Fun(w), we let f be the set of germs of all completions of I'(f) to a Lascar
strong type.

Remark 2.2.6. Tt is clear that for complete 7, f € Fun(w), f = Cb(T'(f)) by [HKP].

Proposition 2.2.7. If 7 is a complete partial generic multiaction (in xz), then T is a
reduced partial generic multiaction (and similarly in y and z). Moreover, if e.g. ™ was
complete in x and y, and we reduce with respect to x, the result is still complete in
y. If m is nontrivial, so is the completion.

Proof. Fun(7) has definable independence as a quotient of Fun(x). If 7( f, a,b), there
is f € f with 7(f,a,b), so {f,a,b} is pairwise independent and therefore {f,a,b} as
well. By the previous remark, ab \Lff, o) b\Laf af, and, as b € bdd(af), b\l/af b,

which implies b € bdd(af).
The ‘moreover’ part is easy. O

Definition 2.2.8. Two partial generic multiactions © and 7’ are equivalent, written
7 =~ 7', if their reductions are isomorphic.

2.3. Composing germs

Definition 2.3.1. Let n(u,z,y) and 7'(v,y, 2) be partial generic multiactions. Define
7' o w((v,u),z, z) to be the partial type such that 7’ o 7((g, ), a,¢) if:

(1) {g, f,a} is independent;

(2) c € go f(a), i.e. there is b € f(a) such that ¢ € g(b).

Proposition 2.3.2. (1) 7' o w always exists and it is a generic action;
2) (x'om) P =a"lon "t
Proof.

(1) Since Fun(w) and Fun(7') have definable independence, so does Fun(7) x Fun(n’),
and 7’ o exists. As Fun(n'on) F Fun(w) x Fun(n'), it also has definable independence.
It is easy to check the definable independence of Arg(n’ o w) and the boundedness
property. Suppose 7’ o w(f, g,a,c), so b € f(a), c € g(b), and {f,g,a} is independent.
In particular, a | fg, so a \Lfg, and, as b € bdd(fa), b\|/fg. Since b | f, we get
that b | fg. Continuing, b \Lg f, so, by ¢ € bdd(gb) and ¢ | g, we conclude ¢ |, fg,
as required.

(2) is trivial. O

Proposition 2.3.3. Let m and 7' be partial generic multiactions with Arg(w') = Val(r)
being Lascar strong types. Then, for any f € Fun(rn), g € Fun(s') with f | g,
go f € Fun(n' o ). If n’ is nontrivial, so is the composition.

Proof. Let f | g and let ab |= f, b'c |= g. By assumption, b =X ¥/, b | f, V' | g,
f L g, so by the Independence Theorem, we may assume b =¥ | fg. We may also
assume a \|-/bf g,and so g | abf and a | fg, so go f is defined on a. O

20



Remark 2.3.4. Tt is clear that in a general simple theory, a composition of two complete
multiactions need not be complete any more. Thus, if we want that the composition
of two germs lives on germs again, we need to observe all the possible completions
of the composition and their germs. This is how multivaluedness appears in simple
theories, in some sense a perfectly natural consequence of the crucial difference be-
tween simplicity and stability, simple theories not having stationarity which helps to
determine objects uniquely.

The following obvious but important lemmas allow us to formalise these consid-
erations.
Lemma 2.3.5. Let f € Fun(w), g € Fun(n'), f | g and h € Germ(rn' o 7). We say that

—

abc witness that h € ;)\f and write abc = h € go f ifa | fgh and ab |= f, bc |= g,

—

ac = h. With this definition, h € go f if and only if there are witnesses for it.
Lemma 2.3.6. Let ©' o w be defined, f € Germ(rw), g € Germ(n'), h € Germ(n' o ),

ANy
(1) If is invertible and f | h, then abc = h € go f if and only ifbac = g € h o fL.
(2) If n' is invertible and g | h, then abc |=h € ;)\f if and only ifach = f € g~ o h.

A desirable property of germs is that reduction and composition commute. Indeed,
we have:

Lemma 2.3.7. Let f € Fun(r), g € Fun(n’), f | ¢. Then m = U gof.
fef.geg
Proof. Let abc = h € m, let f := Cb(ab/f), g := Cb(bc/g). Then clearly h € go f.

—_——

On the other hand, let abc = h € go f We can rechoose them such that
abc \Lfghf’ or even abc \Lfg f, as h € bdd(fg)- Then, as f | g, f\Lfabcgh. If
a't! = f with f = Cb(a'b'/f), since a'b’ \Lff, ab J/fgh and f J/fgh, by the Inde-
pendence Theorem we may assume that ab = f and ab | 7 fgh. Moreover, we may
assume that C\Labf—gf and also abc \Lfgh g, yielding g \Lgabcfh. As above for f,
using the Independence Theorem, we may assume that bc |= g and bc \I/g fgh, but

—_—

then abc =h € go f. O
Corollary 2.3.8. 7' o = 7' o . Moreover, if m; = 7, then m o my = 7] o 7.

Definition 2.3.9. We say that the composition 7’ o 7 is generic if for any f € Germ(r),
g € Germ(7') with f | gand h€ go f, wehave h | f and h | g.

There is another potential obstacle to successfully defining a multioperation: a
composition of two, three or more germs might not be of the same sort. Luckily, the
following solves the problem.

Theorem 2.3.10. Let w(x,y, z) be an invertible partial generic multiaction, which is also
complete in vy, Arg(w) be a Lascar strong type and the composition 7! o w generic.
(0) If we denote @ = m~! o m, we have that 7 o & ~ #.
This yields a multioperation (with boundedly many values) * : P @ P — PP44(P),
for P = Germ, given by g x f = !;’\f; for f | g such that (P,x) is in fact a
hyperdefinable polygroup chunk, i.e.
(1) (Generic independence) for every f | g, ifh € f*g, thenh |, f and h | g;
(2) (Generic associativity) for {f,g,h} independent, (f *x g) x h = f x (g * h) (as
sets);
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(3) (Generic surjectivity) for any f | g, there is h such that g € f * h; in fact,
g€ fxhifandonly ifh € f~! xg.

Proof.
(0) Let abc = h € hy o hg, for hg | hi1 € Fun(w). There are fy,go € Fun(w) and

dp such that adob = hy € f(fl ogo and f1,91 € Fun(nm) such that bdic = hy €
gl_/lo\fl. By completeness in y, fody =F fidi. Also, fodo L, aho (by genericity
of 7Y o, ho | fo, 50 abdy |= go € foo ho, so in particular b | foho, and thus
fo \Lbho, so fody J/baho) and similarly fid; \Lbchl, and ahg \LbChl- Thus, by the
Independence Theorem, we can assume that fidi = fody =: fd and ahg | baf chy
and also agoho |, of cgihi. In particular, ago |, o 90> and by assumptions above,
ago L 4,0f.s0ago L, fg0,a90 L fg1,a L fgog1 and finallya | fgogihohih, so adc |=
h e gl_/lo\go.

Conversely, let adc = h € gl_/lo\go, 90,91 € Fun(w), go | g1. Since d € Val(w), we

can find f € Fun(r) and b with bd = f and we may assume that bf |  acgogih, so
ago \Lbdf cg1- NOW, f \L godi, a \L fgoa b \|/ .fgla SO we 1may take hO = Cb(ab/fQO) €

fffo\go and hy := Cb(bc/fg1) € g7 " o f, and we have that abc = h € hmo.

(1) follows from genericity of 7! o 7.

(2) Let I € (f *g) * h; so there are k, bed |= k € f*g and ab'd’ |=1 € k * h. Therefore,
we have bd =L V'd', bd L, fg, v'd L th, fg L, lh, so by the Independence Theorem
we may assume that b'd’" = bd |, fglh. Then, abc |F m := Cb(ac/gh) € g * h and
abd =1 € f+m.

(3) is easy by 2.3.6. O

Remark 2.3.11. In the previous theorem, requiring that 7 (z,y, z) be complete in y on
top of the assumption of genericity of 7! o 7 is not too strong, since if, for example,
we had 7 such that 7! o 7 is generic, and if my is the completion in y, then m = o m,
is also generic.

Proof. Let aybc, = h € gflo\f € Germ(n,! o 7). In particular, zyz | h' =

Cb(zz/fg) € g-lof € Germ(n ! o 7), so by the assumption, A’ | f and b’ | g.
However, as 24 € bdd(zz), 2z |, fg implies that 2,2, | ,, fg,s0 h € bdd(h’) and
thus b | f, h | g, as required. O

2.4. Group configuration

Definition 2.4.1. An algebraic quadrangle is a diagram (a, b, c,z,y, z), where:

- any pair and any non-collinear triple is independent;
- bdd(ab) = bdd(ac) = bdd(bc);

a z Yy
- bdd(za) = bdd(ya), Y
- bdd(zc) = bdd(zc),
- bdd(yb) = bdd(zb); 7

- b is interbounded with Cb(yz/b),
- a is interbounded with Cb(zy/a),
- ¢ is interbounded with Cb(zz/c). ¢

Clearly, replacing any element in an algebraic quadrangle by an interbounded
element gives another algebraic quadrangle, and we call such quadrangles algebraically
equivalent.
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Although it is possible, we do not attempt to find, given an algebraic quadrangle,
an equivalent one where each point is actually definable over the other two on the
same line, since this property is not preserved by reduction anyway, in view of 2.2.

Theorem 2.4.2. Let (a,b,c,z,y,z) be an algebraic quadrangle. We may assume (by
considering an equivalent quadrangle with y and z replaced by bdd(y) and bdd(z))
that y and z are boundedly closed. If we let w(€,7,() = Istp(byz), then 7 is invertible
partial generic multiaction, complete in n and (, with 7~! o 7 generic.

—

Proof. Let by | by = tp(b) and let tut; |= h € by o by. We need to show that h | b
and h |, be. Without loss of generality, by = b. We have btu |= m, bitiu =, so let ¢ €
LAuty such that tu — yz and bitiu — bjy1z. Then @(Istp(tt1/bb1)) = Istp(yy:/bb))
and it’s enough to show ¢(h) | b and ¢(h) | b.

So, it boils down to: starting with A = Cb(yy1/bb1) for some {b, b1, y} independent
with byy1z = byz, we need to show h | band h | b;.

Since biy1 =, by, b1y J/Z by and by J,z cx, the Independence Theorem implies
(as z = bdd(z) so in fact byy; =L by) there is byys L, bezy with boys =y, biyr (%)
and boys =g, by (**). Let ag such that agboczysz = abezyz. Let he := Cb(yy2/bbe);
then, if we manage to show he | b and hy | b we’ll be done by (*). We may also
assume boys | abezy (***). From here on, we proceed as in [P3], 5.4.7:

(). aagbby | y. From (***), (**) and b |, z, we get by | abcy, which, together
with y | abc gives y | abbsc, but ag € bdd(bec) so y | aazbbs.

(ii). y2 € bdd(aazy). This is easy, and so is the following claim:

(iii). Yo € bdd(bbgy).
From the above, forking calculus yields:

(iv). aaa | b. (v). aas | bo.

Now, by (i), (ii), (iii), Istp(yy2/aasbbs) does not fork over both aag, bby and thus
ha = Cb(yys/bbs) = Cb(yya/aaz) € bdd(aas).

By Claims (iv) and (v), it is independent from each b and be, as required.
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CHAPTER 3

Almost hyperimaginaries

Classes of finite tuples for definable equivalence relations in a monster model € of
a first order theory, called imaginaries, were organised into the multi-sorted first order
structure called €°? by Shelah, to allow a smoother development of stability theory.
This turned out particularly important in geometric stability theory, since canonical
bases of types exist in €°9,

On the other hand, the construction of canonical bases in simple theories [HKP]
seems to require quotienting by type-definable equivalence relations, which lead to
the introduction of hyperimaginaries as classes of (possibly infinite, but small) tuples
with respect to type-definable equivalence relations.

Alas, not even the hyperimaginary universe is general enough, since in our con-
struction of the group from the polygroup chunk, certain relations appear, which, at
the moment, we cannot guarantee to be type-definable. They belong, however, to a
very well behaved class of invariant relations and it is possible to develop some model
theory for quotients over such relations, called graded almost hyperimaginaries, as
shown in this chapter.

In sections 3.1 and 3.2 we define ultraimaginaries and graded almost hyperimag-
inaries and develop a satisfactory ‘forking calculus’, or a theory of independence for
them, while in Section 3.3, we study the gradedly almost hyperdefinable polygroups
and polyspaces in simple theories. The core relation needed to identify elements that
happen to be in the intersection of independent enough products is discussed in Sec-
tion 3.4, and we prove the Hrushovski-Weil style group (and space) chunk theorem
for the gradedly almost hyperdefinable case in Section 3.5. One might pose a ques-
tion whether it is necessary to consider graded almost hyperimaginaries, since if we
observe the hyperdefinable polygroup chunk obtained in 2.3.10, the core relation on
it has bounded classes (any two related elements are interbounded), and it would be
much easier to develop the theory for quotients over such equivalence relations. The
reason for choosing such generality is that in order to apply the group chunk theorem,
we might be forced to leave the realm of relations with bounded classes. An addi-
tional bonus for choosing to work in the category of gradedly almost hyperdefinable
groups in simple theories is that our subsequent results will show it ‘closed under
group configuration’.

The fact that ultraimaginaries might be of importance in the construction of a
group from the polygroup chunk and that the proof of the group chunk theorem will
go through was already noted in [To], where the group I obtained lived on ultraimag-
inaries, but the relation I was forced to use was not as well-behaved as the present
core relation and I lacked control over the dimension of such objects. A possibil-
ity of studying hyperdefinable polygroups and properties of generic elements in the
supersimple case was first recognised in [Tol], then improved by Ben-Yaacov to the
framework of gradedly almost hyperdefinable polygroups in general simple theories.
For the presentation here we adopt a different definition of stratified ranks and correct,
by distinguishing ‘full’ structures, some inaccuracies present in a working version of
Ben-Yaacov’s notes. The group chunk theorem in the simple (hyperdefinable) case is
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by Wagner, see [W], 4.7.1. For the gradedly almost hyperdefinable case, it is given in
[To] for ultraimaginaries, and Ben-Yaacov noted that that it preserves almost hyper-
definability. The full details presented here were not written down before. I have not
seen the space chunk theorem 3.5.3 appear anywhere in the literature.

It should be remarked here that the framework of graded almost hyperimaginaries
might turn out to be unnecessary generality because it is indeed our hope, since most
of the construction can be done hyperdefinably, that the relation in question can be
made type-definable as well. Nevertheless, at least for now, it is required.

3.1. Ultraimaginaries and almost-hyperimaginaries

To clarify some of the notation, if R is an equivalence relation, the R-class of a
is denoted by agr or a/R. When R is just reflexive and symmetric, ag := {z : zRa},
‘a €g A’ means there is @' € A with aRa', ‘A ~r B’ means there are a € A, b € B
with aRb, and ‘A =g B’ means that for every a € A there is b € B with aRb and vice
versa. If R; comes from some grading, then €;, ~; and =; will stand for €g,, ~g, and
=Rg,, respectively.

Definition 3.1.1. Let (I, <) be a directed partial order.

(1) An I-graded equivalence relation R is a direct limit of reflexive symmetric
type-definable relations R; such that:
(a) if i <j, then R; C Rj;
(b) for every 4, j, thereis k (i <k, j < k) such that zR;yR;z implies zR}z;

(2) An invariant equivalence relation R is almost type-definable if there is a reflex-
ive symmetric type-definable relation R’ finer than R such that each R-class
can be covered by boundedly many R'-classes. It is I-gradedly almost type-
definable if it is I-graded and almost type-definable.

(3) A class of an invariant equivalence relation is called an ultraimaginary. A
class of a (gradedly) almost type-definable relation is called a (graded) almost
hyperimaginary.

In the end, the objects we will be dealing with will live on graded almost hyper-
imaginaries. Qur approach is partly inspired by the development of hyperimaginaries
in [HKP].

Convention 3.1.2. From this point onwards, in order to save precious letters of the
alphabet, we abuse the notation somewhat, and write ap and br even when a and
b are not even of the same sort, since it will always be clear from the context which
relation is involved in ar and which in bg.

Furthermore, we might have defined (gradedly) almost hyperdefinable equivalence
relations on hyperimaginaries as the ones which can be covered by boundedly many
classes of hyperdefinable reflexive and symmetric relations, but this approach gives the
same objects as quotienting tuples of real elements by (gradedly) almost type-definable
equivalence relations from 3.1.1, so we use these terms interchangeably.

Definition 3.1.3. Two ultraimaginaries ag and br have the same type over a hyper-
imaginary c, denoted ar =, bg, if there are o' € ag and V' € bg such that o’ =, V.
They have the same Lascar strong type, denoted ap =~ bp if there are o’ € ap and
Y € bg with o' =L b

Lemma 3.1.4. For ultraimaginaries ar and br and a hyperimaginary c, the following
statements are equivalent:

(1) aR =¢ bR;
(2) there is an automorphism fixing ¢ and taking ap to bg;
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(3) for every a' € ar there is b’ € bgr with a’ =, b'.
Similarly, for Lascar strong types, the following are equivalent:

(1) ar Eg bR,‘

(2) agr and by are equivalent modulo any bounded c-invariant equivalence rela-

tion;

(3) for every a' € ag there is b' € bg witha' =L V.
Definition 3.1.5. An infinite sequence (a;g : 7 € I) of ultraimaginaries is indiscernible
over a hyperimaginary set A if there is an A-indiscernible sequence (c¢; : i € I) such
that ¢; € a;p.

3.2. Dividing

Definition 3.2.1. We say that two ultraimaginaries ar and by are independent over a
hyperimaginary c, if there are ' € ag and V' € bg such that ' | ¥'.

We exercise particular care not to consider independence over an ultraimaginary,
or between infinite tuples of ultraimaginaries, due to complications caused by the lack
of compactness. Naturally, a finite set of ultraimaginaries can be considered as a single
ultraimaginary by juxtaposing the equivalence relations.

Proposition 3.2.2. Independence (defined between finite tuples of ultraimaginaries over
a hyperimaginary set) has the following properties:
(1) (Bounded elements) If ag | br, and af € bdd(agc), then a, | br. Con-
versely, if R is graded and ag J/b, ag for every b € bg, then ag € bdd(bg).
(2) (Extension) for any ag, A, bg there is an a, =4 ag such that af | , br;
(3) (Symm.e{;r%') ar | ,br if and only if br | , ag; '
(4) (Transitivity) If ap J,AbRCR and bg \I/A cg then agbg \LACR. aR \I/A beg if
and only if ag J/A b and ag \LAb CR.
(5) (Local Character). For every agr and A, there is Ay C A with |Ag| < |T| such
that ar J/ Ao A.
(6) (Independence Theorem) If agp =5 a1y, aig L 4 bir fori <2, bor L 4 big,
then there is ag with arb;r =4 a;gbir and ar \LA borb1R-
Proof.
(1) We may assume a | b and let a' be any enumeration of representatives of all
agc-conjugates of al. We may assume @’ | b, which implies aa’ | b. Of course,
there will be 4 such that o’ Ra) and then af | b implies that af, | bg.
c c
For the converse, suppose ag is not bounded over bg; there will be a b-indiscernible
sequence aqb, such that a # 8 implies aq g and agp, are distinct, and b, Rb. Moreover,
by an automorphism, we may assume it is b’-indiscernible and agby = ab, for some
Y'Rb. The existence of such a sequence implies a” / , a' for any a'Ra and o"Ra:
suppose a'R;a, a” R;a, hence a”R;a’ for some j and let a}, be such that a,aq =y d'a;
it is still true that o # B implies a), is not R-related to a/’g. We may in fact assume
that al, is b’-indiscernible with af, = a'. Let k such that R;(z,y) AR;(z, z) = Ri(y, 2);
by indiscernibility of ag,, we can find 4(y, z) € Ry, such that a # 8 implies ~(aq,, aj).
By compactness, find a formula ¢(z,y) € R; such that ¢(z,y) Ap(z,z) = ¥(y, z). But
then p(z,d’) € tp(a”/b'a’), and ¢(z,a') 2-divides over V' since if e.g. ¢(c, ap) Ap(c, ap),
then 1 (ag,, aj), which is a contradiction.
(2), (3) and (5) are easy.
(4) If ar | , brer and bg |, , cr, we may assume that a | , be, and let b'Rb, ¢'Re
?Vitih b.' L ¢ We may assume b'c’ | ,, a,s0a | ,bbcc’ and we are done. The rest
is similar.
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(6) Let aog =% aigr, air L ,bir, bor L ,b1r. We may assume a9 =4 a1 and
bo | 4 b1 Let a;Ra; and b, Rb; such that a] | " bi. In fact, it is possible to choose b;
such that b, =7 b; (let bl realise the nonforking extension of Istp(b; /Ab.) to Ab}a}; then
b L 4 a; and by above a; | , bb). So, let a; be such that a;b; =} a;'b;. Now, since
a! =% al, alRa;, and ag =% a1, we have af , =4 a/ 5. Thus, there will be some a/’ Ra/
such that af’ =4 a}’ and we may assume a]" |, b; (let a" realise the nonforking ex-
tension of Istp(a;”’/Aa;) to Aaj'b;; then a;” | , , bi, but b; | , af implies b; | , ai"').

2

Now just apply the (hyperimaginary) Independence Theorem to this situation. O

Let us show now the special properties of independence for almost hyperimaginar-
ies.
Lemma 3.2.3. Let R be almost type-definable, witnessed by R', a,b,c € €. Then, if
ar b, there is o' R'a such that a’ | b.

Proof. Let a"Ra such that a” | b, and let a be such that a/R = (Ja;/R'. We may
assume & |, cb, which implies @ | b. Now, there is i such that a € a;/ R, so we
may take a’ := a;. O

As a corollary, we get the first order characterisation of independence for almost
hyperimaginaries:

Corollary 3.2.4. Let R be almost type-definable, witnessed by R'. Then ar \chR if
and only if there are a'R'a, b'R'b such that o' | b'.

Proof. If ag ch bgr, let bgRb such that ar \LC bg. Then, by the lemma, above, there is
a'R'a with a’ | _bo, and, in particular, @’ | bg. By the lemma again, there is b'R'b
with ' | . The converse is trivial. O

Remark 3.2.5. 1t is clear by the above corollary that we can make sense of independence
between infinite (small) tuples of almost hyperimaginaries and in that case we will have
the Finite Character of independence as well.

3.3. Almost hyperdefinable polygroups

Let us describe the category of gradedly almost hyperdefinable (multi)structures
and maps we shall be working in.

Definition 3.3.1. Assume S = Sy/R, S’ = Sj/R', where Sy and S{, are type-definable
sets, R, R' are I and J-graded almost type-definable relations and f(z,y) a type-
definable relation on Sy x Sj. Then f defines a gradedly almost type-definable partial
multimap So/R — Sy/R' if:
(1) there exists j € J such that for every a € S, f(a) can be covered by a
bounded set of R)-classes (i.e. the fact that f(a)/R is bounded is witnessed
by some R});
(2) for every R;, there is R} such that for every a € S, f(a/R;) C f(a)/R;-.

If in (1), at most a single R;-—class is needed, then f induces a partial map. If f(a) # ()
for every a € S, we say the (multi)map is total.

An equational multistructure is a structure in a language consisting of symbols for
multivalued functions (operations), ‘€’ and ‘=", where axioms are universal closures
of formulas of the form A, z, € 7, = \,, Yym € om, where 7, and oy, are terms.

A gradedly almost type definable equational (multi)structure S in some theory is
given as S = Sp/R, where Sy is a type-definable set, R is a gradedly almost hyper-
definable equivalence relation and each n-ary (multi)operation f on S is a gradedly
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definable (multi)map f : S§/R™ — So/R such that, for every axiom of the form

/\mkn € Tn(zgy---,ZN_1) = \/mlm € om(Toy -y TN_1),

n m
for every i € I there is j € I such that for every a;y/R, k < N, if the premise holds
up to R; (for every n, there are a; Riax, k < N with a} € 7,(ag,...,a)y_;)), one of

the conclusions holds up to R;.

Convention 3.3.2. In view of 3.1.2, even if our structure is multi-sorted, with sorts
S; = S? /R;, we shall denote all R;’s by the same letter, e.g. R, since knowing that
z € S? clearly indicates that zx should be read as xg,. For example, a gradedly
almost hyperdefinable polyspace (Py/R, X(/Q) will be denoted as (Py/R, Xo/R).

Let us explore the extent of the above definition on an example of a gradedly
almost definable polygroup. It is possible to formulate a similar statement at a ‘meta-
level’ for an arbitrary equational multistructure, but we wish to be extra precise here
for reasons that will emerge in 3.3.4.

Lemma 3.3.3. Let (P = Py/R,*) be a gradedly almost hyperdefinable polygroup.
Then, for every ¢ and j, there is k such that:
(1) ag; V' x, VYRb, {Rjc implies a € b * c.
(2) de;(dxb)«d, dRja, ¥R;b, ! Rjc implies d €, a * (b*c).
(3) c € a' *¥, a'Rja, ¥ R;jb implies b € a~! * ¢, and symmetrically for inverses
from the right.

Proof.

(1) If aR;a’ € V' * ¢, V'R;b, ¢ Rjc, by the fact that * induces a graded multimap,
a' €1 b* c for some j', and then a € b ¢ for some k.

(2) Assume the situation is as in the statement. Let dR;d’ € (a'xb')*c’, so the premise
of the axiom t € (z *y) * 2 — ¢ € T * (y * 2) is satisfied up to R,y 53, so there is [
such that the conclusion holds up to I, i.e. there are d’ R;d, a" Rja, b" R;b, ¢" Rjc with
d" € a"x(b"x"), so let €’ € b" " such that d”’ € a” x€e”. By (1), there will be I’ such
that e” Rye for some e € b+ ¢, and again by (1), there will be [ such that d” €;» a e,
or, in other words, dR;d" Ryra  (b* c).

(3) Follows in a similar fashion to (2), using that ~! induces a graded map. O

Remark 3.3.4. There is a complication which is not apparent when dealing with hy-
perdefinable objects, but presents itself here. It concerns the ‘right’ definition of a
graded map. The above definition is minimal such that the stratified ranks for grad-
edly almost hyperdefinable polygroups, to be defined below, have sensible properties
like e.g. translation invariance. However, when trying to do the same for gradedly
almost hyperdefinable polyspaces, this definition is not rich enough. Namely, the fol-
lowing lemma may not hold for polyspaces, and in case we want a uniform treatment
for polygroups and polyspaces, we have to require the conclusion of the lemma in the
definition of graded maps and call such maps and corresponding structures full.

In this exposition, we choose the minimal definition, as we have reservations about
the naturality of the alternative one, but then we have to prove the existence of generics
for polygroups using stratified ranks first, and then obtain the existence of generics
for polyspaces as a corollary.

Lemma 3.3.5. Let (Py/R,*) be a gradedly almost hyperdefinable polygroup and let
Ry be such that z € z vy impliesy €y ! * z and the same from the right. Then, for
every i there is j such that if ¢ €; a * b, there is ' Rja with ¢ € a’ *b.

Proof. Let cR;c € a*b. Then a €9 ¢ * b, and by (1) of the previous lemma,
a€jcxb7!, solet aR;ja’ € cxb~!, but then c € a’ xb. O
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Remark 3.3.6. I believe it should be possible to handle even more general objects, where
e.g. S is a direct limit of S;/R; for i € I, and a map f from S to §' = lim;e; S}/ R
consists of an increasing index map ¢ : I — J and type-definable maps f; : S; —
SZ (i) where we would have a similar requirement for uniformity of satisfaction of
axioms. This actually seems like a more natural setup from a classical mathematical
perspective, but we shall not need such generality in the applications that follow.

Definition 3.3.7. If (P, X) = (Py/R, Xo/R) is a gradedly almost hyperdefinable polyspace,
g € Py and 7 is a partial type extending Xy, we denote by g * w(z) the partial type
which is true of z if there is y |= 7 such that z € g * y. If Q is some type-definable
reflexive and symmetric relation, by (7/Q)(z) we denote the partial type satisfied by
z if there is y = 7 with zQy.

For the rest of this chapter we shall assume we are in a simple theory, even though
some of the definitions would make sense in an arbitrary theory as well.

Definition 3.3.8. Let (P,X) = (Py/R,X/R) be a gradedly almost hyperdefinable
polyspace in a simple theory. We say that xg is a generic element of X over a set A if
for every g \LA TR, for every y € g-x, yr | Ag. Since every polygroup acts on itself
by left and right translation, we can define both left and right generics in a polygroup.

In polygroups, the usual properties of generics follow. In particular, left and right
generics coincide and we just call them generics:

Lemma 3.3.9. Let P = Py/R be a gradedly almost hyperdefinable polygroup.
(1) Ifap is left generic in P, gg | ag, br € gr * ar, then by is left generic;
(2) if gg is left generic, then g;al is left generic;
(3) if gr is left generic, it is right generic, too.

Proof.

(1) is a particular case of 3.3.13.

(2) Let ggr be left generic, and let ¢’ | g realise tp(g). Let hg € g% * gr and we may
assume h | ¢'. Then g;ll € h;zl * g is generic by the previous claim.

(3) follows easily from (2). O

From now on, let Ry witness the almost type-definability of R, and let it be high
enough in the grading such that y € z * z~! implies = €¢ y * 2, and let R; be coarser
than RZ and such that z €y y * z and yRgy' imply = € ¢’ * 2.

Definition 3.3.10. Let D(-, ¢,€, A\, k) > a, for a formula ¢(z, z), €(z,y) € R, cardinal
A and k € w be the least ordinal-valued function on partial types 7 satisfying:
- D(m,p,€, A, k) > 0 if 7 is consistent;
- D(m, 9,6, A\, k) > o for @ limit, if D(7, p, e, A, k) > g for all 8 < o
- D(m, 0,6, A\, k) > a+ 1 if there is f € P, and (¢; : i < A\) such that
(1) {o(z,c;) : i < A} is e-k-inconsistent, i.e. A,;.; Jyle(z,y) A ¢(y, b;)] is not
realised for any I C w, |I| = k;
(2) for every i < X\, D((f *7)/Ri(z) Up(z,ci), 0,6, A\, k) >

Remark 3.3.11. For any ¢, € and k, the rank D(-, ¢, €, w, k) is closed and continuous:
D(m, p,€,w, k) = min{D (¢, p,€,w,k) : © - 9}. Furthermore, if n(z) = n(z, A) is a
partial type with parameters from A, then for every n < w there is a partial type
vT(X) (equivalent to the consistency of a certain tree) such that = v7(A’) if and
only if D(n(z, A"), p,€,w, k) > n. By compactness then, it is clear that if e.g. f and
¢i,1 < w witness that D(m, ¢, €,w, k) > n+ 1, we can in fact find d;,i < A for any A,

with the same property as ¢;, and thus it follows that D(m, ¢, €, A\, k) = D(m, p, €, w, k)
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for any A > w, so from now on we may omit A. Also, if ¢, ¢ and k are clear from the
context, we shall write D(7) for shorthand.

Proof. By induction on n we show that D(4, ¢,€,k) > n for all 9 provable from 7
implies D(m, p,€,k) > n, and there is a partial type 7 such that = v7(A4’) if and
only if D(n(z, A")) > n. Clearly this holds for n = 0, where vJ(X) is the partial type
Jdz 7(z, X). Assume the statement holds for n and D(¢)) > n+1 for all ¢)(z, A) implied
by w(x, A). Thus, for every such 1 there are b¥ and (bf : 1 < w) such that for all
i < w, D((b¥ *1p(z, A))/Ry U (p(:c,b;p)) > n and {y(z, b;p) : 1 < w} is e-k-inconsistent.
By inductive assumption there is vy (X, z,y) true of (A,b7, b;p) for every i < w such
that D((b' * 9(z, A')) /Ry U o(z,b")) > n if and only if = vy (A',8,b"). Clearly, if

W+, then vl W By compactness, there are (b', b} : i < w) such that fo(A, b',bl)
for all 4 implied by 7 and all i < w, and {¢(z,b}) : i < w} is e-k-inconsistent. By
induction hypothesis D((b' * w)/R1 U p(z,b})) > n for all i < w so D(x) > n + 1 by
definition. We may define v (X) as

k
e yici<w) | N Xz A N 32 N\ Jyle(z) Aoy, us)]
i<w, Y ICw,|I|=k s=1

O

Even though the definition of stratified ranks makes sense for arbitrary polyspaces,
the lemma below needs fullness.

Lemma 3.3.12. Stratified ranks on graded almost definable polygroups have the fol-
lowing properties:
(1) Ultrametric Property. If w &=\, g m;, for m, m; type-definable, then D(mr) <
sup{D(m;) : i < B}.
(2) Translation Invariance. D(7) = D((g * 7)/R;) for every g € P and R;.
(3) Finiteness. For every m, ¢, €, k, D(7, ¢, €, k) < w.
(4) Witnessing Dividing. Suppose g D p are complete types over B DO A. Then
g/ Ry doesn’t divide over A if and only if D(p, ¢, €, k) = D(q, , €, k), for every
@, € and k.

Proof.

(1) Let | 8] < A. We proceed by induction. Assume D(7) > o+ 1; let g and ¢;,i < A
be such that for every i, D((g * 7)/R1(z) U ¢(z,¢;)) > a and {p(z,c¢;) : i < A} is
e-k-contradictory. Then, since (g * m)/R1(z) A p(z,¢i) =V, 5(9 * 7)) /B A (2, i),
by induction hypothesis, there is j = j(i) such that D((g * 7;)/R1 U ¢(z,¢;)) > a. By
the pigeonhole principle applied to i — j(i), there is jo <  such that for A-many c¢;’s,
D((g * mjy)/R1 U p(x,¢;)) > a and thus D(mj;) > o + 1.

(2) Suppose D((g * 7)/R;) > o+ 1; there are f € P and ¢; : @ < A such that for every
i <X, D((f*(g*m)/R;)/R1Up(z,c;)) > aand ¢(z, ¢;) is e-k-inconsistent. Consider an
z realising the above type; there are z |= 7, yR;y’' € g+ 2, x €1 f*y. This means that
z €5 fxy C f*(g*2z) for some higher j', and in fact z € (f * g) * z for some higher
k. By 3.3.5, there is h'R;f * g such that z €9 b’ * z. Let {hg : 8 < 1} be boundedly
many elements such that (fx*g)/R; C U,3<u hg/Ry. Thus, there must be a 8 such that
hRohg. By assumption on R1, as x €g h * z, we get that €1 hg * z. In other words,
(f*(g*m)/R;)/Ri + Vg, (hg * m) /Ry, so, by the ultrametric property, there is hg
such that D((hg *7)/R1 U ¢(z,¢;)) > a. However, we might have started with X > p,
so even though the choice of hg depends on ¢;, we can apply the pigeonhole principle
to get a fixed h such that there are still A many 4’s with D((h *7)/R1 U p(z,¢)) > a,
witnessing D(7) > a + 1.
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(3) If some D(m, ¢, €, k) > w, the formula ¢ would have the tree property, contradicting
simplicity.

(4) Suppose q/R; divides over A; let o(z,by) € ¢/R1 be a dividing formula, and let
(bi : i < w) be an indiscernible sequence in tp(by/A) such that {po(z,b;) : i < w}
is inconsistent. But then, there will be an € € Ry and ¢ € ¢ such that Jy e(z,y) A
©(y,bo) F wo(x,bp). Then, as ¢ - p U p(x,by), we have that for every i < w, D(p U
o(z,b;)) > D(q), and as {p(z,b;) : i < w} are e-k-inconsistent, we have that D(p) >
D(q) + 1.

For the converse, let us show by induction on n that ifar | , B and D(a/A) > n,
then D(a/B) > n. This is clear for n = 0, so suppose D(a/A) > n + 1. There are
b and (b; : ¢ < w) such that for every i < w, D((b * tp(a/A))/R1 A o(z,b;)) > n
and {p(z,b;) : i < w} is e-k-contradictory. By continuity of ranks, we can extend
(b * tp(a/A))/R1 A ¢(z,b;) to a complete type p over Abby of the same rank and we
may assume that some ¢ € b * a realises it. Let a'Rypa with o’ | A B and we may
assume bby | , , B, implying B | , a’bby and cr | Abbo B. By induction hypothesis,
D(c/Abby) > n implies D(c/Bbbg) > n. As by | ,, B, we may assume that (b; : i < w)
is indiscernible over Bb, so (b; : i < w) witness that D(¢/Bb) > n + 1. Thus, by

translation invariance, D(a/B) > D(a/Bb) = D(¢/Bb) > n + 1. O
Proposition 3.3.13. (1) There exist generic elements in gradedly almost hyperde-
finable polygroups.

(2) If (P,X) = (Po/R,X0/R) is a gradedly almost hyperdefinable polyspace
zr € X is generic if and only if there is a generic ggr € P and zor € X with
9gr | xog such that g € gg * Tog.

(3) Generic elements exist in every orbit of a gradedly almost hyperdefinable
polyspace.

Proof.

(1) Let (Py/R,*) be the polygroup in question. Enumerate all the possible triplets
(p,€,k) and choose a type p F z € Py with maximal D(-, ¢, €, k)-rank in the lexi-
cographic order with respect to the above enumeration. Let a = p and let g | ag,
b € g*a. Then, we know that, since ag | ¢ (implying tp(a/g)/R1 does not divide over
0), D(a, ¢, €,k) =D(a/g,p,¢,k) = D(b/g,p,¢,k) < D(b,p,¢, k). By the choice of a, we
have equality and br | g (the equality D(a/g) = D(b/g) is obtained as follows: from
br € gr+ar we can deduce that b €; g*a for some R;, so tp(b/g) - (g+tp(a/g))/R; and
by translation invariance we get that D(b/g) < D(a/g); similarly, from ag € g5" * b,
we get D(a/g) < D(b/g)).

(2) Let 2o € X, gr € P generic with gr |, zog and let zr € gg * Tog. Without loss
of generality, g | zo. Take any f | zgr. We may assume that f | z and furthermore
that gzo | f, implying gzoz | f. Let yr € frxzr C fr*(9r*T0r) = (fR*9R)*T0R,
so there is hg € fr* gr With yg € hg * xog. As gr is generic, hg |, f. Now, we have
f L gzo, which implies z \Lfg and zg \thR (since hg € bdd(fg)), so zof | hg,

f L zohgr and subsequently, as yg € bdd(zohr), we get the required f | yg.
On the other hand, if zg € X is generic, find a generic ggr € G such that z | ¢
and let zg € g ! * z. Then gr | zog by genericity of zg.

(3) is a trivial corollary of (1) and (2). O

Definition 3.3.14. Let Sy be a type-definable set, R a gradedly almost type-definable
equivalence relation on Sy, * : So/R ® Sy/R — Sp/R a gradedly type-definable mul-
timap, and a gradedly defined map ~! : S;/R — Sy/R such that whenever ar | bg,
a * b is defined (in particular, we require that for every 4, there is j such that if
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ar | br, a/R; *b/R; C (a *b)/R;). We say that S = (So/R, *) is a gradedly almost
hyperdefinable polygroup chunk, if there is some Ry in the grading of R such that:
(1) Generic independence: If a | b, ¢ € a b, then cg | a and cg | b.
(2) Generic associativity: If {a,b, c} is independent, (a % b) x ¢ =¢ a * (b * c).
(3) Generic inverse: Ifbg | cgand a € bxc, then b €g axc ™!, and, if b € axc 1,
then a € b * ¢; similarly from the left.

If furthermore X /R is a gradedly almost hyperdefinable set, and * : So/R® Xo/R —
Xo/R a gradedly type-definable multimap (i.e. for every ar | =g, a * x is defined),
we say that (S, X, *) = (So/R, Xo/R, *) forms a polyspace chunk, if the Ry from above
can be coarsened such that:

(') Ifa | =z, y € axb, then yg | a.
(2°) If {a,b,z} is independent, (a *b) x x =¢ a * (b * z).
(3°) Ifag | zr and y € a * z, then z €g a~ L * y.

Proposition 3.3.15. Let P = Py/R be a gradedly almost hyperdefinable (poly)group.
Then the generic elements of P form a gradedly almost hyperdefinable (poly)group
chunk.

Proof. By continuity of ranks, it follows that an element ap is generic if and only if
D(a,yp,e,k) = D(Py, ¢, €, k) for all ¢, € and k, which is a type-definable condition Sy,
and Sy/R is the required almost hyperdefinable (poly)group chunk. O

A dual problem is whether from a (poly)group chunk we can reconstruct a (poly)group.
An answer in the case of a group chunk is provided by 3.5.1. As for polygroup chunks,
in Chapter 4 we will present a construction of a gradedly almost hyperdefinable group
chunk, given a gradedly almost hyperdefinable polygroup chunk, coreless in the sense
below.

3.4. The core relation

Definition 3.4.1. Let S = Sp/R be an I-gradedly almost hyperdefinable polygroup
chunk.

(1) For a,a’ € Sy we say that a ~;; o' if there is g | agraly such that a * z =;
a' xx. Let ~;, be the n-th iterate of ~;1, and let ~ be the I x w-graded direct
limit of those, called the core relation.

(2) S is coreless if ~ is the same as R, i.e. for every (i,n) € I X w, there is j such
that R; is coarser than ~j;,.

Lemma 3.4.2. (1) For every i there is j such that if a ~;; o', there is z | aad’
with a xz ~; a' * .

(2) ~ is an I x w-graded almost type-definable equivalence relation on P such
that every ~-class contains boundedly many R-classes (i.e. if ap ~ a',, then
bdd(ar) = bdd(ay) as almost-hyperimaginaries).

(3) For every i there is j such that a ~;1 o if and only if there are ¢,b, cg | ara’y
with a,a’ €; b* c (and the other way around).

(4) ~ is (gradedly and generically) regular: for every (i,n) € I X w there is
(4,m) € I X w such that whenever a ~;, a' and bg | ar (and thus also
br | a'p), for every c € ax b there is ¢ € a' * b with ¢ ~j, c'.

(5) By regularity, P/~ is again a graded almost hyperdefinable polygroup chunk
and it is coreless.

Proof.
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(1) Let zr | araly such that a x z =; a’ * . There are zgRoz, agRoa, ayRoa’ such
that o | aoay. By gradedness of *, ag * g = af * zo for some k and we may assume
that z \Lao% aa’. Thus, zo | aa’ and by gradedness of * again, a * zg =; a’ * z¢ for
some j.
(2) If a ~;1 d', then there is j and = | aa’ with a * z ~; ' * . Then, z | ', and
since a € bdd(za) (al € (ap*zR)*z5'), we get that a’y L, 9% Of course, we could
have done the same for any agRa, since if e.g. agR;a ~;1 @', then clearly ag ~p1 o for
some k. Therefore, a; € bdd(ag).

Thus, if Ry witnesses the almost type-definability of R, ~g; will witness the almost
type-definability of ~.
(3) Let zg | ara’y with a * = =; o’ * z, and let y be in this intersection (up to R;).
Then, there is j such that a,a’ €; y * z~!, and these are as required.
(4) Suppose a ~;1 o', and let (by previous claims) z,y and i’ be such that z | aa’ and
a,a’ €y zxy. We may additionally choose zy |, b. If ¢ € a b, there is i" such that
c€m (x*xy)*b=¢ z*(y+*b), so there will be a z € yxb with ¢ €;» z* z. On the other
hand, by associativity (from z  (y * b) =¢ (z * y) * b), we get that z * z = a' b, so
pick ¢’ inside up to Rj. Thus, we may assume (by coarsening R;/) that c,c’ € z * 2,
and since z | aa’b, we get that ¢ ~j; ¢ for some higher j.
(5) To see corelessness, let g~ | a~b~ such that a,b €;, g * h. Let a’ ~j, a and
b ~jn b with a’,b" € g x h. Then, since each ~-class is covered by boundedly many
R-classes, gr | apbly, so we have a ~j, a’ ~p1 b’ ~j, band a ~jop11 b. O

It is possible to define a similar relation on a gradedly almost hyperdefinable
polygroup, and it will have all the analogous properties to the above, and even more:
the class of the scalar identity element will form a subpolygroup, and the quotient by
the relation will be the quotient by the subpolygroup. We skip the details as we will
not need it later. The definition is as follows.

Definition 3.4.3. Let P = Py/R be an I-graded almost hyperdefinable polygroup. We
will say a ~;1 o' if there is a generic element £z with zg | aga’p such that axz ~; a'*z.
Let ~y;, be the n-closure of ~;1, and let ~ be the direct limit of all of those.

3.5. Group chunk theorem

Theorem 3.5.1. Let P = (Py/R, ) be a graded almost hyperdefinable group chunk in
a simple theory. There is a gradedly almost hyperdefinable group G and a graded
bijection o between P and the set of generics of G, such that generically * is mapped
to the group operation. Moreover, the construction of G = P? has the following
universal property: for any polygroup Z and a graded homomorphism ¢ : P — Z into
generics of Z (i.e. p(a *b) € p(a) * (b) for a | b, and p(a™') = p(a)~!), there is a
unique graded ¢? : G — Z such that ¢ = ¢? o 0. In particular, such G is unique up
to a gradedly almost type-definable isomorphism.

P2
\\
o \\ (P2
\\
\
N
P o Z

Proof. It was already noted in [To] that the proof of the group chunk theorem by
Wagner ([W], 4.7.1) is quite robust and can be done at the level of ultraimaginaries
however bad the relation we are quotienting is. The point is that the independence
conditions can be restricted to representatives.
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In what follows, we assume that Ry is coarse enough to witness the graded almost
hyperdefinability of R and to ‘absorb’ all the algebraic operations (e.g. if z € z * y,
then z € z * y~!). In particular, if z | yA, we can find z € z * y with z | yA
(z | yA implies z \|/y A, so for 2’ € x xy, 2 € bdd(zy) and 25 | y yield 25 | yA
and there is zRyz’ with z | ya and z € z x y).

Let us write (a,b)Q;(a’,b") for pairs from Py if there are z,y € Py such that
z | abd't';y | abd'b’ and a x x =; o' xy, bxx ~; b xy. Let @ be the direct limit of
Qi and let [a,b] := (a,b)/Q.

Claim: @ is gradedly almost type-definable equivalence relation.

Clearly @;’s are reflexive and symmetric type-definable relations. For almost type-
definability, let Ry witness the almost type-definability of R. Fix some (a,b) and
suppose e.g. (a’, V') € (a,b)/Q;; there are x and y, = | aba't', y | aba'bl with a*z =;
a'*yand b* z ~; b’ xy. Let a/R C U, aa/Ro and b/R C J, ., ba/Ro (for small
p) and without loss of generality zy | . ., ab.

By 3.3.5, we can find a”Rja and b"R;b with a" sz =1 o’ *y and 0" vz =1 V' *x y
for some fixed R;. There will be a, with a”Rya, and bg with b" Rybg, so for a fixed
2 € I, we will have a’ *y =g aq *z, b/ *y =9 bg*z, and thus (a’,b")Q2(a;, by), meaning
that (a,b)/Q can be covered by the bounded union {J,, 5, (@a,b5)/Q2.

Let us show the graded transitivity. Choose z,y witnessing (a,b)Q;(a’,b’) with
Y L puy @ 0", and o', y" witnessing (a,b)Q;(a",b") with 2'y" | , ., a'b'zy. In par-
ticular, this implies that each of x,¥,z’,y’ is independent of aba’b'a”’b". Take u € Py
independent of everything. Then, for some ¢ €y z *u, t |, aba'b'a"b"zz'yy’ by generic
independence. By generic surjectivity, let u' € ' '+t withw' | aba'd'a’"b"z'y’. Then,
by generic associativity (as all the triples below are independent):

a<p

a *(y*u) = (a' *y)*umy (0 *x)*u=gax(zxu)
= a*(.’[;’*u') =~ (a*.r')*u' Rt (a"*y')*u' = a”*(y'*u'),

for some constant Ry, i depending only on ¢ and j' depending on j, and thus a’ *
(y x u) =~ a” % (y * u') for some k depending only on i and j. Similarly we get
b * (y *u) = 0" * (v xu'). Now, since x defines a (single-valued) product, we may
assume that y * u is covered by a single Ry-class, so we only may need to coarsen k a
little to choose v €¢ y * u and v' €y ¢ * u' with a’ x v =~} a" * v and b’ * v = V" x ',
showing (a’,b")Qx(a”,b").
Claim: if a * z =; b x = for some z with z | a, z | b, there is j such that for every y
withy | a,y | b,axy=;bxuy.

Suppose we have z with z | ar and z | bz. Let ¢ €9 27! x z, with ¢ | z. We
may assume c J/wz ab, which will imply a | czz and b | czz and {a,c,z}, {b,c,x}
will be independent triples. Thus,

axzmrax*(zxc) g (axz)xxry (bxz)xcxgbx(x*c)~ bz,

for some constant R;, and ' depending only on i, so there will be k depending only
on i such that a * z =y b * z. Now, if we let z | abzy, by above we will have that
a* z Xy bx* z, but, since also y | az and y | bz, by the proof above, there will be j
such that a xy ~; b x y.
Claim: If z is such that = | ab, then for every 7, there is j such that if o’ €; a * z,
b € bxz, (a,0)Q;(d',b). If ¢ | ab, there is k and there are d,d' with d | ab and
d" | ab such that (a,b)Qx(c,d) and (a,b)Qr(d', c).

Let y | abz. As d, € bdd(az) and by € bdd(bz), there will be a” Rya’ and b" Ry
such that y | aba”b"z. Let z €y z*y such that z | aba”b". Then, axz =1 ax(z*y) =
(axz)*y ~pa’ *syand bxz =1 bx (zxy) ~ (b*xxz) *xy =y b" xy for some Ry and
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i’ depending only on 7. We may assume yz | , .., a'b',soy | aba't!, z | aba't’ and
ax*z =y o' «xy ~ a' xy by gradedness, as a'Roa”, so a * z =; b' *x y and similarly
axz ~; b *y for some j depending only on i, showing (a,b)Q;(a’,t’).

If ¢ | ab, let z €y a ! * ¢ with = | ab. Then, ¢ €; a * = for some R;, pick any
d €1 b* z and by the previous paragraph there is Ry, such that (¢, d)Qg(a,b).

Now, for (ag,by) and (b1,cp), we can pick b | agbobicy so by the previous claim
there will be (a,b)Qk(ag,bo) and (b,c)Qr(b1,co). Thus, it makes sense to define
(@0, bo) o (b1,¢c0) = {(a,c) : 3b, (a,b)Qx(ao,bo) A (b,c)Qk(b1,co)}, this relation clearly
being type-definable.

Claim: The relation o gradedly defines a single-valued operation on R-classes.

To see this, it is enough to show that for every i, there is j such that if (a’, ") Q;(a, b)
and (V',)Q;(b,c), then (d’,d)Qj(a,c). Let x | aba't’ and y | aba't’ with a x z =;
a xy, bxx ;b xy, 2’ | beb'd and y' | beb'd with bxx =; b xy, cxz =; ' xy.
We may choose z'y’ |, ., , aa'zy, so in particular 2’ | z. By generic surjectivity, let
z €9 vt x 2’ with z | aba't'ry (since ' | abca't'c'zy), and the line below makes
sense (where 1 € I depends only on 0):

Vxy mibra’ mpbx(zx2) g (bxz)xzmy (B xy)x2z =00 * (y* 2).

Let t €9 y* z with ¢ | y (implying ¢ | b') such that b’ xy’ = b’ xt, k depending only
oni. Asb | y and ¥ | t, by one of the previous claims we get that there is &’ such
that for every uw withu | 9/, u | ¢, u*y =~ u*t. In particular,

a*xy mpadstmid s (yrz)mo(ad *y)xz~p (a*xx)*z2~0ax* (z*2) = axx.

Thus, for some j depending only on i, a’ * y' =; a * 2, and similarly ¢ * y =; ¢ x 2,
so (d/,c")Qj(a,c).
Claim: There is j such that for every a, b, (a,a)Q;(b,b).

Let ¢ | ab, z €ga ! xcand y €y b ! * ¢ such that = | ab and y | ab. By the
previous claim, there is some i with (a,a)Q;(c,¢)Qi(b,b) so (a,a)Q;(b,b) for some
fixed j.

Clearly, [a,a] will act as a unit for multiplication, and any class [a, b] has an inverse
[b, a].

Claim: Multiplication is (gradedly) associative, i.e. there is k such that ((a, b)o(a’,b'))o
(a”,b") =k (a,b) o ((a,b') o (a”,1")).

Let = | aba'b'a"b" and find ag € @’ x z and by € V' x z with ag | aba”b” and
by | aba"t". By the previous claims, there is ¢ such that we can find ¢ and ¢’ with
(a,0)Qi(c,ap) and (a”,b")Q;(bo, ). By gradedness of o, there will be j with ((a,b) o
(@', b)) o (a",b") =5 ((c,a0)0(ag, by))o(bo, ) =j (¢, '), but the same result is obtained
(up to @;) from (a,b) o ((a’,¥') o (a”,1")), so the existence of k is clear. Thus, the set
of Q-classes forms an almost hyperdefinable group G = (P x Py)/Q with o inducing
the operation.

Claim: For every i there is k such that for any = |, a and y | a, any o’ €; a * z,
a’ €;axy, (d,z)Qr(a",y).

Let u | azy and z €g 7 xu with z | axy, 2’ €y y~' * u with 2’ | azy. Since
a'xz=p (axz)*%z =g ax(z*z) =1 a*x(yxz') =¢ (axy)xz' =y a" *2/, pick t €j a’ 2
and t €; a” * 2’ and by previous claims (a', 2)Q; (t,u)Qj (a",y), so (a', )Qx(a”,y) for
some k.

The above claim gives rise to a gradedly almost type-definable map ¢ : P — G.

Since the reader should be accustomed to extending the classical arguments to ac-
commodate almost-hyperimaginaries by now, we shall only run through the remaining

intermediate claims needed for the proof at the ultraimaginary level.
Claim: G = o(P)2.

1 1

36



If a,b € Py, pick z | ab. Let y €9 a xx~" with y | ab and let v’ € = * b~ with
y" | ab. Then [a,b] = [a,z] o [z,b] = [y * z,z] o [y * b,b] € o(P)%.

Claim: ¢ is injective.

Suppose o(a) = o(b) for a,b € Py. If x | ab, [a* z,z] = [b* z,z], so [a,b] =
[a*z,bxz]=[a*z,7]0[b*1z,2]"t = 1g = [a,a]. Thus, there are z | abandy | ab
with axz =g a %y =g b* x; therefore a * z =g b* z for all z with z | a, z | b. Take
c | abandlet a; =g a*c~! with a; | ab, and by =g b* c~! with b; | ab. For any
y | aaibbic the triples {a1,¢,y} and {b1,c,y} are independent, so:

a1 % (c*xy) =r (a1 *xc)xy=paxy=pbxy=pg (b1 xc)xy =g b *(c*xy).
Therefore a1 * x =g by * z for all z with z | a1 and z | b;. Thus a =g a1 xz =g
b1 *T =R b.

Claim: o generically preserves multiplication and maps P onto the generics of G.
Let a | b and take z | ab. Then
olaxb) =laxbxz,z] =[a*xbxz,bxx]o[b*xz,x] =0(a)oa(b).
Let ¢ € Py and consider a and b with ab | ¢ and let ¢'Rc * a with ¢ | ab. Then
o(c) = [d,a] and o(c) o [a,b] = [¢',b]. As ¢ | ab, let dRc' + b~ with d | ab. So
o(c)o[a,b] =[d*b,b] = o(d). Hence o(c) o [a,b] | [a,b] and o(c) is generic.

Suppose now we have a graded homomorphism ¢ : P — Z. We may define
©%([a,b]) := @(b) * p(a) L N @) * p(a’) !, for some [@',b'] = [a,b] with o’ | ab
(such (a’,b’) can be found by translating by z | ab). Clearly such a map is well-
defined and single-valued, seen as follows. If [a,b] = [a/,V], let ¢ | aba'b’ such that
bx(aLxt) =bx(a ' xt),s0 pb) xp(a ) xp(t) = o) *p(a' ) * p(t); pick z in
the intersection. Then ¢(b) * p(a)™! = z* (t)™! = ¢(b') * ¢(a’)~!, and choose h in
the first and & in the second intersection. Since ¢(t) | hk, they are core-related and
the map has nonempty value. It is also single-valued as each two potential values are
core-related. The reader can check that this can be done gradedly.

The uniqueness part follows from the universal property. O

Remark 3.5.2. If in the previous theorem the map ¢ happens to be (generically) onto
of type 3 (i.e. if o(C) € axb for a | b, there are A and B with ¢(A4) =a, ¢(B) =b
and C = A % B), the induced map ¢? is onto of type 3.

Proof. Let us show that ¢? is of type 3. Assume @?([E,F]) = z € u * v. We may
assume E | uwv and F | uv by translation, and let X | EFuv and E' := E * X,
F':= F X, so by definition of 2, z = fxe 1N f'x¢ ', where p(E) = e, o(F) = f,
@(E') = €' and p(F') = f'. Since ¢ is a homomorphism, p(X) =: z € e txe/Nf~1* f'.
Now, since z € f' xe' ™' Nu v, by transposition we can find ¥ € u=! % f' Nv €. By
the second form of associativity, from u ! * (f'* z7!) = (u ' % f') x 271 we get that
u txf = b +r ! and similarly vxe ~ b’z 1. Since z | efuv, any two elements from
the two intersections are core-equivalent and we can choose b € u ™' * fNv*enb xz 1.
By the fact that =, b and b’ are generic and ¢ is generically onto of type 3, let B
and B’ be such that B’ = B x X, ¢(B) = b and p(B') = b'. Now, it is easily
checked that [E, B] = [E', B], [B, F] = [B', F'] and they witness that u = ©?([E, B)),
'U:(PQ([BaF]) and [E,F]:[EaB]O[B,F]' O

Corollary 3.5.3. If (P,Y, ) (x standing for both the group chunk operation and the
generic action) is a gradedly almost hyperdefinable space chunk in a simple theory,
then there is a gradedly almost hyperdefinable space (G, X, o) and a graded bijection
o between (P,Y) and the generics of (G, X) such that generically x is mapped onto
the group operation and action o.
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Proof. We shall not worry about the graded almost hyperdefinability of objects we
construct in this proof, assuming the reader can rewrite the material in the style
of the previous proof. Alternatively, the reader can imagine we are working in the
hyperdefinable category.

We need to consider the dual equivalence relation between the pairs from P to
the one given in the proof above, since we wish to deal here with the generic action
of P on X from the left: we say that (a,b)L(a’t) if there are u | aba't/, v | aba't/
with u xa = vxa’ and u*b = v * V. Then it is clear that G := (P x P)/L is a
group with the usual o. Note that [a,b] = [a’,V'] if and only if there is ¢ | aba’b’ with
(txal)*xb= (t*a'_l) x b

Let X := (P x P xY)/L', where (a,b,z)L'(a’,V/,2') if there is an u | abza'b'sz’
such that (usa 1) *xb)*z = ((uxa’ ') x ) x2'. It is easily shown that this is an
equivalence relation and we denote the class of (a, b, z) by [a,b, z].

Notice, if [a,b] = [a',], then trivially [a,b,z] = [@',¥,z]. Thus, for any [d',b'] €
G and [b",d, ], by results for L-classes, we can find [a,b] = [d',V'] and [b,c,z] =
[b",c,2'], and we can define the action of G on X by [a,b] o [b,¢,z]| := [a,c,z]. To
see that it is well-defined, let [a’,b'] = [a,b] and [b,c,2'] = [b,¢,z]. Let u | aba't/
such that (uxa )b = (uxda ") * b and we can pick v | bezb'dz'u such that
(b D sc)xz = ((v*b 1) %c)*x. Choose any z | abcza'b'd'z'uv and let 2’ be
such that 27! = 2’ * v (in particular, 2’ is again independent of everything). Now,
since {z,u * a!,b} is an independent triple (and similarly with dashes), by generic
associativity we get that (uxa™!) % (b z) = (u*a' ") % (b' * 2) =: ¢t~ (where t is
again independent of everything). Also, since {2, (v * b71) x c,z}, {z,v * b~1,c} and
{#',v,b} are independent triples,

Zx((vxb HNxc)sz)=(Z* (b ) xc))xz=(2*(*b 1)) xc)xzx

=(((Z'*v)xb ) xc)rz= (71 *xb71) x¢) xa.

Similarly we get that 2/ * (v ") x ) 2') = ((z7' *b'') % ) x 2. Now, since
(bxz) ' =tx(uxat) = (t*ru)xa ' and (' * 2)~! = (t*u) xa’"", we get that
((txu)*a 1Y) xc)xz = (((txu)*a’ ) %) 2’ so t+u witnesses that [a, ¢, 2] = [/, ¢, 2'].

It is clear that (P,Y) embeds into (G,X) via z — [a,a,z] for x € X and any
a € G and, a — [b,bxa] for any a € G and b | a. To see e.g. that for a | =z,
o(a xz) = o(a) o o(x), it is enough to notice that if whenever a |, b and a | =z,
[b,b,a x ] = [b,b* a,z]. By the previous theorem, it is clear that P is in bijection
with generics of G. Suppose now that z( is generic in X. Then, by 3.3.13, there are
g € G generic and y € X such that ¢ | y and o = goy. Let y = [b, ¢, z] such that
g | bex and g = [a,a * g] for a | gbcx. Now, since a*xg*b~! | b, gxb"txc | a
and gxb~lxc | z,

goy=[a,axglolbc,z]= [a,a*g]o[a*g,(a*g*b_l)*c,x]
=[a,a * (g*b_l*c),:c] = [a,a, (g>|<b_1 * c) * z],

showing that z( is in the image of o. O

3.6. Stabilizers

In this section, we work in the hyperdefinable category, assuming the interested
reader can extend the results to gradedly almost hyperdefinable objects. If 7 is a
partial type over a set A, we say it is generic if it is contained in a generic type.

Lemma 3.6.1. The following are equivalent in a hyperdefinable polygroup P:
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(1) = is generic over A;
(2) for every b € P, b does not fork over {);
(3) for every b € P, b does not fork over A.

Proof.

(1) = (2). Since 7 is generic, let a |= 7 be generic over A with a | , b. By genericity,
ifcebxa, c | Ab, but ¢ |=bx* 7 sobx*m does not fork over ().

(2) = (3) is trivial.

(3) = (1). Let b be generic over A. Then b * m does not fork over A so there are
a = mandc € bx*a withc | ,b Therefore b and b1 are generic over Ac, and so is
a€b txe O

Definition 3.6.2. Let P be a (hyperdefinable) polygroup, and let p be a type in P
over A. Let S(p) := {g € P : g*pUp doesn’t fork over A}, and let stab(p) be the
subpolygroup of P generated by S(p).

Lemma 3.6.3. (1) g € S(p) if and only if there are u,v = p, u | ,9, v ] ,9,
u € g*v;
(2) g € S(p) if and only if g~ € S(p);
(3) ifg L ,9' € S(p) and p is an amalgamation base, then g * g' ~ S(p).

Proof.
(1) By definition, if g € S(p), there are u,v |= p such that u € g*v and u | ,g.
Then, for every D(-) = D(-, ¢, €, k),

D(p) = D(v/A) > D(v/Ag) = D(u/Ag) = D(u/A) = D(p).
Thus we have equality all the way through and v | 49
(2) is a trivial consequence of (1).
(3) Letu,vEp,ul 49,0, 9 u€gxwandv,wiEp, v | g w ] g u€g*v
Now, by the Independence Theorem, we may assume that v' = v | N gg'. Thus, we
have u € g* (¢’ *w) = (g*g') xw, so there is ¢" € g* g’ with u € ¢" *w, and obviously
ul 9" s0g" €S(p). O

Remark 3.6.4. Clearly S(p) is a hyperdefinable set (over A). Unfortunately, the con-
dition proved above, that g | N g € S(p) implies g * ¢’ =~ S(P) is too weak to show
(without invoking the later techniques used in blowing-up) that stab(p) is generated
in finitely many steps from S(P) (if we had g x ¢’ C S(p), then it would be generated
in two steps like in the case of groups). Nevertheless, it will be an invariant (over A)
object.

Lemma 3.6.5. If X is a generic hyperdefinable (over A) set, the subpolygroup H
generated by X has a bounded index in P.

Proof. Suppose H has an unbounded index in P. Then, we can find an A-indiscernible
sequence (g; : i < w), such that {g; x H : i < w} are distinct cosets. Then, {g;* X : i <
w} is inconsistent, implying that g * X forks over A, so, by 3.6.1, X is not generic. [

Lemma 3.6.6. A type p (over 0, say) in a hyperdefinable polygroup is generic if and
only if S(p) is generic.

Proof. If p is generic, let u | v |= p and let g € u x v™L.

uwl g,v ] g, and u € g xv, so g € S(p) is generic.
The converse if similarly straightforward. O

By genericity of u and v,
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CHAPTER 4

Blowup

Our original aim was to obtain a group from a group configuration in a simple
theory. In Chapter 2, we managed to extract a polygroup chunk (P,#) from this
information, and it is perfectly natural to hope that some variant of Hrushovski-Weil
group chunk theorem (see 3.5.1) will yield a group, or at least a polygroup. The
technical difficulties imposed by multivaluedness, however, are overwhelming, one of
the reasons being that this polygroup chunk, in spite of some good properties like
generalised associativity to be discussed below, has some serious shortcomings. For
example, even if y,y' € f(z), for f € P, z | f, it can a priori happen that y | v'.
Also, if h,h' € fxg for f | g € P, we might have h | h'.

Generalised associativity properties allow us to blow up the original polygroup
chunk and obtain an improved polygroup chunk which actually becomes a group
chunk modulo the core relation from 3.4, where 3.5.1 is going to be applicable. The
construction has a familiar algebraic-geometric flavour which, together with the uni-
versal property it satisfies, should hopefully provide a good enough justification for
its name.

However, there is an even more important historical reference to be made here.
Model theoretic group configuration originates in the classical reconstruction of a
division ring from a projective geometry by von Staudt, Hilbert, Veblen-Young, Artin
and von Neumann. A blowup procedure extracting a group (resp. space) chunk out
of the polygroup (resp. polyspace) chunk is written in Section 4.2 in a way which
is, at the notational level, completely parallel to some parts of von Neumann’s proof
from [vN]. Also, the analogy to linear algebra (e-numbers being matrices, e-tuples
vectors, multiplication of numbers corresponding to matrix multiplication, action of
a number on a tuple corresponding to action of a matrix on a vector) we find rather
amusing. This is not at all surprising given that, at a very abstract level, the axioms
of a polygroup correspond to the axioms of a modular lattice.

Of course, it is desirable to keep the construction hyperdefinable as long as we can,
because our hope is that the resulting group can be obtained hyperdefinable. That is
why in Section 4.1 we present a blowup construction which produces a (hyperdefin-
able) partial generic multiaction which in fact is the improved polygroup chunk. One
drawback of this construction is that it is even more localised than the previous one.

In order to obtain a construction of a global character, in Section 4.3 we discuss
a sheaf-like (or manifold-like, depending on the reader’s mathematical taste) blowup,
constructed by pasting together the local blowups. It satisfies the universal property
normally associated with blowing-up in algebraic geometry.

The first rather naive attempt to obtain a group from the polygroup chunk just by
quotienting described in [To], in the particular example of a double coset space G // H
corresponds to descending to the group G/N, where N is the normal closure of H. This
was unsatisfactory since we couldn’t guarantee the nontriviality of the resulting group.
Wagner suggested that, since we require G // H to be a type-definable polygroup,
one of the sufficient conditions for boundedness of products is that the family of
conjugates of H be uniformly commensurable. But then, Schlichting’s theorem ([W],
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4.2.4) implies the existence of a normal subgroup N uniformly commensurable with
the family of conjugates of H and G/N is thus a nontrivial group. This suggested
that it would be better to look for the group ‘interpreted’ in the polygroup chunk,
which resulted in a variety of blowup procedures by Ben-Yaacov and myself. I present
three of mine here. It is interesting to notice a posteriori that a construction of a
character similar to our blowup was used by Pillay and Kowalski in [KoP] to obtain
the group configuration in the special case of ACFA, where the ‘blowup map’ is roughly
aw {o%(a) : i € Z).

4.1. Hyperdefinable blowup

Let (P, *) be the polygroup chunk of germs obtained from a suitable partial generic
multiaction 7, as in 2.3.10. We present here a construction of an improved polygroup
chunk where whenever y,y' € f(z), bdd(y) = bdd(y’) and if h,h’ € f x g, bdd(h) =
bdd(h') and thus quotienting by the core relation gives an almost hyperdefinable group
chunk. Intuitively, we force each point into an intersection of ‘independent enough’
products, which suffices to determine it better (e.g. in an algebraic quadrangle, each
point is determined up to interboundedness, or in the example 1.4.4, a point is uniquely
determined in the intersection of two lines).

Lemma 4.1.1. There are e and f in P and zy,,yo,y such that z | ef, zoz = e,
yoy e zy = f.

Proof. Start with some zjz = ¢', 7y | f'. Now, z =Ly, z | €,y | =, € | =, s0
by the Independence Theorem, there is y | ze/, ¢ : z =¢ y, ¥ : ¥ =, vy, and now
zyz =€, play)y =€, zy E¢(f'). Now y | ze’ implies € | zy, so let e realise the
nonforking extension of tp(e'/zy) to zyf, where f = 1(f’). Thus, for some zy and
Yo, ToT e, yoy Fe, zy = f and z | ef. O

From now on, fix an e as in the lemma.

Definition 4.1.2. Let i stand for zoz, f for (f,of, fo). We define a partial generic
multiaction 72 as follows: 72(f, %, %) if f | e, zozy = fo € f*e, zyyo Eof € e L* f,
and in such a case we shall write Zj = f.

We can complete and reduce 7% to get~7_r2, although the reduction doesn’t change
the completion 7?: if 7 L. fpdq with § € fp(2) Nge(Z), then z | fg,y € f(z) Ng(z),
so f = g since they are both germs. Similarly, zgy witness fo = g9 and zyg witness
of = 0g- Now, we claim that, in the language from Chapter 2 (we abuse the notation
a little in what follows, as we omit ,” from f, € Fun(7?), but we bear in mind that

Istp(z3/f) for Zjj |= f is fixed):
Theorem 4.1.3. The pair (P?, %), where P? = Fun(7?) and multioperation * : P? ®,
P? — PPAd(P2) js given by §* f := Go f (for fJ/eg), forms a (hyperdefinable)
polygroup chunk with:

+ for all §, ' € f(&), bdd(§) = bdd(F'); ) i

- for all h,h' € f * g, bdd(h) = bdd(h') (in fact, h and h' are core-related).
Proof. For the reader who refuses to believe the notation as a ‘black box’, here is

a detailed proof that for any f J/eg, fxg#0 (the reason essentially being that
Arg(n?) = T'(e) is an amalgamation base).

Letzj = f, 72 g. Asg=L ¢, 7 L. 1,7 L. g by the Independence Theorem,
we may assume that §' = § J/efg and we can take h := Cb(zz/fg) € f*xgNgo*of,
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ho := Cb(zoz/gfo) € h*eNg* fo, oh := Cb(zz/0gf) € e L x hNog * f. In the case
as above we write #jZ = h € g f.

It is easy to see this product is e.g. associative: let { f , 3, l~1} be e-independent, let
iz =k e fxgand 4@’ =1 € k + h. Since we are in a complete situation, ZZ Eé
7, 5% | fg, @' Li Ih, and f§ L Ih, so by the Independence Theorem, we may
assume that 2 = %z | ¢ fghl, and if we let m := Cb(uy/gh), mq := Cb(ugy/gho),
o := Cb(uyg/ogh), we have [ € f 7m and 7 € § * h.

If §,9' € f(Z), then y,9' € f(z) N fo(zg), but as fz \Lyfoﬂﬂo (zoxy | fo € f *e,
so zo | ffo and as fo | f we get f | foro and the required independency follows
from y € bdd(fozo) and z € bdd(fy)), this implies ¢/’ \Ly y' so y' € bdd(y). Similarly
one sees the interboundedness of yo and y;.

If h,h' € f* g, then h,h' € fxgNgo*of,and f | ogfo (ef L g implies ffo | g0
which gives the required) so h and h' are core-related and thus interbounded. The
interboundedness of hy and hg, as well as gh and gh' follows in a similar way. O

The following proposition states that our polygroup chunk has ‘generalised asso-
ciativity’ for each a.

Proposition 4.1.4. Let {g; : i < a} be independent germs. Then, for any choice of
{0gi € gg' *gi : 0 < i < a}, there are {;g; € gi_1 *gj 14 # j < a} such that for all
{i,5,k}, igj € igk * kgj, and ig;~" = jg;. Moreover, for any f | {gi,igj : 1 # j < a},
we can find f; € f * g; with f; € f; * ;g; for every i # j.

We call any such (g;,ig; : 1 # j < @) an a-frame.

Proof. Let a;b;c; witness og; € gy - * gi, i.e. a;b; = T(gi), cibi = T'(g0), ai | gogiogi-

By induction on k, it is possible to assume: (i) there are bc with be J/go {Giy09i :
0 < i < k} such that a;bc |= ogi € gy * * gi, for 0 < i < k. For k = 1 there’s nothing
to prove. For the successor case, suppose (1) holds for £ and some be. By hypotheses
of the proposition, cx+1bp+1 =g, b, cb L {gi,00i + i < K}, crsrbrar L gr41 and
Ok+1 J/go {9i,09i : i <k} so by the Independence Theorem we may assume cg11bg11 =
ch J/go{gi, 0gi : 1 < k+1}. If ] is a limit and (1) holds for all k£ < [, then by compactness
we can find bc which are ‘good’ for all £ < [ and we continue by the Independence
Theorem as in the successor case. This induction finishes at «; rename cb as agb.

Now, for i # j > 0, let ;g; := Cb(a;a;/g;g;). From the above independencies, it is
clear that a;ba; witness ;g; € 91'_1 * gj, and ajaga; witness ;g; € ;gi * kg;j-

Now let f | {gi,ig; : @ # j < a}, and let e.g. ed = I'(f). By above, we have
a;b = T(g;) for all i. Since Arg(r) is a Lascar strong type, b = d. Also, b | {gi,:g; :
i # j < a}and d | f,so by the Independence Theorem we may assume that b =
d [ {f}U{gi,igj:i# j < a} and for f; we may take Cb(aie/g;f). O

Remark 4.1.5. The polygroup chunk from 4.1.3 will obviously give a gradedly almost
hyperdefinable group chunk after quotienting by the core relation. Moreover, it is
possible to generalise the construction as follows, with the idea of getting the group
chunk in a hyperdefinable way.

Denote by C(f) the intersection of all products containing f. If there is a frame
e = (ej,iej 1t # j < a) such that for every g,h with {g,h,e} independent we have
that if f € ;.o 9i * ih for g; € g+ e; and g; € g; * sej, ;h € ei_1 * h and ;h € je; * jh,
then C(f) =();<q 9i * hi (i-e. the intersection on the right hand side stabilises), then
[~ frif C(f) = C(f") will become a type-definable equivalence relation, and we can
do the blowup construction in such a way that whenever il, = f * § we have h ~ B! ,
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thus yielding a hyperdefinable group chunk. This property is not so unreasonable to
ask for, since in the motivating example of reconstructing a group from a double coset
space mentioned in the introduction to this chapter, it is possible to find an n-frame
such that the intersection of any n products as above is a singleton (after some initial
normalizations). Also, as mentioned in the introduction to this section, in the example
of reconstructing a group from a projective space, a 2-frame suffices.

The construction of 7 goes by finding a suitable frame € = (e;,5e; : 1 # j < @)
with z;z e, 1 < @, | € and TiTT; E jei € ej_1 *e;. Denote by T := (x; : 4 <~a)Aw,
and we fix p := Istp(Z/e). Then, if f := f°(;f, fi,ifj 11 # j < @), we let 7®(f,Z,7)
if f Le &0 p miwy = fi € fre, zyyi = if € e’ x f, myy; = jfi € €' * fi,
zizy; = jfi € jf * e; and in such a case we write Zy = f . The construction continues
by completing, with the product of fq \Lé gr given as (now forgetting the types q and
r and witnesses) h such that h € f+xgnN); fi*ig, ih € e;l *hﬂif*gﬂﬂjifj * 9,
h; € h*eiﬂf*giﬂﬂjfj * G5 ihj Eih*ejﬂei_l*hjﬂif*gjﬂnkifk*kgja thus
determining the product up to ~“.

Remark 4.1.6. If we consider what the generalised associativity means for the poly-
group associated to a projective geometry from 1.4.4, the Pasch axiom is equivalent
to associativity (i.e. generalised associativity for o = 3), and e.g. the Desargues ax-
iom corresponds to generalised associativity for @ = 4, as shown in the figure below.
Hence, both in our and the classical case, we can ‘coordinatise’ only in the presence
of a ‘higher associativity’ condition.

092

Remark 4.1.7. A negative feature of this construction is that for an arbitrary f | e, it
may be impossible to find witnesses z¢zyoy as in 4.1.1, so not every f | e can be blown
up- This will be rectified in the next section at the expense of losing hyperdefinability.
Nevertheless, the rank situation is still good, i.e. SU(P?) = SU(P), since if f | e are
from 4.1.1, at least every f’ |= tp(f/e) can be blown up.

4.2. The ‘classical’ blowup construction

Let (S, X) = (So/R, Xo/Q) be a coreless gradedly almost hyperdefinable polyspace
chunk, where R is I-graded and @ is J-graded. Assume Ry is like in 3.3.14. In what
follows, we often claim without a proof the existence of certain R,’s such that some
algebraic manipulations give a result up to R,, and in each such case it will follow from
almost hyperdefinability and gradedness of the polyspace chunk, e.g. if {agr,bg,cr} is
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independent, we can find a’Rya, b’ Rob, ¢' Ryc such that {da’,b',c'} is independent, so
(a' *b')x =¢a' x (b x'), and, by gradedness of *, (a *b) *c =, a* (bxc) for some ¢.

Definition 4.2.1. A tuple e = (e;, e;5 : 1 # j < n) from Sy, we shall call an n-frame (up
to R¢), or sometimes just a frame, if:
(1) {eig : i < n} is independent;
(2) for every i # j <m, e;j Ec ei_1 * e
(3) for every i # j <m, e;j =¢ ej_il;
(4) for every i, j,k <, e € ik * ey;-
Given an n-frame e, a tuple (a matrix?) a = (a;; : ¢ # j < n) from Sy is called an
e-number (up to R,), if there exists an a € Sy, ag | e such that:
(1) for every i # j < m, a;; €, €; ' *a * e;;
(2) for every 4, j,k, aj; €, aix * e; and a;; €, e * ay;.
A tuple (jz : i < n) in X is called a left e-tuple (up to some Q¢), provided there

exists an ¢ € Xy such that:

(1) for every i < n, ;x € ei_1 * L

(2) for every i # j < m, ;T €¢ e * ;.
We define right e-tuples dually.

Lemma 4.2.2. There is an R such that, given {e;g : i < n} independent, for any
choice of ey; € eal *e;, 0 <i<mn, wecan find e;5, 0 < i < n, j < n such that
(€i €4 11 # j < mn) is a frame (up to R).

Proof. Let egy; € eal * e; be given, and put e; := eail. Now, eal € eq; * ei_1 Neg; * ej_l
(up to some R,), and therefore e;y * eg; ~¢ ei_1 * ej, (for some coarser R,), and we can
pick an element e;; in both.

We claim that this will form a frame. By the second form of associativity, since
e.g. (e13 * egl) * €y =R €13 * (egl * e), we get that 61_1 * ey R €13 * €39 (for some R),
so pick h in the intersection.

So, we have obtained ejo,h €, 61_1 x eg, and e g | e1aphp as it is easy to check
that e1 g | €01 r€02 R€03 R, Which implies e1 g | o1 re02R€13 RE32R- Therefore, by core-
lessness, e19 € €13 * ego for some higher R.. We can check the other relations in a
similar fashion. O

From now on, fix an n-frame e up to some R,, and let X0 := {z € X : z¢ | e}
and S° := {a € Sy : ag | e} and denote by (Se, X.) = (S/R, X%/Q) the resulting
almost hyperdefinable polyspace chunk over e.

Lemma 4.2.3. There is Q¢ such that, given x € X0, for any choice of gz € eal % T, we
can find (uniquely up to Q) ;z, 0 < i < n such that (;z : i < n) is an e-tuple (up to
Qe)-

Proof. Let oz € e;* * be given. Since (e19* ey ') ¥z =g e10* (eg ' *x), by the second
form of associativity, we get that 61—1 * xR eqg * o (for some Q¢), so we can pick 1z
inside.

Similarly, we get that egy * oz =~ 62_1 * T R ex) x 175 pick h in the first, &
in the second intersection. Thus, since h,k €¢ €5 Y%z, and exg | hqgkg (the last
independency follows from ez | eo1reo2ro%q, which is easily verified), h and k are
core-related and thus, by corelessness, we can define oz up to some higher Q.. We
proceed analogously. O

Lemma 4.2.4. There is a certain R, higher in the grading than R, such that, given any
a € S? we can pick (a;; : i # j < n) forming an e-number up to R,. In other words,
e-numbers are plentiful.
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Proof. Let ar | e. By 4.2.3 there are a; €, a x ¢; with a; €, a; * €¢;; and ;a €, el xa
] y J J i

with ;a €, e;; * ja, for some R,.

Since (e; ' % a) % e; =R etk (axe; iaxe; 3, e; ' % a; (for a higher R,), so take

_ & * € i i) J i j & ’
a;; in the intersection.

—1 ~1 — -1 .

By (e; ~ *ay) * exj =r €;  * (ag * exj), Qi * exj =, e; ~ *aj 3, a;; (for some R,);
take h in the intersection. If we can show that a;p L a;j pGik R€kj p» We Will have that
h and a;; are core-related and thus equal modulo some coarser R,.

Since a;; €g ia * €j, Qi €R G * €, €x; €r €5 * e;, it is enough to check

J Js ' » Ckj k 5 g

that a;, | iarejperr. By assumption, e;r | arejgpergr, s0 jag | ejgperrajp, but
ajp | ejperr so everything is independent and a;, | iage;gerr-

The fact that a;; €Eg ejr * ag; is proved symmetrically. O

J j 18 P y Y

Here is a criterion allowing us to recognise an e-number intrinsically.

Lemma 4.2.5. Let n > 4. If a tuple a = (a;; : ¢ # j < n) satisfies

(1) for every i # j <mn, aijp | €;

(2) for every i <m, {aijp : j # i} (and dually, {aj; : j # i}) is independent;

(3) for every i,3j,k, aij €, aik, * ex; and a;j €, e, * ayj,
(for some R,), there is an a € Sy, ag | e, witnessing that & is an e-number. Further-
more, such a is unique up to some R, and we obtain a graded map w : @ — a.
J
and a; €. [; € * a;; for some big enough «. Since (e; * a;;) * 6;1 =g € * (aj; * 6;1),
ajxe; Ny e; *a for every ,j (and some x). Finally, by given independencies, all
things in such intersections are Rk-equivalent, for high enough k, and that gives the
sought for a; for example, observe a; * efl R €0 * 00 Ry Ao * e;l, and let h be in
the first, k£ in the second intersection. Thus, h,k €. eg * ga, and ey | hrkr (since
eor | @31re1RE2REIR)- O

An analogous characterization of e-tuples is even easier, so we omit the proof.

Proof. We just give a quick sketch of a proof. It is possible to find ;a €, ﬂj a;j * e

Lemma 4.2.6. Let n > 2. If T is a tuple in X, such that

(1) for every i <n, ;zg | €;

(2) {izq : i < n} is independent;

(3) for every i # j < m, ;T E¢ e * jx,
(for some Q¢), there is an x € Xo, g | e witnessing that T is an e-tuple. This x is
unique up to () and we obtain a graded map 7 : T — .

The previous two lemmas show that the blowup of our original polyspace is actually
a bounded covering of it.

Proposition 4.2.7. Let n > 4. Let & and b be two e-numbers (up to some R,), ag \Le bg.
There is a unique e-number ¢ (up to some coarser R, depending only on R,) such that
¢ij €x (ki ik * brj. Furthermore, m(€) €, m(a) * m(b).

Proof. We give the proof for n = 4, which is the only case we need, and at some point,
we choose particular values for indices to enhance readability.

Firstly, the product is unique, since if e.g. c19,c}g €x @12 * bag Na13 * bsg, then they
are core-related because ai2gr | a13rb30R-

For the existence, by associativity, it’s easily seen that (), 4i,j ik * bij #. 0, so
we can pick ¢;; inside. We claim that this ¢ is an e-number up to some R,. Since
(ao1 * b12) * e23 =R a1 * (b1 * €23), o2 * €23 Ry agy * biz 3 co3 (for some «). Take h in
the intersection; now h,co3 €, a1 * b3 and ap1gr | hrcosr, SO co3 is core-related to
h, i.e. they are equal with respect to some coarser R.
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To see the last independence, it is enough to check that ag1r | co2re23rcosr, Or

ao1 g | @02ra03RD23RD32 - If we let a =g m(a) and b =g 7w(b) the above follows from
eir | arbreoreagesg-

For the ‘furthermore’ part, let ¢ =, (¢) (for high enough Ry), so co1 €« eal xcxep
(some k); let gc be as in the proof of 4.2.5 such that c¢p; €4 ¢c * e;. Since also
co1 €x ag2 * bo1, we can find ;b such that gc* e; =, age *2b* e1, and this implies, since
e1r L 0Ccrao2robr (follows from e1r | arbregrearesr), that gc €, age * 2b (for some
higher ). But then eal * C R eal * ag * ob, and since e;g | crasgebg (follows from
eor | arDRE1RE2REIR), C Ex G2 % 2b, OT c* b ! % ey Ry a * ez, and since ey | arbrcr
(follows from esr |, arbreoreiresr), ¢ €x a x b (for some k). O

Proposition 4.2.8. Ifa is an e-number (up to R,), x an e-tuple (up to Q¢) and ag \|/e zQ,
there is a unique e-tuple y (up to some Q¢ depending only on R, and Q¢) such that
Yi €¢ Qi * Tj.

Proof. Suppose yo, yy €¢ ao1 *T1Nagz *T2. Since apig .| a2 rT2¢, we have that Yo QY
so we have uniqueness.

For the existence, since (ag1 *e12)*x2 =g ao1*(e12*x2), we get that age*x2 ~¢ agr*
x1, (for a high enough Q¢) and take h in the intersection. Similarly, we can find k &,
ao3* 3 MNaor *z1. By all the independencies, {ao3r, 3¢, €32, €31 g} is independent, so
€31 R \|_/ G03 RT3QE32R and thus aplr \L A03 RT3QE32R, yielding apl R \L 402 RT2QA03RT3Q
and therefore hQ¢k for course enough )¢ and we can define yo. Similarly for the
remaining y;’s. g

The reader should recall the definition of type 3 morphisms between polygroups
from 1.4.12 before proceeding to the next result.

Theorem 4.2.9. Let (S, X) = (So/R, Xo/Q) be a gradedly almost hyperdefinable poly-
space chunk with a fixed n-frame e for n > 4. The set of e-numbers S, and the set of e-
tuples X, with the multiplication of numbers and action of numbers on tuples is a grad-
edly almost hyperdefinable space chunk (over e) and the map 7 : (Se, Xe) — (Se, X,) is
a gradedly almost hyperdefinable generic epimorphism of type 3 with bounded fibres.

Proof. We will show just the group chunk part, since checking the properties of the
action is completely analogous. Let Ry and R; be such that e-numbers exist up to Ry,
and the product of two numbers up to Ry is a number up to R;. From the construction
of numbers, it is clear that there is a fixed Ry such that for every number a up to R,
there is a number o’ Rya which is a number up to Ry. Let S; be the type-definable
set of e-numbers up to R;. Let - be the type-definable relation on S} given by: for
a,b € S1, ¢ € a-b if there are o' Rya, b’ Ryb with ¢ in the product of @ and b as in 4.2.7
(this is clearly nonempty for ar J/e br by the choice of Ry, R; and Ry, and all the ¢’s
in the product of a and b are Rs-related for some R3). The gradedness of the induced
map is clear.

For generic independence, let a \Le band ¢ € a-b. In particular, a;; | be, and since
Cik €R Gij * bj, by generic independence of the original polygroup chunk, c;x g | be,
SO CikR J/e b, and as cg € bdd(cipge), cr \|/e b. Similarly we get cg J/e a.

For generic associativity, take {ag,br,cr} e-independent e-numbers, let zp =
ar-br, zr =br-cr, ur = Tp-cr and vg = agr - zr. We need to show ug = vp.

Let us start with e.g. (a10*bo2) * 23 =g a10 * (bo2 * co3); it implies that 219 * co3 =;
a10*zp3 (for some R;), so take h in both. Now, we have h, v13 €; a19* 23 and we would
like to show that h and v13 are core-related. This will hold if a19r | hrv13R, but since
v13 €; a12 * 293 as well, it is enough to show a10r | a13rb32 RC23 RA12 RD21 RC13 R, Which
follows from a10R \L algRbgchlgRelgReggR. As {algR, bglR, C13R, eR} is independent,
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and {6203,612R, 623R} is independent, we have €0 R J/ a123b21R013R612R623R, which
clearly implies what is required. In a similar way, we can get that ui3 and h are
core-equivalent and thus also u13 and vq3.

Generic invertibility follows directly from uniqueness and the corresponding prop-
erty of S, and the fact that « is a generic homomorphism is shown above.

To see that 7 is generically of type 3, it is enough to show that if ¢ € a * b, for
some ar | ,br € Se and 7(¢) =g ¢, we can find a and b with 7(@) =g a, 7(b) =g b
and é =g a-b. We will work modulo R, and it is just a technicality to show that
everything can be done gradedly. Thus, let ¢ with n(¢) = ¢ and ¢ €gr a x b be
given. Reconstruct ¢; and ;¢ as in 4.2.5 such that ;¢ €p ei_1 *x ¢, ¢; Eg c* ¢e; and
Cij €r ic*ejN ez-_1 * ¢j (this can be done uniquely). By the second form of as-
sociativity applied to ez-_1 *c* bl find ja €p ei_1 xaicxb . We claim that
ia €R €;; * ja. Again by the second form of associativity applied to ei_l *ej x ja,
we get ;a €R 6;1 * a Rp e * ja, and let h be in the intersection. To show that
;a and h are core-related, it is enough to check that e;r | ijagrjapeijp, or, since
i@ €ER iC* b_l, that e;p \LiCRjCRbRein- In fact, as jC €R €4i * iC, it is enough to
see that e;p | icpbreijp, but that follows from independence of {bg,cr,e€ir,¢€jp}-
Similarly (by observing a™! * ¢ x ;) we can choose b; € bxe; Na~! x¢;. Also, if we
choose any ay € a * ey, there will be unique (up to R) ¢b € eal xb and a; € a* ¢,
ib € e{l * b such that ¢ €g a; * ;b and a; €g a; * €j; and ;b €g €;; * ;b. From
this data, as in 4.2.4, we can get a;; and b;; such that they form e-numbers a and
b. To check that ¢ =R G * 5, let us first show that c;; €g ;a * bj. By associativity,
from ei—1 * a * b; and the construction above, where c¢; €r a * bj, we get that ;a x b; =
e{l *cj D c;j, so pick h in the intersection. We claim that c;; Rh. From independence of
{ar,br,eir,ejp}, we have that e;r | arbrcrejp, 50 €ir | arcjpbjp, and it is easily
seen that ar | cjpbjp so ar | eircjpbjg, ar | cijpbigeir and air | cijpbjpeig-
But, as e;jp | cijgpbjp, We have that ejr | cijpiarbjg, implying e;p | cijphr so
c;jRh by corelessness. The fact that c¢;; €g a;; * by is shown in a similar way using
the independence of {ar,br,€;ir,€; g, err}- O

Remark 4.2.10. When dealing with the coreless polygroups and polygroup chunks, we
did not need to discuss the generalised associativity properties (unlike in the hyper-
definable case in the previous section) as they are trivially satisfied in this context.

4.3. Universal blowup

It is much easier to develop the mini-blowup described in Section 4.1 modulo R
and get the group chunk of similar characteristics as in the previous section. Let us
shortly explain how it should go at the level of ultraimaginaries (the full details for
the gradedly almost hyperdefinable version are given in [BTW]), without worrying
about the graded almost hyperdefinability issues, since our aim in this section is much
higher, to construct a blowup with the universal property.

Let (P,*) be the coreless polygroup chunk, and pick an e € P. Let P, := {a €
P :a | e}. The group chunk (P,,*) consists of tuples @ = (a, ca, a,), where a € P,,

l'%a, a, € a* e, and the operation * is defined as follows: if @ J/el; (which

e € €
implies {a, b, e} is independent), let ¢ € a*bNae*cb, ¢ € e LxcNea*b, ¢, € cxeNaxb,.
It is easy to check that these values are unique (up to the core relation) and we say
that é = a % b. The map 7 : P, — P, given by (a, ca,ac) — a is a bounded covering (a
generic epimorphism of type 3 with bounded fibres).

Let e;, i < X be a long Morley sequence and let e;; form a frame (as in the previous

. . -1 _ -1
section), i.e. e;; € e;~ * e; and the usual e;;, € e;; * ej;, and ej; = € -
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Let P; denote {a € P :a | e;}. Then obviously P = |J,; P;. Observe mini-blowups
P; and let Pt = U, P,. The projection 7 can clearly be extended to the whole of PF.
We have transition maps f;; between some parts of P, and 15]-: if a = (a,a,0a;) € P,
and @ | e; (which amounts to a | e;e;), then we can uniquely find a; € axe;Na;*e;;
(the intersection is nonempty by the second form of associativity applied to a*e; * e;5)
and similarly ja € e]-_1 * a N ejj *;a, so let fi;: (a,;a,a;) = (a, ja,a;).

Lemma 4.3.1. Transition maps are partial generic homomorphisms:
(1) Ifa € P, is independent of ejey, then Fie(fij(@)) = fi(a).
(2) For €;j \L fl~€ Pf" fji(fij(fb)lz a. 3 B
(3) For a \Le,- be P, ifeg | ab, then fi(ab) = fir(a) * fir(b)-

Proof.

(1) For example, let a; = a * e; Na; * e;; and ap = a * e, N a; * ejj, and, on the other
hand, aj, = a * ey Na; * e;. Since a | e;ejer, we have that ap | ejjeirer, but, as
er L eijeik, ar | are;jeir. Furthermore, as ej;, € ez-_jl * €k, Gj € af * €, a; € a; * €5,
we get that ex | ajerajejr and thus e | ajag, so we can conclude that aj and aj,
are core-related.

(2) is easy.

(3) The assumption that & \Lei band e, | abamounts to the independence of {a, b, e;, e }.
Let ¢ = a * IN); so in particular ¢; € ¢ * e; Na * b;. Suppose ¢ is the third coordinate
of fir(€); ¢}, € c*ex N * . On the other hand, by € b * ex N b; * e, and the third
coordinate of f;p(a) * fzk(l;) is ¢y € cxexNax*bg. As both ¢, ¢, € ax* ey, if we can
show that ey | cie;xaby, we would have ¢ = ¢}, by corelessness. It clearly suffices to
show, as ¢; € a x b; that eg | abje;rabg, but since by € b; * e, it is enough to check
er | abie;r, which easily follows from the independence of {a,b,e;,ex} and generic
independence. O

It is much clearer now what we need to do in order to get a generic operation:

Definition 4.3.2. We shall say that a € P, is ~-related to @ € ]5j if there is ek, a | ek,
C~I,I \L €L such that fik (&) == fjk(&l).

Lemma 4.3.3. We have @ ~ @', for @ € P; and @ € P; if and only if for every e; with
ale,d e, ful@) = fu@).
Proof. Let ey witness that a ~ @', and consider any ¢, | a, ¢; | a'.

If we take any e, with e, | exa and e, | erd’, in particular we have that
em | exeiaand ey, | ereja, and thus, sincea | e;epanda | ejer, wehavea | ejeren
and a | ejepem, so, by 4.3.1, fem(fik(@)) = fem(fjx(@)) implies that fim (@) = fjm(a).

Now, we can choose e, | eread’. By the previous paragraph, we get fi,(a) =
fjm(@'). Furthermore, ¢; | ena and e; | enad’, so again by the previous paragraph,
fa(@) = fu(@). =
Corollary 4.3.4. The relation ~ is an equivalence relation.

Let us denote the ~-class of a by [a].

Remark 4.3.5. Even though we said at the beginning of this section that we shall not
worry about the almost hyperdefinability of our objects, we feel obliged to provide the
reader with a hint how to show graded almost hyperdefinability of ~. We claim that
P; > a~a € Pjif and only if there is ef | @a’ such that f;1(a) = f;+(a@') (where, of
course, the fact that {e;,e;, eT} is independent implies that it can be completed to a
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frame €', provided we choose ¢;; := e;; and any ej; € e} L ef; this gives a meaning

J
to fi+ and fj;). The latter relation is clearly a good candidate for becoming almost
hyperdefinable in view of our considerations around the core relation.

Suppose that e is as above, and find ky such that {ei,ej,eT,ek : k> ko} is
independent. After choosing ej; := e;j, €j; := ey for k > ko and e;'T = e;T, we can
complete this to a frame e”. However, since e, € e} xeljNe; e, = egixeyNey ' xer D
ek, by all the independencies, e}, = ey (core related) for k,I > ko or k > kg, | = j.
Then, since e' is in e, by the previous lemma, f%(a) = k(@) for some k > ko, but
as fli = fix and g”k = fjk, @ ~ @' with respect to the original frame e. The converse
is trivial by 4.3.3.

Definition 4.3.6. Let P := P!/~ and let [a] | [b] € P. Without loss of generality,
P;3a ] be Py We define [a]«[B] := [fi;(@)b](= [a*;i(b)]). Also, let x([a]) := (a).
We call P the universal blowup.

Theorem 4.3.7 (Universal blowup). Let P = P be the universal blowup of a coreless
polygroup chunk P with respect to some frame e = (e;, e;;). Then, (P, *) is a group
chunk and 7 is a (generic) epimorphism of type 3 with bounded fibres.

Furthermore, for every group chunk Z with a frame f and every epimorphism @ :
Z — P such that o(f) = e (i.e. p(z*t) € p(2)xp(t) for z | t and p(27 1) = p(2) ),
there is a unique ¢ : Z — P such that ¢ = 7o .

I
7) ™
P

Proof. The multiplication is well-defined by 4.3.3 and 4.3.1: let us say we have P>
a | be Pj,andlet a ~ a’' € Py, witnessed by some ¢; | aa'b, i.e. fy(a) = fr(a’), and
suppose @’ | b. Let é&:= fij(@) * b, and let & = frj(@) = b. Now, applying fj1 to the
last equation, we get that

Fiu@) = Fulfies (@) * fu(0) = fra(@) * fu(b) = fa(@) * f(b)-
Applying fi; to both sides yields & = f;;(a) * b= &.

For generic independence, let P; 3 @ | b € Pj and let & := f;;(@) *b. We have that
ae; | bej,sob | ae;e; and by generic independence of P, since ¢ € axb, ¢ | ae;ej, so
cej | ae; and é | @. To see that [a] - [b] | b, we can check in a similar way as above
that a fﬂ(g) L b. Associativity, invertibility and the fact that « is of type 3 follow
from the corresponding properties on each P;.

For the ‘furthermore’ part, let z € Z and let z; := z * f;, ;2 = f{l * z and
put ¢(2) := [(p(2), 0(iz), ©(2))] for big enough i. It is clear that ¢ : Z — P since
0(z) = (2 * fi) € p(2) * ¢; and similarly (;z) € ;' * p(2). O
Remark 4.3.8. In the statement of the theorem, if we require that ¢ be a generic
epimorphism of type 3, we can omit the assumption that there is a frame f in Z with
©(f) = e because e can be pulled back via ¢ to give such a frame.

Proof. Let the frame e = (e;, e;5) be given and pick an arbitrary fo such that ¢(fo) =
eg- Since for every i, ey € e; * €;9, using the fact that ¢ is generically of type 3, we
can find f; and f;o such that fo = f; * fio and ©(f;) = ei, ©(fio) = ein- As Z is the
group chunk, this extends uniquely to a frame by f;; = fi;1 and f;; = fio * foj- O
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CHAPTER 5

Applications and geometric simplicity

The aim of this chapter is to demonstrate how the group configuration theorem
obtained through the previous chapters gives rise to ‘geometric simplicity theory’,
i.e. the set of methods commonly referred to as geometric stability can be partially
extended to simple theories.

The fact that the group configuration at the moment produces an almost hyper-
definable and not hyperdefinable groups creates some difficulties, and our hope is that
they are not significant. Much more serious obstacles come from the lack of knowledge
on groups in simple theories; for example, whether an SU-rank 1 group hyperdefinable
in a simple theory has a ‘large’ abelian part.

In Section 5.1, we solve what might be considered a fundamental problem in the
classical theory of hypergroups (see the extensive literature in [Co]) for the class of
almost hyperdefinable polygroups in simple theories: given a polygroup of that class,
we find a group in the same class which is ‘closely’ related to it. We were quite surprised
that the classical literature lacks the ability to (nontrivially) answer such questions
and our hope is that this result will initiate some development. This problem, posed
by myself, was first approached by Wagner and myself using stabilisers and the idea
of using the universal property of the group chunk theorem is by Ben-Yaacov.

In Section 5.2 we finally decide to recover the space corresponding to the original
partial generic multiaction and not just the group, and use it in Section 5.5 to prove
that pseudolinearity implies one-basedness in an w-categorical simple theory. The
action was originally defined by myself in a similar fashion for the case of a polygroup,
but there I was lacking the generic faithfulness. The present state of these two sections
comes from collaboration with Wagner.

In Section 5.3 we show that at least in an w-categorical theory, our group config-
uration theorem gives an interpretable group. It is due to myself.

Section 5.4 shows that an (w-categorical) one-based, SU-rank 1 structure interprets
a vector space over a (finite field) division ring as a stable reduct, thus partially proving
the stable forking conjecture mentioned in Section 1.2. Also, we argue that this is the
first (two) case(s) of a Zil’ber-type trichotomy for simple theories. I presented a proof
of this in [To], but the proof had an omission which was later patched up with help of
Wagner. Independently, the same result was obtained by de Piro and Kim in [dPK]
by an ad hoc method and partially by Vassiliev in [Va] using generic pairs.

5.1. Getting a group from a polygroup

Definition 5.1.1. T'wo polygroups P; and P, are said to be polyisogenous, if there is a
subpolygroup H < P; x P» such that the first projection of H has a bounded index
in P; and the second projection of H has a bounded index in P, and kernels of both
projections are bounded.

Intuitively, H induces a bounded-to-bounded correspondence (almost a homomor-
phism) between big parts of P; and P;.

Remark 5.1.2. In a simple theory, with every gradedly almost hyperdefinable polygroup
we can associate a gradely almost hyperdefinable group which is polyisogenous to it.
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Let P be the polygroup in question, coreless without loss of generality, and observe
its generic part X, which is a polygroup chunk by 3.3.15. We can blow it up, obtain
a group chunk and use it to generate a group G. In particular, there will be a generic
element ¢’ € G interbounded with a generic element g € P (over an independent
parameter which we suppress for the moment).

Look at H := stab(gg') < P x G. Since stab(g) x stab(¢') < H, it is clear (by
3.6.5 and 3.6.6) that the first projection of H is of bounded index in P, and the
second is of bounded index in G and the fact that the kernels of both projections are
bounded should follow from the fact that g and ¢’ are interbounded, so H will realise
a polyisogeny between P and G.

Unfortunately, the polyisogeny constructed above need not be gradedly almost
hyperdefinable, but we do not attempt to refine the result since a much more explicit
correspondence can be obtained using the universal property of the group chunk as
follows.

Theorem 5.1.3. Let P be a coreless gradedly almost hyperdefinable polygroup in a
simple theory. There is a gradedly almost hyperdefinable group G which is a bounded
covering of P, i.e. with an epimorphism 7 : G — P of type 3 with bounded fibres.

Proof. We show how to get the group using e.g. the blowup from Section 4.2 (it would
be more ‘universal’ to use the blowup from 4.3, but then the group would be ‘manifold-
like’); let X be the generic part of P and let 7 : X, — X, be a blowup with respect
to some frame e. By the universal property from 3.5.1 and 3.5.2, if G, is the group
generated by X,, 7 lifts to 72 : G, — P of type 3.

Let us show that 72 : G, — P is surjective (we work at the level of ultraimaginar-
ies). Let a € P and let g | ae, ¢’ | age be generics of P (in particular, g,¢" € X,).
Let h € gt *a (so h\Lae) and b’ € ¢! xa (so h' | aghe). Clearly h,h' € X,,
too. Then, a € g*xhNg' * k', so by the transposition property (assomatlwty) there is
deglxg Nhxh'~L and d € X,. By surjectivity of m, there is d € X, with n(d) = d,
and, since 7 is generlcally of type 3, we can find §,§, h, h’ € X, with w(g) = g,
m§) =g, nh)=h, a(k)=h andd =G '-§ —h-m Leta:=g-h=4g - h.
Then, 72(@) € 72(§) * 72(h) N72(§') * 72(K') = g« hN g’ * ', and therefore must be
core-equivalent to a.

For boundedness of fibres, let a € G, and pick a generic § \Le a. Let 7%(a) = a; if
(a; : i < k) is an unbounded sequence of ae-conjugates of @, we may refine it and get
an age-indiscernible sequence (@; : i < w) such that 7%(&;) = a (when we speak about
indiscernible sequences of ultraimaginaries over ultraimaginaries, it is understood that
it holds for some representatives). Then, writing g} := § * a;, we have that (g} : i < w)
is age-indiscernible, but since a € m(§)~! * m(g}), and § is bounded over 7(g), we get
that g; is bounded over age and the sequence must be constant. O

Remark 5.1.4. (Added in proof). In the above, since 7 is onto of type 3, we get a (weak
form) of a structure theorem for gradedly almost hyperdefinable coreless polygroups
in simple theories: P = G // m, see [Cr] for further analysis of quotients of polygroups
by homomorphisms of type 3. By analysing the structure of the blowup further,
Ben-Yaacov in [BY1] obtains much more: P = G // H for some H < G.

5.2. Reconstructing the action

Thus far, we have always constructed a group starting with a good enough partial
generic multiaction 7(z,y,z), where 7(f,a,b) intuitively means that f acts on a’s
and b’s. However, we have ‘forgotten’ about reconstructing this original action, even
though we have proved the space chunk theorem and have formulated some blowup
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constructions for polyspace chunks. There is a good reason for postponing the discus-
sion of the action part until now: it is hard to do at the level of the polygroup chunk
(we cannot control ranks of objects involved, and cannot obtain the action generically
faithful), so we choose to do it after the blowup procedure has been done.

Let us start with a hyperdefinable polygroup chunk obtained in 4.1, ie. (af-
ter adding the parameters to the language), we will be working with (Py,*), Py =
Germ(w), such that y,y' € f(z), for f € Py, z € Arg(w), f | =, we have that
bdd(y) = bdd(y’), and if h,h' € fxg, f | g € Py, bdd(h) = bdd(h'). Thus, P, is a
group chunk modulo the core relation denoted by R in this section.

Definition 5.2.1. Let X := {(g9,z) : ¢ € Po,z € Arg(m),g | =}. We shall write
(g9,7) ~; (¢',2') if there are h, h' € Py, each independent of gzg'z’, with h(z) =~ h'(z')
and g* b~ R;g' « h'~'. Tt is clear that every ~; is symmetric, and for every g | z we
can find h | gz such that z € dom(h), so ~; is reflexive as well. Let ~ be the direct
limit of ~;’s.

Lemma 5.2.2. The relation ~ is a gradedly almost hyperdefinable equivalence relation.

Proof. To see almost hyperdefinability, let Ry witness the almost-hyperdefinability of
R, and let g/R C U,<, 9a/Ro. Suppose (¢',z") ~; (g,); there will be h | gzg'z’
and B | gzg's’ with h(z) ~ h'(z') and g * h " *R;ig’ * K'~'. We may assume that
hh! \ngg,w, g. Let ¢"R;g such that ¢" «x h 'R;g’ * R~ for some fixed Ry, and let
gaRog". Then go+xh *Rog'xh' ' and h and h' are independent of gozg'z’, 50 (ga, ) ~2
(¢',2') and therefore ~9 witnesses the almost hyperdefinability of ~.
For graded tramsitivity, if (g,z) ~; (¢’,2') and (g,2) ~; (¢",2"), let h | gzg'’,
b | gzg'x' withy € h(z)Nh'(z') and gxh~'R;¢g'«h' ™, and by L gzg"2", hy | grg"z"
with ' € hy(z) Nha(z") and gxh]' R;g" *hy . We may assume yhh' J/gmg,z, g"z" and
y'hiho \ngg,,x,, g'z'hh'y. Since {z, h, b1} is independent, y'zy |= ht := Cb(y'y/hhy) €
hxhit. Also, z"y'y = b := Cb(z"y/hthy) € hl xhy, since y' | hthy (from above, we
can get h | y'hihg, so by generic independence and ht € h* hT', Bt | 4/hs). Then,
y € h'(¢") N A" (z") and
g b =g h T =g (BT xR ) =g (g A7) AT

_ -1 _ -1 1
= (g" * hyt) * BT =g g" % (hylxhT ™) =1 g" « W,
for some constant 1 and j' depending only on j, so (¢',z') ~ (¢”,2") for some k

depending only on % and j. d
We denote the ~-class of (g,z) € Xy by [g, z].

Lemma 5.2.3. The hyperdefinable relation, given by (k,z) € f * (g,z) if and only
if f | gz and k € f * g, induces a gradedly almost hyperdefinable generic action
* : P()/R@XQ/N — X()/N.

Proof. It is enough to check that if e.g. (g,z) ~; (¢',2") and f | gz, f | ¢'z’, then
there is j such that for every k € fxgand k' € fx¢', (k,z) ~; (K',2"). Let h | gzg's’
and h' | gzg'z' with h(z) =~ B'(z') and gx h ' Rig’ «h' ' and let k € fxg, k' € f*g'.
We may assume that hh' \Lgacg’z’ f, which implies that h | kzk'z' and h' | kzk'z'

and f | gh, f | ¢'h'. Thus, by regularity of R, f (g*h™" )Ry f (¢’ * h'~") for some
i' and k x h~1R;Kk' * b ~! for some higher j, showing what was required. O

Lemma 5.2.4. Ifzy = f, 'y = f', then [f,z] = [f,2'].
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Proof. Find g | ff'za'y such that yt |= g for some ¢. Then, zyt = h := Cb(zt/fg) €
gxf and z'yt |= b’ := Cb(z't/f'g) € gxf'. Thus,t € h(z)NK (z') and fxh 1 Rg 'Rf'*
K1, witnessing (f,z) ~ (f',z'). 0

Proposition 5.2.5. (P, X) := (Py/R, Xo/~, %) is a gradedly almost hyperdefinable space
chunk where the action is generically faithful and generically transitive.

Proof. Generic associativity and invertibility of the action follow easily. For generic
faithfulness, let [g,z] | frffp such that fr * [g,z] = fg * [g,2]. We may assume
gz | ff' and let k € fxg, k' € f'* g such that e.g. [k,z] = [K',z]. Let h | kzk'
and B/ | kak' such that h(z) ~ B'(z) and k * h~'RE' + B'~'. Since z | g, it follows
that z | gff' and = | kk', which, together with h | kzk' implies z | hkk', and, as
h € bdd(hkk'), x | hh' and therefore by h(z) ~ h'(z) and reducedness, we conclude
h =h'. Then, k * h~'REK' « h~! implies that kRE' and finally fRf’.

In order to check generic transitivity, let z | z = Arg(n). We can find zy = a
and zy' = b for some a,b € P. Since Arg(r) is a Lascar strong type, y =X ¢/, y | =,
y' |z and z | z so by the Independence Theorem we may assume (renaming a and
b) that y' =y | zz and zy | a, zy = b. By 5.2.4, it follows that [a, z] = [b, 2], which
clearly implies generic transitivity. O

Lemma 5.2.6. For any g | =z, [g,z] and = are interbounded over the independent
parameter g.

Proof. Claim: If zy = f, then [f, z] € bdd(y).
Let f'z' realise the nonforking extension of tp(fz/y) to fzy. Thus, f'z’ \Ly fz and

z'y = f' so by 5.2.4, [f, z] \Ly[f, z] implying [f, z] € bdd(y).

Claim: For any g and z, [g,z] | g¢.

For any [g,z] it is possible to find f | gz such that zy = f for some y € Arg(m).
Then, for k € f+g ', k| gr and [f,z] € k * [g,z]. Notice that if zy | f, then
[f,z] L f since [f,z] € bdd(y). But this will again be true for any [g, z]: from z \Lf g

we get that [f,2] | fgk s [f,2] |, f, and then [g,2] | g as [g,a] | .
Now we will be able to obtain z € bdd([g,z],9): if 2’ =[y4, =, then [g,2] =

[g,2'], so there are h and h', each independent from gzz’ with h(z) =~ h'(z') and
g+ h"'Rg * i’ '. Therefore hRK, implying that h and &' are interbounded and
eventually bdd(z) = bdd(z'). In fact, zQz', the (I x w)-graded relation @ being
the direct limit of relations @;,,, where @;,, is the n-th transitive closure of ();; and
zQi1a’ if there are hR;h', hh' | zz’ with h(z) = h'(z'). So z¢ € dcl([g,z],g) and
thus [g,z] and z are interbounded over the independent parameter g. O

Applying the space chunk theorem 3.5.3 yields:

Corollary 5.2.7. Starting with a partial generic multiaction w(z,y,z) as in 4.1, we can
get a gradedly almost hyperdefinable space (G, X) where the action is faithful and
transitive. Furthermore, over some independent parameters a generic element of G is
interbounded with an element of Germ(w) and a generic element of X is interbounded
with an element of Arg(w).

5.3. Group configuration in w-categorical theories

Since our result in general is not completely satisfactory (the group living on
almost-hyperimaginaries and not necessarily hyperimaginaries), we might attempt to
improve it under the assumption of w-categoricity. Extra care is required, however,
to stay within a finite power of €°4, as expounded below.
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My aim here is to show that it is indeed possible, starting from a good enough
configuration on finite tuples, to get an interpretable group.

Remark 5.3.1. Recall that in an w-categorical theory, if a, b are finite tuples in €4, then
Cb(a/b) will be finite, and also it is possible to replace b by an (interalgebraic) finite
tuple by such that tp(a/by) is equivalent to Istp(a/b). Furthermore, this finiteness is
uniform: if a’s belong to a sort S; and b’s belong to a sort Sy, since there is only
finitely many types tp(ab), all the possible canonical bases of the form Cb(a/b) are
contained in finitely many sorts.

Proof. The relation R(a,a’,b) iff a =L a’ (for some finite tuples a, a’, b), is an invariant
relation so it is definable by w-categoricity. Then the definable set R(z,a,b) is clearly
equivalent to lstp(a/b) and for by we can take the name for it. O

We will profit from this remark in the w-categorical case for the following reason:
in order to use w-categoricity, we need to keep working over (uniformly) finite tuples of
imaginaries. In the general case, however, to achieve completeness in y of some generic
action mw(z,y, z) = Istp(fab), needed in 2.3.10, we typically replace a by bdd(a), which
would take us into considering infinite tuples even if f,a,b were finite. But in w-
categorical case, it is possible to replace a by a finite tuple ag (by 5.3.1) depending on
tp(fb/a) so the completion in y will still live on finite tuples. We formalise the above
discussion as follows.

Lemma 5.3.2. Completion with respect to any of the variables is a finitary opera-
tion, i.e. if w(x,y, z) is a type-definable partial generic multiaction on finite tuples of
imaginaries, the completion in any of the variables is on finite tuples of imaginaries.
Furthermore, reduction with respect to any of the variables is a finitary operation as
well.

Proof. Let us consider e.g. the completion in z. The relation LS(yz,z,y'2',z'), true
if z = 2’ and yz =L 32’ is definable by w-categoricity. Then, the first variable in the
completion 7 (compare to 2.2.1) is of the sort (yz,z)/LS and thus imaginary.

For reduction, if e.g. 7(z,y,2) is complete in z, observe the transitive closure ~
of f ~1 f"if there is = | ff' with f(z) = f'(z). This is a definable relation by
w-categoricity and therefore the first variable in the reduction 7 is of the imaginary
sort x/~. O

Theorem 5.3.3. An w-categorical simple theory with an algebraic quadrangle on finite
tuples of imaginaries interprets an infinite group.

Proof. Let us start with an algebraic quadrangle (a,b,c,z,y, 2) on finite tuples. By
the above lemma, we may assume the generic partial multiaction 7 := Istp(byz) is
complete in all the variables without destroying finiteness. Now, as in 2.4.2, it follows
that 7—! o 7 is generic and we can apply 2.3.10 to it and obtain a polygroup chunk
(P, *).

Since P = Germ(7~" o ) is obtained by composing two multiactions, completing
the result in the first variable and then reducing it, and all these operations are
finitary, we obtain an interpretable polygroup chunk (P, *). The core relation on P,
being invariant, will become definable by w-categoricity, hence the blowup (choose e.g.
the classical blowup of 4.2 which only requires finitely many parameters), and later
the construction of the group from the group chunk can be done definably. O

1

Using the results from Section 5.2 and arguing in a similar way, we get:

Corollary 5.3.4. An w-categorical simple theory with an algebraic quadrangle on finite
tuples of imaginaries interprets an infinite space.
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5.4. One-based case

Lemma 5.4.1. In a one-based theory, for every partial generic multiaction 7, 7' o

is generic.

Proof. Clearly, if f € Germ(w) and ab = f, then f = Cb(ab/f) € bdd(ab) by one-

basedness (1.2.22). Now, let abc = h € go f, so a |, fgh. In particular, since f | g,
we get f | g and thus b | c. Then, as above, h € bdd(ac) and f € bdd(ab), so

h |, fandh | f. Similarly k| g. O

We will make significant use of the following result ([W], 4.8.18), which relies on
the fact that every group in a one-based theory is bounded-by-abelian ([W], 4.8.4):

Theorem 5.4.2. Let G be a hyperdefinable connected group in a simple theory, and
suppose that a generic type p of G is locally modular and regular. If R denotes the
division ring of p-endogenies of G, then a tuple (go,-..,g,) in G is dependent if and
only if there are r; € R, not all zero, with > 7" ri(g;) C clp(0).

Theorem 5.4.3. Let T be an w-categorical, SU-rank 1, one-based nontrivial. Then T
interprets a vector space over a finite field (as a stable ‘reduct’).

Proof. Since T is one-based nontrivial, we can get a pairwise independent, non-
independent triple {a,b’,c} such that each element is bounded over the other two,
as in [BH]. By w-categoricity, find a finite tuple b such that tp(ac/b) is equivalent to
Istp(ac/b').

Then, 7 := stp(abc) is a generic action, invertible, complete in the second variable,
Arg(n) is a (Lascar) strong type and, by 5.4.1, 7—! o 7 is generic. Using the group
configuration machinery (noting that all the germs will be (uniformly) finite tuples by
choice of 7w and w-categoricity as in 5.3) we get a group G (interpretable over finitely
many parameters) with SU(G) = 1. Thus, G° := G} is a connected group of SU-rank
1 and by 5.4.2, the ring of endogenies is a division ring and induces a vector space
structure on G°.

In what follows, we will show that endogenies have boundedly finite order, so by
Wedderburn’s theorem the ring of endogenies will actually be a finite field. Since
every endogeny is induced by a definable subgroup of G¥ x G°, we can identify it with
an imaginary element (the code of the subgroup). So let r be an endogeny, and let
v € G° be a nonzero vector. By w-categoricity, there are only finitely many types
among {tp(r‘v/rv) : i € w}. But, since all 7* are defined over 7, we get that there are
m,n such that ™ = r™ and so r is of finite order. Pick now any two endogenies r and
s. If o : rv =, sv, then o(r)v = sv, so since we're in a vector space, o(r) = s and it
follows that r and s are of the same order. By w-categoricity again, there can be only
finitely many orders of endogenies, as required. O

Remark 5.4.4. Notice that w-categoricity is not essential in the above. Reproving 5.4.2
on 1-based groups for 1-based gradedly almost hyperdefinable groups gives directly a
gradedly almost hyperdefinable vector space over a division ring.

We can thus view this result as a first (nontrivial locally modular) case of a Zil’ber-
type trichotomy for simple theories. The remaining non-modular case would involve
studying a generalisation of Zariski structure framework from [HZ] to simple struc-
tures. I have already done some preliminary investigation in the direction of pseudo-
Zariski structures, aimed at characterising Zariski closed sets over pseudofinite (or
bounded PAC) fields.

Furthermore, the result can also be viewed as a first satisfactory step towards
the stable forking conjecture, since inside a simple structure we have found a stable
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one where the independence is clearly governed by the stable structure (independence
coincides with linear independence).

Remark 5.4.5. A careful reader might have noticed that we have not used the full
potential of 5.4.2 in the above, since the group we obtained was of SU-rank 1, so its
generic type was also of SU-rank 1 and thus regular, but the theorem will work for
any group with a regular generic.

Let p be nontrivial regular locally modular type in a (w-categorical) simple the-
ory. Then, rewriting all of the group configuration techniques from this thesis in the
language of regular types as in [P3], Chapter 7, will give a (definable) group G with
a regular generic type, which will again yield a vector space by 5.4.2. The details of
this will appear in [TW].

Remark 5.4.6. The purpose of this remark is to persuade the model-theoretic commu-
nity that, at least in an w-categorical case, references to the classical results about
pregeometries, e.g.

- ([Ar]) a projective geometry of dimension not less than 4, in which each closed
set of dimension 2 contains at least 3 elements, is isomorphic to a projective
geometry over some division ring;

- ([DH]) a locally projective (i.e. non-trivial and locally modular), locally finite
geometry of dimension greater than 4, in which all closed sets of dimension
2 have the same size, is an affine or projective geometry over a finite field;

can be replaced by a model-theoretic construction. For example, if D is a solution set
of an SU-rank 1 Lascar strong type, and it is nontrivial, then [dPK] have shown that
for each independent a,b € D, cl(a) Ucl(b) is properly contained in cl(ab), so it makes
sense to define a x b := cl(ab) — (cl(a) Ucl(b)). If D is modular, it is easy to check
that * is generically associative, and Steinitz exchange implies generic invertibility
(where a ! = a), so (D, *) will be a definable polygroup chunk by w-categoricity. We
can make it coreless by dividing out by the core relation and then apply the blowup
procedure to obtain a group chunk, and eventually a group and even a division ring.

The construction from this section is an adaptation of two famous classical con-
structions: firstly, the group configuration corresponds to the (Hilbert), Veblen-Young
and von Neumann construction of the division ring from a projective geometry, and
then, once an abelian group has been obtained, one might study the nearring of endo-
morphisms of it; if one is lucky (typically in some linear-like framework), this will be
a ring or even a field. In this case, however, we weren’t lucky, we had one-basedness.

5.5. Pseudolinearity implies linearity
We will need this technical result:

Lemma 5.5.1. If z and z' are interbounded, and e := Cb(z/B), € := Cb(z'/B), then
e and €' are interbounded.

Proof. We have z | B and 2’ | , B, but since bdd(z) = bdd(z'), from the first we
get ' | B which implies ¢’ € bdd(e) and from the second z | , B which implies
e € bdd(e). O

Lemma 5.5.2. If D is k-linear, then G(D) (as defined in 1.3.8) is k-linear.

We include this lemma just for completeness, as we will not need the full power of
it because we will only deal with plane curves of the form Istp(ad’/C), where o/ € €4
is actually interalgebraic with some real b, so the fact that SU(Cb(ab'/C)) < k will
follow from the previous lemma and k-linearity.
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Proof. Let z,y € G(D), B C G(D) such that SU(zy/B) = 1, z | y. Without any
loss of generality, B C D. For zy, find an independent finite set F' U {a,b} C D
such that zy is interalgebraic with ab over F, zy | F. Take F' realising a nonforking
extension of tp(F/zy) to zyabBF; then F' | zyabBF. Since F =4y F', let o't/ such
that abF =g, o'b'F'. Now acl®(zyF") = acl®(a’b'F").
Claim: SU(a't'/F'B) = 1. To prove the claim, note first that a6’ | ., B; otherwise,
we would get that zy | B which would be a contradiction. If SU(a’d’/F'B) = 0, then
z,y € acl(F'B) and subsequently z,y € acl(B), again a contradiction.

Denote by e := Cb(zy/B) = Cb(xzy/BF") (so e € bdd(B)), and €' := Cb(a't'/F'B).
By the above claim and linearity of D, SU(¢’) < k. By an argument similar to
5.5.1, since a'b’ |, F'B, in particular a't’ | ,,, B so by interboundedness over F",
2y |, B so e € bdd(e'F'). Therefore, SU(e/F') < k, but since e € bdd(B) and
B | F', SU(e) = SU(e/F') < k and we are done. 0

Let us state some results of that shall be used significantly below, allowing us to
find large abelian parts in our group.

Theorem 5.5.3.

(1) ((Mp], [W], 6.2.35). An w-categorical simple group is nilpotent-by-finite.

(2) (EW], [W], 6.2.32). An w-categorical supersimple group is finite-by-abelian-by-
finite.

Theorem 5.5.4. A pseudolinear set D in an w-categorical simple theory is linear.

Proof. Let D be k-linear, and pick a plane curve ¢ = Istp(bc/a) (a,b,c finite) such
that for ayp := Cb(gq), SU(ag) = k. By w-categoricity, find & such that tp(ac/b’) is
equivalent to 1stp(ac/b). Then, by 5.5.1, SU(Cb(b'c/a)) is still k, and it easily follows
that m := Istp(a,b,c) is a partial generic multiaction, invertible, complete in the
second variable, 7! o7 generic, Arg(n) is a Lascar strong type, the only possibly non-
trivial claim being that 7—! o 7 is generic, shown as follows: pick a; | as = Germ(n)

o —

and ag € al_1 oag. Then SU(a3) < k by 5.5.2, as ag is again a canonical base of a
plane curve in G(D). From rank considerations, we get a3 | a; and a3 | as.

Thus, it gives rise to an interpretable group (similar remarks as before about
getting this interpretable on finite tuples apply); moreover, using Section 5.2 and the
space chunk theorem 3.5.3, we can get a group G of SU-rank k acting on a set X of
SU-rank at most 1; in fact, below we will only need the generic part of that action
and the fact that it can be obtained generically faithful.

By 5.5.3(2), G is finite-by-abelian-by-finite, and in fact we may assume, after di-
viding by a finite normal subgroup that G is actually abelian-by-finite, so in particular
Z(G% =G0 (GO := G8) is infinite. We continue as in [P3], after Lemma 2.4.21.
Claim: If f € G® and z € X, z | f, then f € dcl(z, f - 7).

Let g € G° be such that tp(g/z, f - x) = tp(f/x, f - ). In particular g-z = f - z. Let
f' € Z(G°) such that SU(f') > 1 (as Z(GY) is infinite) and f' | fgz.

Let y := f'-z. We claim that f' J zy. Suppose otherwise; then f' | zy implies
f! L,ysoy L vy and thus y € bdd(z). Similarly we get z € bdd(y). Now pick "
realising the nonforking extension of Istp(f’/z) to zf'. Since y € bdd(z), f" -z =1y
too, and thus (f~'- f").-z=2=1-2,and z L f'f" so by generic faithfulness of the
action, f'~'. f =1, implying f’ € bdd(0) which contradicts SU(f') > 1.

From this, it easily follows that f'-z | fgand z | ff',z | gf'. Then

fry=Ff-(fo=0(-fz={("fae=f(f 2
=f(ga)=("-9) - z=(@-f)ae=g-(f-z)=9g-y
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Thus, by generic faithfulness, f = g, proving the claim.
In the above, let f € G° with SU(f) = k. By the claim and f | z, we have
SU(f) =SU(f/z) < SU(f - z/z) < 1, which implies k = 1. O

Using the fact that linearity is equivalent to one-basedness (1.3.10), we obtain:
Corollary 5.5.5. A pseudolinear set D in an w-categorical simple theory is one-based.

Remark 5.5.6. Again, if we are willing to rewrite the group configuration techniques
in the language of regular types of [P3], Chapter 7, we can rephrase the above result
as follows.

Let p be a regular type (over ) in an w-categorical simple theory, k-linear in the
sense that whenever ¢(z,y) is a p-minimal extension of p(z) U p(y) with SU,(¢q) =1
(plane curve), then SU,(Cb(q)) < k, and weight k is achieved for some plane curve.
Then, an analogous proof as above in the framework of regular types would yield k£ = 1
and p is locally modular (where the appeal to 5.5.3(2) is replaced by the fact that if
p is a finitely based regular type, a p-connected group of finite SU,-rank is (central
bounded-by-abelian)-by-bounded; it is conceivable that, with some additional work,
even 5.5.3(1) should suffice). This will be expounded in [TW].
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