INDEPENDENCE, MEASURE AND PSEUDOFINITE FIELDS

IVAN TOMASIC

ABSTRACT. We give a measure-theoretic refinement of the Independence The-
orem in pseudofinite fields.

1. INTRODUCTION

It was an important event in model theory when Hrushovski isolated the
property of perfect bounded pseudo-algebraically closed fields (a class which in-
cludes pseudofinite fields) now known as the Independence Theorem in [13]. The
generalisation of this theorem, by Kim and Pillay ([17], [16]), has given rise to the
study of simple theories, a whole new area of model theory.

Suppose we work in a context with good dimension theory, like pseudofinite
fields. The Independence Theorem says that, if we take a complete type p over a
model E, and two extensions p; of p to K; O E of the same dimension, ¢ = 1,2,
with independent parameters, Ky | 5 K2, then the partial type p; Ups is again of
the same dimension as p.

In the special case of pseudofinite fields, besides dimension, we have a way of
measuring the definable sets, described in [2] and [10], and therefore a chance of
giving a finer analysis of the situation. Our goal is to show that the types p; and
p2 above are in fact independent as events over p, when considered in a suitable
probability space. Intuitively, the measure comes from uniformities in counting
the number of rational points over finite fields, and probabilistic independence
is a consequence of randomness and equidistribution phenomena related to finite
fields.

Moreover, we wish to give a particular proof of the above, which emphasises
the interplay between independence and fibre products. In some sense, our for-
mulation of the Independence Theorem is an instance of the Kiinneth formula in
cohomology. Such a development gives rise to speculations regarding the existence
of a unified theory of independence, strongly related to fibre products. Of course,
motivating examples such as linear independence in vector spaces, linear disjoint-
ness in fields and probabilistic independence all have interpretations in terms of
fibre products.
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This paper may be of use to algebraists wishing to understand what the
abstract Independence Theorem actually means in a familiar context. In our lan-
guage, it becomes so natural that it is actually expected to hold. Certainly, we
were very tempted by the possibility to generalise and conceptualise, until it all
becomes trivial. A posteriori, our measure-theoretic formalism is essentially just
a variant of the more precise cohomological methods developed for finite fields by
the Grothendieck’s school.

We develop a significant amount of theory for pseudofinite fields, notably
various versions of Cebotarev’s Theorem, L-functions and Dirichlet density, which
we expect to be useful in other applications. For example, 6.8, will be indispensable
in the study of ‘random’ reducts of pseudofinite fields, started in [21].

The underlying idea of the paper is relatively straightforward, and consists
of these major steps:

(1) Definition of fibre products and independence of measure spaces.

(2) Finding the correspondence between the measure spaces of definable sets
and certain Galois groups.

(3) Inthe context of the Independence Theorem, the appropriate Galois groups
are independent, and thus, by step (2), the measure spaces of definable sets
are independent as well.

On the other hand, concepts and techniques involved in precise statements of the
results come from widely separated areas of mathematics (like model theory, repre-
sentation theory, algebraic and Diophantine geometry, measure theory, functional
analysis etc.), and this presented us with difficulties in the exposition of the mate-
rial. In an attempt to make the paper as self-contained as possible, we give quick
surveys of the necessary definitions and facts. The organisation of the paper is as
follows.

Sections 2 and 3 contain introductory material regarding measure theory
and representation theory, respectively. They are used throughout the paper. In
particular, 2 completes step (1).

In Section 4, we give a description of types and definable sets in pseudofinite
fields, our main objects of study, in terms of conjugacy classes in certain Galois
groups.

Section 5 contains a short review of cohomological methods for studying finite
fields, and shows how one can very elegantly obtain definability results over finite
fields using Deligne’s theory of weights. If the reader is willing to accept 6.1 as a
fact, everything in this section except 5.1 and 5.5 can be completely avoided.

In Sections 6, 7 and 8 we develop the theory of integration related to the
measure from [2] and [10]. In Section 6 we are able to integrate definable C-valued
functions on varieties (and on definable sets). Section 7 introduces definable L-
functions in pseudofinite fields and the notion of Dirichlet density. The finitely-
additive measure from these two sections are completed to the full measures in
Section 8. The main results, establishing step (2), are 6.8, 7.7 and 8.3.
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We prove our measure-theoretic Independence Theorem in Section 9, and
show it is indeed a refinement of the original. This is step (3) mentioned above.

Lastly, in Section 10, we give a motivic interpretation of the Independence
Theorem as a kind of a Kiinneth formula.

Throughout the text, we have attempted to use notation which is as standard
as possible. One small exception is the complex conjugation, which we denote by
V. on one hand to stress the connection between the conjugated character and the
contragredient representation, on the other to distinguish it from the notation k
for the algebraic closure of a field k. The residue field at a point s of a scheme is
denoted k(s). For a scheme S, a variety over S is a separated and reduced scheme
of finite type over S. In most of our applications S will just be the spectrum of a
field k£ and in that case we will just speak of a variety over k. We have given our
best to write ‘variety’ instead of ‘scheme’ in the text, and the reader can always
replace it by ‘affine variety’, or just imagine a set defined by a finite system of
polynomial equations. Given a variety X over k, by X we shall denote the variety
X Xgpec(k) Spec(k) (X considered over k). Geometric properties of a variety X refer
to the corresponding properties of X. In particular, X is geometrically irreducible
(resp. mormal, connected) if the corresponding X is. For a scheme X and a field
k, the set of k-rational points, X (k), is the set of all morphisms Spec(k) — X.
Whenever needed, we shall assume that the pseudofinite field we are working
over is ‘large’: sometimes this can just mean ‘uncountable’, sometimes ‘of large
transcendence degree’, and sometimes ‘saturated’ in the model-theoretic sense.

The author would like to thank Nicholas Katz and Richard Pink for their
help with some questions regarding étale cohomology, as well as the referee for his
enthusiastic remarks.

2. MEASURE SPACES

For the basic definitions and results of this section we refer the reader to
[9]. Let X be a compact topological space (metrisable). A measure (or complex
measure) on X is an element of the dual of the Banach space Cc(X) of complex
valued continuous functions on X. In other words, it is a linear form f +— u(f) on
Cc(X), bounded in the sense that, for some a,

() < all 1,

for all f € Cc(X), where | f|| = sup,ex [f(z)]-

Let now X be a locally compact space (metrisable and separable). For every
compact subset K of X, let us denote by Kc(X; K) the subspace of the vector
space Cc(X) consisting of functions with support contained in K. By K¢(X) we
denote the union of K¢(X; K), where K ranges over all compact subsets of X,
i.e. the vector space of complex valued continuous function on X with compact
support.

A measure (or complex measure) on X is a linear form p on K¢(X) with
the following property: for every compact subset K of X, there exists a number
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ar > 0 such that for all f € K(X; K),
() < akllf]-

When we wish to specify the variable of integration, we write [ f(x) du(x) instead
of u(f). We assume the reader is familiar with the usual way of extending the
class of functions that can be measured (cf. [9]) and we freely use the notation
L'(X) (resp. LP(X)) for the Banach space of u-integrable functions (resp. p-
measurable functions f with |f|? u-integrable). We also use L (X) for the space
of locally integrable functions, with topology induced by the family of seminorms
f — [ |f1k| ranging over the compacts K of X.

Remark 2.1. Let B be a base of clopen sets for the topology of a compact space
X. Let us call a function f € C¢(X) B-continuous, if for every open V C C,
f~Y(V) € B. Suppose we have a bounded linear form u on B-continuous functions.
Then it is possible to extend it (uniquely) to a measure on X, by the following
argument. Given f € Cc(X), there exists a sequence (f,,) of B-continuous functions
such that f = lim f,, in the sense of the norm || - ||. Then clearly p(f) := lim u(f,)
is linear and bounded, i. e., a measure.

Definition 2.2. Let (X, ) be a measure space. For f € K(X) and g € L{ (X)),
we write

(f,9)u = n(f - g").
If it is clear from the context which measure is being used, we may write (f, g)x
or just (f,g). We extend this definition for f € LP(X) and g € L9(X), when
1/p+1/q=1.In case p = q = 2, we get the scalar product making L?(X) into a
Hilbert space.

We wish to define the fibre product of measures and therefore we will adopt a
somewhat unusual functorial approach to spaces with measure. The advantage of
this notation will become clear later when we encounter analogous operations on
representations and sheaves. The following considerations are usually formulated
in terms of conditional expectation and conditional probability. For example, our
¢« f below would usually be denoted as E[f|Y].

Theorem 2.3. Let ¢ : X — Y be a continuous map between measure spaces (X, 1)
and (Y,v). Let ¢* : K(Y) — K(X) be the continuous map of algebras defined by
¢*(9) =go¢, for g€ K(Y).

Then there is a continuous linear map (unique satisfying the property (1)
below) ¢, : Li (X) — L (Y), adjoint to ¢* in the following sense:

loc
(1) pu(f-9"g) =v(d«f - g), for all f € K(X), g€ K(Y);
We have the projection formula:
(2) ¢u(f-0*g) = duf - g, for all f € K(X), g€ KY).
The operations * and . are functorial:
(3) (o) =¢"¢", and id" =id;
(4) (pot). = Puths, and id, = id.
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Proof. Let us show the existence of ¢, satisfying (1). Given an f € L{ (X), the

loc

linear form g — u(f - ¢*g), for g € K(Y), is a measure on Y equivalent to v (they
have the same negligible sets), so by the theorem of Radon-Nikodym-Lebesgue,
there is an ¢, f € Ll (Y) satisfying (1) for all g € K(Y'). The linearity, continuity

loc
and uniqueness are straightforward.

Property (2) is a direct consequence of (1); for an arbitrary h € K(Y),
v(g«(f-0"g)-h) = p(f-¢7g-¢"h) = p(f - " (g-h)) =v(d«f - g-h),
yielding that ¢.(f - ¢*g) and ¢.f - g are equal almost everywhere.

Functoriality properties are obvious. O

Remark 2.4. Since ¢*(g") = (¢*g)V, the defining property of the operation . can
be stated in terms of the ‘scalar product’:
(f? ¢*g)ﬂ = (¢*f7 g)l/a
for all f € K(X), g€ K(Y);
Definition 2.5. Suppose ¢ : (X, ) — (Y, ) is a continuous map between measure

spaces. We will call it a map of measure spaces, if p(u) = v, i. e., if u(¢p*g) = v(g)
for all g € K(Y). Equivalently, ¢ is a map of measure spaces if ¢,1 = 1.

By the usual arguments we get the following.

Corollary 2.6. Let p > 1 and q such that 1/p+1/q = 1. There exist
(1) a covariant functor . from the category of measure spaces to the category
of Banach spaces,
b (X,0) = (V1) — i DX, p) — LP(Y,0),
(2) a contravariant functor * from the category of measure spaces to the cate-
gory of Banach algebras,
b1 (X,p) — (Yyv) > 6" 1 LAY, w) — LI(X, p),

extending the functors from 2.8, which are weakly adjoint in the (‘decategorised’)
sense that, given a map of measure spaces ¢ as above, for all f € LP(X,u) and
g€ LYY, v),

p(f - d"g) =v(g«f - g) (alternatively, (f,d*g), = (¢« 9)v)-

Theorem 2.7. Let ¢; : (X;, ;) — (Y,v), i € {1,2} be continuous maps, and let
m; be the projection X1 Xy Xo — X;, i € {1,2}. Given f; € K(X;), let us write
JiB f2 for wi f1 - 75 fa.
(1) There is a unique measure p on the topological fibre product X7 Xy Xo
extending the rule

p(f1 8 f2) == v(d1,f1 - p2.f2)
from ’C(Xl) ®;C(y) IC(XQ) to /C(Xl Xy XQ).
(2) Given f; € K(X;),

(1 X ¢2)(f1 T f2) = b1, f1 - P2, fa, fori€ {1,2}.
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(3) (Base change). For every f1 € K(X1),
T2l f1 R 3014 1.

Proof. (1) We repeat the well-known classical proof of the existence and uniqueness
of the product measure in the relative setting. Uniqueness of u satisfying the rule
from above follows from the fact that the functions from (X7 xy X5) can be
arbitrarily well approximated by functions from K(X1) ®xy) K(X2).

For existence, given h € K(X1 Xy X5), we consider the function

hi(y1) := v(d2.[h(y1,-)]).

By continuity of ¢o, from 2.3, we conclude that hy is continuous and therefore it
makes sense to define p(h) := v(¢1,h1). This turns out to be the correct definition.

(2) Let us take f; € K(X;), i € {1,2}. Using 2.3 and the defining property of
u, for every g € K(X), we get

v((f1 X ¢2)«(f1 T f2) - g) = pu(mi f1 - 75 f2 - w1 P1g) = pu((f1- #19) O f2)
= v(d1«(f1 - 019) - b2xf2) = V(D1 f1 - P24 f2 - 9),
which gives the required identity (¢1 X ¢2)«(f1 T fa) = ¢1,f1 - P2, fo.
(3) For any fo € K(X2),
pa(mosy f1 - f2) = p(w] f1 - 75 f2) @ V(P1x f1 - P2x fo) = pa(d5014f1 - f2),

as required. (I

The following definition from [1], fits our context remarkably well.

Definition 2.8. Let the notation be as in 2.7. Whenever we are given maps of
measure spaces (Z,p') — (Xi, i), ¢ € {1,2} forming with the ¢; a commutative
diagram, by the universal property of the fibre product of topological spaces,
there is a unique continuous map Z — X7 Xy X5, making the following diagram
commutative:

J ————— - X1 Xy X2

RS
\Y/

We shall say that the measure spaces (X1, p1) and (Xa, uo) are independent over
(Y,v) (with respect to (Z, 1)) and write

(X1, 1) L (X2, p2),
(Y,v)

X3

if that map turns out to be a map of measure spaces (Z, u') — (X1 Xy Xo, p).
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3. COMPACT GROUPS AND REPRESENTATIONS

We wish to study in more detail the special case of compact groups with
Haar measure, the framework where various Galois groups studied elsewhere in
this paper naturally fit. We first recall the basic definitions and facts, assuming
some familiarity with [20].

Definition 3.1. Let G be a locally compact group and let f : G — E be any
function. For g € G we define the left and right shifts of f by g:

(9) (@) = flg™"2);
[6(9)f1(x) == [(zg).
If p is a measure on G, we say that u is left (right) invariant if for all f € K(G)
and g € G,
n(v(9)f) = u(f) (resp. u(6(9)f) = u(f))-

Fact 3.2. Let G be a locally compact group. There exists a left invariant positive
measure p on G. All the other left invariant measures on G are proportional to it.
1t is called (the) left Haar measure. When G is compact, u is also right invariant,
we can normalise it so that u(G) = 1 and we speak of the Haar measure.

From now on, we only work with compact groups and we always assume the
Haar measure to be normalised.

Definition 3.3. Let G be a compact group and V' a vector space of finite di-
mension over C. A linear representation of G in V' is a continuous homomorphism
p: G — GL(V). A character of G is the trace of a continuous representation.

A representation is called irreducible, if V' does not contain proper nonempty
G-stable subspaces. An irreducible character is a character of an irreducible rep-
resentation. A sum of characters corresponds to a direct sum of representations,
a product of characters to a tensor product of representations, and the conjugate
aV of a character « to the contragredient (or dual) pV of its representation p. This
notation is consistent with our notation for complex conjugation.

A central (or class) function on G is a function from L?(G) which is invariant
under conjugation in G. It is a well-known fact that irreducible characters form
an orthonormal basis of the Hilbert space of central functions on G.

We are frequently interested in representations defined over fields other than
C, so we need to give a quick overview of the rationality issues. Let K be a field
of characteristic zero contained in C, with induced topology. Given a vector space
V over K, let Vg := C®kV be the vector space obtained from V' by extension
of scalars. Then, each continuous linear representation p : G — GL(V') defines a
continuous representation

pc: G — GL(V) - GL(V¢).
The character is a continuous central function with values in K. Let Ri(G) be

the group generated by the characters of continuous representations over K. It is
a subring of the ring R(G) generated by the continuous characters over C.
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It is still true that Ri(G) is generated by the characters of the irreducible
continuous representations of G over K, which are mutually orthogonal (but not
necessarily normalised).

We give appropriate generalisations of results of [20], Chapter 12, for profinite
groups. Let G = l&nl G; be a profinite group with all the connecting maps ¢;; :
Gi — Gj surjective. Let m; = |G;| and let L; be the extension of K by the m;-th
roots of unity. The extension L;/K is Galois and Gal(L;/K) is a subgroup of the
multiplicative group (Z /m; Z)* of invertible elements of Z /m; Z. More precisely,
if 7 € Gal(L;/K), there exists a unique element ¢ € (Z /m; Z)* such that

7(w) = W', if ™ = 1.

We denote by I'; the image of Gal(L;/K) in (Z /m;Z)*, and if t € T'%, we let
7/ denote the corresponding element of Gal(L;/K). Hence we also get a similar
correspondence t < 73 between ' := hénl F% and Gal(L/K), where L = J, L;.
The group I'k acts on G in a natural way as a permutation group. We will say that

5,8 € G are 'k -conjugate, if there is a t € ' such that s’ and st are conjugate
in G. We define W'(f)(s) := f(s'), for f central on G.

Lemma 3.4. FEvery continuous representation of a profinite group G over C fac-
tors through a finite quotient of G.

Proof. Let p : G — GL,(C) be a continuous representation. Choose an open
neighbourhood U of the identity in the Lie group GL,(C) which does not contain
any of its nontrivial subgroups. Let H be an open subgroup contained in p~1(U).
Then clearly p(H) =1 and p factors through G/H. d

Theorem 3.5. Let f be a central function on a profinite group G with values in
L. Then f € K ®z R(G) if and only if 7¢(f) = V'(f), for allt € Tk.

Corollary 3.6. Let f be a central function on a profinite group G with values in
K. Then f € K ® Rig(G) if and only if [ is constant on T g -classes of G.

Corollary 3.7. The characters of the irreducible continuous representations of
a profinite group G over K form a basis for the space of central functions on G
which are constant on I' i -classes.

In the special case of K = Q, the Galois theory of cyclotomic extensions is
well-known and we have:

Lemma 3.8. In a profinite group G, two elements x and =’ are I'g-conjugate, if
and only if they (topologically) generate conjugate subgroups of G.

Definition 3.9. Let G be a compact group with Haar measure p.

(1) Let Cop(G,C) be the space of continuous functions f : G — C with the
property that f(z) = f(2’) whenever (x) and (z’) are conjugate in G. We
call such functions Q-central.

(2) Let Co(G, Q) be the Q-valued functions from Cg(G, C).
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(3) A subset of G is called Q-central if its characteristic function is. In other
words, it is a union of I'gp-conjugacy classes.

Remark 3.10. We have shown in 3.7 that Cq(G, C) is generated by the characters
of continuous irreducible representations of G over Q (which are, of course, Q-
central themselves), and thus, by 3.4, by characters of irreducible representations
of finite quotients of G over Q. Note, however, that an arbitrary Q-central function
need not factor through a finite quotient of G.

The functorial constructions regarding measure spaces happen to be espe-
cially natural when formulated in the context of compact groups with Haar mea-
sure, as the following results show.

Remark 3.11. Let ¢ : G — G’ be a continuous homomorphism of compact groups.
Consider finite-dimensional representations p of G and p’ of G’. Then clearly ¢*p’
is a finite-dimensional representation of G (recall 2.3). On the other hand, it is
possible, but not straightforward, to define a representation ¢.p on G’, which may
not be finite-dimensional any more, so that

Hom(p, ¢*p') ~ Hom(.p, '),

and in that case * and . become adjoint functors (unlike just adjoint in the ‘de-
categorised’ sense as in 2.3 and 2.6). In the special case when ¢ is an inclusion, ¢*
and ¢, are restriction and induction operations standard in representation theory.

These issues are well beyond the extent of this paper so we content ourselves
by noting that, at the level of characters of finite-dimensional representations, ¢*
and ¢, behave as in 2.3. Even better, we have an explicit description of these
operations in 3.14.

Lemma 3.12. Let ¢ : (G, u) — (H,v) be a continuous homomorphism of compact
groups equipped with Haar measures.

(1) ¢*[v(¢(x))h] = y(x)p*h, for all x € G and h € C(H);
(2) o:[v(z)g] =v(9(2))syg, for all x € G and g € C(G).

Proof. The lemma is a direct consequence of the definitions and the left invariance
of the Haar measure. |

Proposition 3.13. (1) Ewvery continuous epimorphism of compact groups is
a map of measure spaces.
(2) Consider the fibre product of compact groups as in the following diagram:

G /XH<G
\H/
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Then (G1 x g G2, ptHaar) =~ (G1, kG, ) X (#,um) (G2, pa,), where each group

s equipped with its Haar measure.
Proof. (1) Let ¢ : (G,u) — (H,v) be a continuous epimorphism of compact
groups, where 1 and v are their corresponding Haar measures. By the uniqueness
of Haar measure, it is enough to show that the measure defined by v’ (h) := pu(¢*h)
for h € K(H) is left invariant. This follows from the fact that ¢*[y(y)h] = v(z)¢*h,
for some x with ¢(z) = y, as mentioned in 3.12(1).

For (2), let us denote by ¢; : G; — H, i € {1,2} the continuous epimorphisms

in question. The fibre product measure is determined by

w(f1 B f2) = pa (o1, f1- d2.f2)

Again by uniqueness of the Haar measure, it is enough to show that p is left
invariant. Let 1 € Gy and zo € Ga be such that ¢1(x1) = ¢o(x2) =: y € H. By
definition of u, 3.12(2) and left invariance of pg, we get that

p(y(z1, 22) f1 B fo) = pr(dr.[y(@1) f1] - do.[v(@2) f2]) =

e (V(#1(21))P1. f1 - V(P2(22)) P2, f2) = (VW) [P1.f1 - 2. f2]) =
pa (D101 @2, f2) = p(f1 O fa),

as required. (I

Remark 3.14. The following consideration of Haar measures of quotient groups is
hidden in 3.13(1). Suppose we are given a short exact sequence of compact groups

. ¢
1 K G H—1,

with Haar measures ug, pug, o, respectively.
(1) For f € C(G), the function

o(z) = /K F( u(€)) dpure (€)

is continuous on G, with the property that g(z¢(()) = g(z) for every
¢ € K. Therefore we can find h € C(H) such that g(x) = h(n(x)). Clearly
h=m.f.

(2) Moreover, if x is a character of a continuous representation A of G, then
7. X is the character of the invariants A% of K in A with the natural action
of H.

(3) Suppose the above groups are profinite. Since the pushforward of a rep-
resentation of a finite group over Q is again over Q, it follows from 3.10
that

7T*(CYQ(GYv C)) - CQ(Hv (C)

Example 3.15. In notation of 3.14, suppose C' is a subset of G such that ¢ [ C
has fibres of constant size, i. e., there exists a number m such that for every
ACH, ua(Cn ¢ YA) = muu(o(C) N A). A direct verification (alternatively,



INDEPENDENCE, MEASURE AND PSEUDOFINITE FIELDS 11

a calculation using 3.14) shows that the pushforward ¢.1¢ of the characteristic
function of C is given by
d)*lc =m 1¢(C)-
These considerations apply, for example, when C' is a subgroup or a Q-
conjugacy class.

Example 3.16. With notation from the proof of 3.13(2), let C; C G; be subsets
with fibres of constant sizes (3.15) m;, and suppose Cp := ¢1(C1) N2 (Cs) C H is
of nonzero measure.

We are interested in the measure of the subset C7 X iy Cs of G1 X g G4. Using
3.13(2) and 3.15, it is equal to

pu(d1.1e, - 2,.10,) = mima pr(Co)

= MG, (Cl N Q’)l_l(C())),UG& (CQ N ¢2_1(CO))
111 (Co) '

Dividing by pg(Cp) yields a more symmetric expression

pr(1.1c, - ¢2.10,) _ pei (CrN ' (Co))  pe,(Ca Ny ' (Co))
1111 (Co) 111 (Co) 1111 (Co) '
The reader should find the above expression very suggestive, as it illustrates the
connection between the .-operation and classical conditional probability, as well
as between independence of measure spaces and independence of events in the
classical sense.

4. TYPES AND FORMULAE IN PSEUDOFINITE FIELDS

A field F is called pseudofinite if it is perfect, with absolute Galois group
7 and it is pseudo-algebraically closed, i.e. every geometrically irreducible variety
over I has an F-rational point. The main examples of pseudofinite fields are
nonprincipal ultraproducts of finite fields. In the rest of the paper we shall always
consider a pseudofinite field F' with a distinguished topological generator o of
its Galois group. Also, we shall implicitly identify the unique extension F,, of F’
of degree n with the fixed field of 0. As we shall see later, the important results
will not depend on the choice of a particular op.

The following is a folklore description of complete types in pseudofinite fields.

Theorem 4.1. Let F' be a pseudofinite field, and let k be a (small) subfield. Then
two tuples a and b have the same type over k if and only if there is an isomorphism

of the relative algebraic closures F Nk(a) and F N k(b) of k(a) and k(b) fizing k
pointwise and taking a to b.

Remark 4.2. If we let X/k be the variety whose generic point is a (or b), the type
of a over k can then be identified with a conjugacy class in the absolute Galois
group G(k(X)) (later written just as G(X)) of a procyclic subgroup corresponding
to the relative separable closure of the function field of X inside F'. Intuitively, X
is the quantifier-free positive part of the type.
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Conversely, each conjugacy class of a procyclic subgroup of G(X) corresponds
to a type.

A description of formulae in pseudofinite fields requires a bit more precision,
based on the work in [11], [10]. We start with a general consideration of Galois
stratification, adopting the more geometric language from [7] and [8].

Let A be an integral and normal variety. A morphism of varieties C' — A is
a Galois cover, if C is integral, h is étale, and there is a finite group G = G(C/A)
acting on C such that h induces the isomorphism C/G ~ A.

A Galois cover C' — A is coloured, if G(C/A) is equipped with a family Con of
subgroups stable by conjugation. In case when Con is a family of cyclic subgroups
(the case that will occur in our applications), we may equivalently equip it with
the Q-central (see 3.9) conjugacy class of elements {7 : (1) € Con}.

Let S be an integral normal scheme and let X — S be a variety over S. A
normal stratification of X,

<X, Oi/AZ RS I>7
is a partition of X into a finite set of integral normal locally closed S-subschemes
A;, each equipped with a Galois cover C; — A;. A Galois stratification

A= <.X7 Ci/Ai, COH(AZ‘)H S I>

consists of a normal stratification in which each Galois cover C;/A; is coloured (by
Con(4;)).

Let S be an integral and normal scheme and let X — S be a variety over S.
For a point s € S, associated with a canonical morphism Speck(s) — S, we denote
by X, the fibre of X over s (Xs = X xgk(s)). Let A = (X,C;/A;,Con(4;)|i €
I) be a Galois stratification of X, let s € S, let K be a field containing k(s)
and let z € A;s(K). The Artin symbol, Ar(C;/A;,s,x) is the conjugacy class
of subgroups of G(C;/A;) consisting of the decomposition subgroups at z. More
precisely, considering the map corresponding to z, Spec(K) — A; s — A;, we have
the induced map

Gal(Ksep/K) — 7T1(Ai73) — 7T1(Ai) — G(CZ/AZ),

and Ar(C;/A;, s, x) is its image, defined up to conjugacy (see 5.1 for the definition
Of 7T1).

In case Gal(K*P/K) ~ 7 and we are given its distinguished topological
generator ok, we shall write ok, for the image of o by the above maps in either of
m1(Ais), m1(A;), as well as in G(C; /A;), and we have that Ar(C;/A;, s,2) = (0K »)
(up to conjugacy). Sometimes it is also denoted ar(C;/A;, s,x). When K = k is
a finite field, we have a canonical generator of its Galois group, namely F}, the
geometric Frobenius automorphism. In that case, we speak of the local Frobenius
Fk’w (Cf. 5.1).

When S = Spec(k) for a field k, we only have one meaningful parameter,
the generic point of S, and in that case we suppress the parameter in the above
notation. If x : Spec K — S corresponds to the inclusion k C K, we write o, in
place of o, in G(k).
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Let A be a Galois stratification over S, as above. We will call an expression
of the form
As :={z € X, : Ar(z) C Con(A)}

a Galois formula, with parameters s € S. It is a formula in the sense that it
gives rise to a ‘realisation’ functor from the category of fields containing k(s) with
elementary embeddings as morphisms into the category of sets. Indeed, for a field K
containing k(s) and = € A; s(K), we write Ar(x) C Con(A) for Ar(C;/A;, s,z) C
Con(C;/A;), and we can consider the set of K-valued points of As,

As(K) :={x € X(K) : Ar(z) C Con(A)}.

The following result shows that in pseudofinite fields these are the only formulae
that need be considered.

Theorem 4.3. Let 0(Y1,...,Y,) be a formula in the language of rings with coeffi-
cients in a field k. There exists a Galois stratification A of A}l such that for every
pseudofinite field F' containing k,

O(F) = A(F).

Conversely, each Galois stratification A = (X, C;/A;, Con(C;, A;)) over k, with ev-
ery Con(C;/A;) a conjugacy domain of cyclic subgroups of G(C;/A;), corresponds
to a formula in the language of rings with coefficients in k.

Having in mind that set of realisations of a complete type over k is the
intersection of definable sets over k that contain it, and this description of definable
sets, it becomes transparent that 4.2 is the ‘limit’ stage of 4.3.

When we wish to transfer the uniform aspects of the behaviour of finite fields
to pseudofinite fields, the following variant is of great interest.

Theorem 4.4. Let S = Spec(R) be an affine variety over Z, integral and normal.
Let 0(Y1,...,Ys) be a formula in the language of rings with coefficients in the ring
R. There exists a nonzero f € R and a Galois stratification A of Agf such that
for every closed point s in the localisation Sy,

0s(k(s)) = As(k(s))-

Conversely, each Galois formula over S, where all the colourings are conjugacy
domains of cyclic subgroups, corresponds to a formula in the language of rings
with coefficients in R.

Remark 4.5. All the above results remain valid in the language of formulae of the
form

As = {z € X, : ar(xz) C con(A)},
provided each conjugacy domain of subgroups Con(C;/A;) is replaced by the Q-
central (cf. 3.9) class con(C;/A;) := {7 : (1) C Con(C;/A;)}. When we wish to
pass from the formulae of this form toward the formulae in the language of rings,
it is important to require all the con(C;/A;) to be Q-central.
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5. FINITE FIELDS AND COHOMOLOGY

This section is based on masterful introductions to the subject given in [14]
and [15], Chapter 9. We must emphasise here that the machinery of cohomology
and Deligne’s theory of weights is not strictly necessary for our purposes. One
can obtain all the results using just Lang-Weil estimates and methods of [2], [10].
On the other hand, the author finds the conceptual clarity, gained from the more
advanced methods, indispensable.

5.1. Fundamental group. Given any connected scheme X and any geometric
point £ of X (i.e., a point with values in some algebraically closed field), we have the
profinite étale fundamental group m (X, £), which classifies finite étale coverings of
X. This gives a covariant functor on the category of pointed schemes (X, ). As in
topology, varying & just changes 7 (X, &) up to an inner automorphism. Thus we
shall usually omit the base point, writing 71 (X ), when we only require calculations
up to conjugacy. In the special case X = Spec(k), where k is a field, a geometric
point £ is just a choice of an algebraically closed overfield L of k, and 71 (X, §) is
just the Galois group Gal(k®®P/k), where k%P is the separable closure of k in L.

Another interesting special case is that of normal X. If a connected variety
X is normal, it is irreducible, say with generic point 7. Its function field K is the
residue field k(n). If we view an algebraic closure K of K as a geometric generic
point 7 of X, the group m1(X,7) is the quotient of Gal(K®°P/K) which classifies
those finite separable extensions L/K with the property that the normalisation of
X in L is finite étale over X (i.e., unramified).

Given a connected scheme X, a field £ and a k-valued point © € X (k), the
associated morphism Spec k — X induces a group homomorphism

m1(Spec(k)) = Gal(k™P /k) — m1(X),

well-defined up to conjugacy. If k is a finite field, the conjugacy class in 71 (X)
which is the image of the geometric Frobenius Fj, € Gal(k*P/k) is denoted by
F}, » and called the local Frobenius at x.

If X is geometrically irreducible, we have the short exact sequence for the
fundamental group:

1 —— 7f"(X,7) — m(X,7) — Gal(k*P/k) — 1,

geom

where 7™ (X, ) = 71 (X xx k,7) is the geometric fundamental group. As a
contrast, m is sometimes called the arithmetic fundamental group.

5.2. Constructible sheaves. Let X be a connected and normal scheme and [
a prime invertible in X. A lisse Q;-sheaf F of rank r on X is an r-dimensional
continuous Q;-representation of 71(X,%). A constructible Q;-sheaf F on X is an
étale sheaf such that X can be written as a union of finitely many locally closed
subschemes U; such that each F [ U; is lisse.

Given a morphism ¢ : X — Y, we have the inverse image functor from
sheaves on Y to sheaves on X, G — ¢*G on X, its right and left adjoints, the direct
image functor F — ¢, F and the direct image with proper support F — ¢ F, the
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higher direct images R'¢, as the derived functors of ¢, and the higher direct images
with proper supports Ri¢y (which are not quite the derived functors of ¢).

When F and G are lisse and X and Y are spectra of fields (one-point spaces),
these notions coincide with the corresponding operations on representations, with
respect to the map m1(¢) : m (X) — m(Y).

We fix a non-canonical embedding ¢ : @, — C. Let X be a variety over Z[1/I]
which is normal and connected, and let F be a lisse Q;-sheaf on X, with associated
representation p. For any real number w, we say that F is t-pure of weight w if
for every finite field k and every x € X (k), every eigenvalue of p(Fy ;) has, via ¢,
complex absolute value |k|“/2.

If F is a constructible sheaf, it is said to be punctually t-pure of weight w
if there exists a partition of X into a finite number of locally closed subschemes
U; (each normal and connected), such that F | U; is t-pure of weight w. A con-
structible sheaf F is t-mized of weight < w if it is a successive extension of finitely
many constructible Q;-sheaves F; on X, with each F; punctually ¢-pure of some
weight w; < w.

Let k be a finite field. For any integer n, we denote by @, (n) the lisse, rank
one sheaf on Spec(k) which, as a character of Gal(k), takes the value |k|~" on F.
Thus Q,(n) is t-pure of weight —2n, for any ¢. If X is a normal connected variety
over k, we also denote by Q;(n) the sheaf on X obtained by pullback from k. Given
another sheaf F on X, we write F(n) for F® Q,(n).

In our applications we only encounter sheaves with an additional finiteness
property. We will say that a lisse Q;-sheaf on X has property (FQ), if it factors
through a finite quotient of m1(X), i. e., it comes from a finite Galois cover of
X. A constructible sheaf on X is said to have the property (FQ) if it does on
each piece of X where it is lisse. For such sheaves, passing between their Q-
and C-incarnations is not that ‘non-canonical’ (the values of characters are just
sums of roots of unity). Moreover, there are no issues related to continuity with
respect to different topologies. We must keep the formulations with /-adic sheaves
since we wish to use the [-adic cohomology below, but the translation to C becomes
‘second nature’. It is obvious that the property (FQ) is preserved by inverse images
of sheaves, and, even though higher direct images do not preserve (FQ), we have
the following.

Fact 5.1. Let ¢ : X — Y be a map of S-schemes of finite type and F a con-
structible (FQ)-sheaf on X. Then:

(1) ¢ F is constructible with (FQ);
(2) ¢« F is constructible with (FQ) over an open dense subset of S.

Proof. The item (1) follows from the existence of Stein factorisation of proper
maps and the fact that (FQ) is clearly preserved by direct images via finite maps
and maps with geometrically connected fibres.

The item (2) can easily be extrapolated, using (1), from Deligne’s proof of
Théoreme 1.9 from [4]. O
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5.3. Cohomology. Now we consider an important class of examples of lisse sheaves.
Let X be connected and normal over a finite field k£ with [ invertible in k and let
F be a constructible sheaf. We have ordinary cohomology groups and cohomology
groups with compact support,

HY(X,F) and H(X,F),

which are finite-dimensional Q;-vector spaces on which Gal(k/k) acts continuously,
and which vanish unless ¢ € {0,...,2d}. They can be considered as lisse sheaves on
k. These groups are related by Poincaré duality. Namely, if F is lisse, X is smooth
of dimension d, and F" is the contragredient sheaf, the cup-product pairing

Hy(X,F) x H** (X, FY) — H}(X, Q) = Q(~d)

is a Gal(k/k)-equivariant pairing.

The Diophantine interest of these cohomology groups is illustrated by the
following. For a constructible sheaf F on X of dimension d over a finite field k,
and every finite extension F/k, the Grothendieck-Lefschetz trace formula gives
that

2d
> Trace(Fg.| F) =Y (—1)'Trace(Fp|H(X, F)).
zeX(E) i=0

The L-function associated to this data is a fundamental Diophantine invariant. If
we let S,, = Ewex(kn) Trace(Fy, .| F), where ky, is the extension of k of degree
n, it is defined as the formal power series

L(X/k, F;T) ==exp (Y %T").

Having in mind that Fj, = F}’ and the above trace formula, we see that

2d
L(X/k,F;T) = [ [ det(1 — TF|HI(X, F)),
i=0
i.e., it is a rational function. Poincaré duality yields a certain functional equation
in case of a smooth and proper variety, and thus quickly establishes the first part
of the Weil conjectures ([14]).

Moreover, Deligne has shown ([6]) that if we start with F t-pure of weight
< w, then H!, considered as constructible sheaves on Spec(k), are t-mixed of
weight < w + 4, which can be used to estimate the size of the above character
sums. In particular, this trivially implies the Lang-Weil estimates, when applied
to the constant sheaf Q;. We do not expand this in more detail since we perform
exactly this kind of calculation in 5.3 below.

The above machinery suffices to treat the case of a single variety X over a
finite field k. What can we say in the case when we are given a family X — S7?7
The latter case is certainly of crucial importance for us, because in order to be
able to lift our considerations to pseudofinite fields, we need to study uniformities
in such families.
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Suppose that S is a connected normal variety over Z[1/l], and let 7 : X — §
be a normal and connected variety over S. Let F be a constructible sheaf on
X. The answer to our question is given by the higher direct images of F with
compact support, namely Rim F, which are constructible sheaves on S. Given a
finite field k£ and any point s € S(k), by the proper base change theorem we have
the specialisation property:

s*(R'm F) = H (X,, Fs),

where X, is the fibre over s, and F is the restriction (pullback) of F to Xs.
Moreover, Deligne’s main result from [6] shows that if F is -mixed of weight < w,
then R'm F are t-mixed of weight < w 4+ i. Thus we have all the necessary tools
to treat our problem.

5.4. Uniform estimates.

Lemma 5.2. Let X % Spec(k) be a smooth connected variety of dimension d over
a field k and let F be a lisse Q;-sheaf on X, with corresponding character x.

(1) HY(X,F) =¢. F, as a lisse sheaf on Gal(k/k); B

(2) H?2Y(X,F) = (v« F)V(—d), the Tate-twisted dual of H(X,F").

When X is geometrically connected, the above can be written as

X the 79°°™(X)-invariants of F, with the natural

geom

(1) HY(X,F) = F™
action of G(k/k);

(2) H2U(X,F) = Frgeomxy(—d), the Tate-twisted ("™ (X)-coinvariants of
F, with the natural action of G(k/k).

When F has (FQ), the character corresponding to H%(X,F) is ¥.x, and the char-
acter corresponding to H24(X, F) is 1. x(—d).

Proof. Item (1) is by definition, and (2) follows from Poincaré duality. For (1’) and
(2’), we use the short exact sequence for the fundamental group of X, together
with 3.14, while the statement regarding the (FQ)-property follows from 5.1. O

In the theorem below, we use k, to denote the unique extension of degree n
of a finite field k.

Theorem 5.3. Let S be a connected normal variety over Z and let X be an S-
scheme of finite type with normal fibres. For a prime | invertible in S, we fir a
(noncanonical) embedding 1 : Q, — C. Let F be a constructible Q;-sheaf on X,
which is (1-)pure of weight O with Q-central character x.

(1) There is a constructible sheaf A with character « on S such that for every
finite field k, every s € S(k) and every n,

Z LX(Fkn,z) — La(F£8)|kn|dim(Xs) < C|k‘n|dim(X5)_1/2.
x€Xs(kn)



18 IVAN TOMASIC

(2) On each (of the finitely many) locally closed subscheme S’ of S where A
is locally constant, there are conjugacy classes C; of procyclic subgroups
D; of m1(S’) and characters a; : 7 — Q, such that for every finite field
k, every s € S'(k) with (Fy) € C;, in view of the canonical isomorphism
Gal(k/k) ~ Z, F, — 1, we have oy := s*(a) ~ a;. Moreover, for every n,

Z LXs(Fkn,m) _ Lai(n)|kn|dim(Xs) < C|kn|dim(Xs)71/2.
z€X s (kn)

(3) When F has (FQ), the sheaf A from (1) has (FQ) over some localisation
Z[1/m] of Z. In particular, the statement of (2) becomes the following.
There is a finite number of Q-central characters aj such that for all but
finitely many finite fields k, and s € S(k), as ~ o for some j. Moreover,
for each j there is a formula 0, in the language of rings such that

{s € S(k): as ~ a;} = b4, (k).
Proof. (1) If we denote by 7 the structure map X — S, the main result of Deligne

Weil 11 tells us that Rim F is constructible -mixed of weight i.
Furthermore, by specialisation,

s*(R'm F) = H(X,, Fs),
and R%m F is clearly -pure of weight 2d. Let
A = R¥m F2Q,(d),

and let « be its character. Clearly, for s*(A) = As, As(Fx, ) = A(Fk, .s)-
Grothendieck’s trace formula gives that for every s € S(k) and n,

2d
Yo X(Fuw) = D xs(Fraw) = ) (-1 Te(FY|HUX,, Fy)).
z€Xs(kn) zE€Xs(kn) i=0
From this we get the estimate
2d—1 ‘ ‘
Z X(Fr,y2) — vers () ||| < Z |]€n|l/2 dim(H; (X5, F))-
2€Xs(kn) i=0

The standard constructibility and base change theorems for étale cohomology yield
a uniform bound on the sum of the Betti numbers on the right, as desired.

Item (2) is essentially a self-explanatory restatement of (1). Since « is a Q-
central character on 7 (S”), various restrictions « [(f, .y clearly depend only on
the Q-central class of FJ, s.

(3) Since we are only considering estimates, we may assume X — S is smooth.
By Poincaré duality, A has (FQ), since, by 5.1, we know it for RO7, F = 7. F.

Thus, S can be written as a finite union of locally closed subschemes S’ such
that the number of possible «; is finite and for every S’, the set

{seS'(k):as~a;}={se S (k): Fs € C;}
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is given by a coloured Galois covering. By renumbering the possible «; for all S’,
we get finitely many «; such that {s € S(k) : as >~ «;} is given by a Galois formula
0., (k). By 4.4, it is equivalent to a formula in the language of rings. O

5.5. Generic constructible sheaves. Since we shall only be interested in esti-
mates as in 5.3, and measure-theoretic applications in pseudofinite fields as intro-
duced in 6, it turns out that it suffices to consider only the information contained
in the generic stalks of constructible (FQ)-sheaves, which leads us to the following
definition.

Definition 5.4. Let X be a variety with connected components X;. A generic
sheaf F on X is a family of continuous complex finite-dimensional representations

The usual operations with constructible sheaves apply here as well, except
that they become easier to describe explicitly.

Definition 5.5. Let ¢ : X — X’ be a map of finite type, dominant on some
component (let us denote the components of X by X;, and those of X’ by X ]' Let
F be a generic sheaf on X and 7' on X'.
(1) The inverse image ¢*F is a sheaf on X such that, if ¢(X;) C X, its
restriction on X; is obtained by the obvious pullback of representations
via the induced map G(X;) — G(X}).
(2) We would like the direct image ¢, F to satisfy the relation

Hom(F, ¢* F') = Hom(¢. F,F'),
for every ' on X'. Clearly, on X}, ¢« F is given as
I o7
$(X)CX!

where the ¢, F; above is the induced representation via G(X;) — G(X})
in the sense of 3.11.

It is clear that for such an F and a generic geometric point Z : Spec(Q2) — X
of X (where 2 D k(X) is separably closed) we can speak of the stalk Fz = z* F.
As already noted in 3.11, a completely arbitrary induction can become infinite-
dimensional. The following result shows that this does not happen in our case.

Proposition 5.6. The category of generic sheaves is stable by operations of in-
verse and direct image via (dominant) morphisms of finite type.

Proof. The claim is trivial for the inverse image. For the direct image, we may re-
duce to the case where both X and X’ are integral and the corresponding function
field extension is separable. Then we can consider the tower

k(X') — k(X)) Nk(X) — k(X)
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where the first extension is finite, and the second regular, a ‘baby case’ of Stein fac-
torisation. The direct images by the two types of maps preserve finite-dimensionality,
as shown below. O

Lemma 5.7. Let ¢ : X — X' be a map of finite type between varieties and let V
be the G(X)-space associated with a generic sheaf F on X.

(1) When ¢ is generically finite of degree d, the space associated with ¢. F is
v,
(2) When ¢ is dominant with geometrically connected fibres,

¢o F = F,

the K -invariants of F, where K is the kernel of the surjection G(X) —
G(X').

Proof. When ¢ is generically finite of degree d, the group G(X) is a subgroup
of index d in G(X’). When ¢ is dominant with geometrically connected fibres,
the associated function field extension is regular so the map G(X) — G(X') is a
surjection and we recall 3.14. g

Theorem 5.8 (Properties of generic sheaves). Suppose we have the diagram below,
and let F be a generic sheaf on X, G on'Y and H on S.

XXsY
v X
X Y
N A

Then we have:

(1) (Base change). 9*¢. F ~ oo™ F;
(2) (Projection formula). ¢.(¢p*H Q@ F) ~ H ® ¢u F;
(3) (Ktunneth formula). Writing F G for ¢"* F @¢'™* G,

(¢ x P)(FRG) ~ ¢ FRUu G .

Proof. All these claims follow immediately from the known results for constructible
sheaves. However, in view of the simple description of direct and inverse images in
5.5, it is possible to give straightforward proofs which we sketch here.

For (1), it suffices to prove the equality of generic geometric stalks, which
reduces to the case when Y = Spec(Q) for a large algebraically closed field .
Using the factorisation of maps described in the proof of 5.6, we decompose ¢ into
a composition of a generically finite map and a map with generically connected
fibres. The claim follows since it is compatible with composition on the ¢-side, and
it is easy in each of the above cases.
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X' Xs Y’

X' Y’

! X x5V !
p q
L / \ .
\ . /
FiGUurE 1. Commutative diagram for 5.9

Claim (2) is easy, since it already holds at the level of representations, as well
as measures. The Kiinneth formula (3) follows formally from the previous two:
« « o 2 « o (D x @
(V" F @4 G) = ¢ (F @99 G) = 6u(F @91 G) = ¢ F @G
O

The Kiinneth formula is usually stated and used in the above form, but we
can prove a more sophisticated variant. Let us fix the notation as in Figure 1.
Given generic sheaves K on X, K’ on X', L on Y and £’ on Y’, we shall write
KX L for p*K @ ¢*L, and K' X L’ for p*K' @ ¢* L.
Theorem 5.9 (Relative Kiinneth). For each generic sheaf F on X' and G on Y’
f. FRg. G~ h(FRG).
Proof. As in [5], let us consider a commutative diagram
X1 Sl Y1

X S Y

andlet 77 = X, Xslyl, X{ = X/XXXl, Y1/ = Y/nyl, Zi = X{XSIYf = ZIXZZ1,
so that we obtain a morphism of diagrams

C: (S, X\, V1,21, X|.Y], Z}) = (S, X,Y, Z,X".Y', 7).

Using base change, we see that C*(f. FXg.G) ~ C*h,(FXG) if and only if
f1:C* FRg1.C* G =~ h1,.(C* FRC* G).

However, to prove the theorem, it is enough to verify it in every generic
geometric point of Z. In other words, the above base change can be taken with S;
a spectrum of some separably closed field, and X7 and Y; isomorphic to S;. After
such a base change, the claim reduces to 5.8(3). O
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6. PSEUDOFINITE FIELDS AND MOTIVIC MEASURES

In most of this paper we will use a certain approximative motivic measure
on pseudofinite fields, and only in Section 10 we shall use the more sophisticated
motivic measure defined by Denef and Loeser in [7]. There are two reasons for
this two-step approach. On one hand, the approximative measure is much easier
to understand and work with; on the other, the second approach is not developed
in nonzero characteristics, mainly for the lack of resolution of singularities.

The following is a slight generalisation of the result from [2], allowing integra-
tion with respect to the measure defined there. For the proof, we refer the reader
to 5.3(3).

Theorem 6.1. Let S be a connected normal variety over Z and let Y — X be a
Galois cover of S-varieties with group G. Let x : G — C be an irreducible Q-central
character. Then there is a finite number of (continuous) Q-central characters «; :
7 — C and a constant C > 0 such that for every finite field k, its extension k., of
degree n, and every parameter s € S(k), there exists an i with

Z Xs(Fgc) — Oéi(n)|kn|dim(Xs) < C|k‘n|dim(X5)_1/2.
z€Xs(kn)

Moreover, for every i there is a formula 84, in the language of rings which defines,
in each finite field k, the set of s € S(k) for which the above estimate holds.

Our goal is to define a motivic measure capturing the uniform behaviour of
summing over the finite fields from the theorem above. We start by defining the
ring where it will take values.

Definition 6.2. Let K{ be the rig (‘ring without negatives’) Q*[L]/ ~, where
approx

p ~ ¢ if p and ¢ have the same degree and leading coefficient. Let Kj =
K¢ ®C.

Intuitively, the formal variable LL is a symbol for the ‘approximative Lefschetz
motive’, representing the size of the affine line over F. It is a substitute for the
cardinality ¢ of the line in the finite field case.

The coarse (or approximative, to use the terminology from [18]) Euler char-
acteristic on a pseudofinite field ' will be defined as KP*"**-valued map v, which
will evaluate integrals of definable C-valued functions (functions with finitely many
C-values and definable level-sets). We proceed in stages, defining vy on more and
more general functions.

Definition 6.3. (1) Let Yo — Xy be a Galois covering of a normal irreducible
variety X over a field k C F' (k of finite type over Z), with group G. Let
X : G — C be a Q-central irreducible character. We may consider it as
the fibre ¥;, — X, of a Galois covering Y — X over S, where S can be
assumed to be a normal variety over Z, k(S) = k, and 7 is the generic
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point of S. We let
dim(X
/ X(or.) dvi(z) == a(1) L™,
Xo

where « is the unique character such that F' |= 60,(n) (the uniqueness
follows by arguing over large finite fields).

(2) In the above notation, if f : G — C is an arbitrary Q-central function,
then it can be written as f = . Aix;, with A; € C, and x; irreducible
Q-central characters. We let

f(UF:E dVF Z)\ / Xi UF:E) dVF(ﬁ).

Xo

(3) If we have a geometrically normal stratification (X, C;/A;) and a function
f:X — Cis given so that on each A;, f 4, (z) = fi(cFz), where f; is a
Q-central function on G(C;/A;), we define

| £ dveta) Z/ fi(ons) dve(z).

In view of the description of definable sets using Galois stratifications, we
see that (3) above is the most general form of a definable C-valued functions, and
thus our definition is complete.

Remark 6.4. To tie in with the considerations from 5, the fundamental importance
of (FQ)-constructible Q-central sheaves lies in the fact that they correspond to
definable C-valued functions in the following way. Let x be the character of such
a sheaf on X, let + be an embedding of Q, into C and let F be a pseudofinite
(or finite) field. The function X (F) — C given by = — tx(cr,) has finite range
and definable level sets (using 4.3, 4.4). Moreover, every definable function on X
can be written as a linear combination of such functions. In this spirit, 5.1 is a
quantifier elimination result.

Definition 6.5. (1) If f is a definable C-valued function, we let pp(f) € C
be the number such that vr(f) = pr(f)L™, i. e., the leading coefficient
of vp(f).

(2) If f is a definable C-valued function on X, let ux, r(f) be the coefficient
of L4™X) i vr(f). Note that if the support of f is lower-dimensional,
then px p(f) =0.

Remark 6.6. The integral | « [ dvr, as defined above, clearly has an interpretation
in terms of summing over finite fields like in 6.1. As a consequence:

(1) vp is well-defined, i. e., the definition does not depend on the choice of
particular stratifications;

(2) when f = 1y is a characteristic function of a definable set 6, our definition
of up(0) := pr(ly) coincides with the measure from [2] and [10] on F.
Thus we call it the CDM-measure from this point onwards.
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The following is proved in [2], in a slightly different notation.
Fact 6.7. The assignment v := vp factors through the Grothendieck ring of de-
finable sets over F. In fact, we have the following.
(1) if 6 and &' are definably bijective,
v(0) = v(0');
(2) if 0 and &' are definable subsets of the same affine space,
v(O@ud) =v(d) +v@)—-vONn),

(3) if 7 : 0" — 0 is a definable map such that for every t € 0, v(t71(t)) = vp,
then
v(0') = vov(6).
Let m: X — k be a (normal) variety of dimension d over a field k contained
in a pseudofinite field F (recall that we fix some generator o of its Galois group).
Let us consider a Q-central character x of a constructible sheaf 7 on X with (FQ).

Let x : G(X) — C be the character of the generic sheaf F corresponding to F.
With this notation, we have the following.

Theorem 6.8 (Definable Grothendieck’s trace formula).

/ X(UF,r) dVF(l’) = W*)N((O'F,k) ]Ld.
X

Proof. As usual, we consider X as a generic geometric fibre X,, of some family

m: X — S, with k(S) = k, n : Spec(k) — S. By 6.3 and the proof of 5.3, the

required integral is in fact equal to oy, (oF k) L%, where ay, is the character of
(Rgdﬂ* Fn(d) = Hfd(Xm]—'n)(d).

If we denote by F,, the generic sheaf on X,, := Spec(k(X,)), by (U;) the system of
smooth dense neighbourhoods in X,,, and F; := F,, | U;, we get (using Poincaré
duality, birational invariance of H2?, and the (FQ) property):

ﬂﬂ*ﬁﬂ = HO(XﬂaFﬂ) = h_H}HO(Uh]:Z) = h_H}Hch(ﬁlvf;/)v(d)
= H2(X,, F))Y(d) = HZ (X, F)(d).
[l

Note that, because of the properties of Q-central functions, the right-hand
side does not depend on the choice of o, as expected.

7. L-FUNCTIONS

For the purpose of this section, let us fix a pseudofinite field F' with Gal(F') =
(o) and let F,, = Fix(¢™) be the unique extension of degree n of F'. Let us write
vy and py, in place of vp, and pg, and let the embedding of K (F,) — K¢ (F)
be given by Lg, +— L.
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Definition 7.1. The (approzimative) zeta function of a formula 6 is the following
formal power series:

= vn(6)
ZO/F;T) = —2T" .
0/5:) = s (320
Definition 7.2. Let Y — X be a Galois cover over F' with group G, and let
X : G — C be a Q-central function. We let the corresponding (approzimative)
L-function be the following:

o Vn (x)

LY/X, x;T) = —==T" .
(Y/X,x:T) exr><§ » )
Similarly, if X is a variety over F' and x is a Q-central continuous function on
m1(X), the same formula can be used (after Section 8) to define the ‘fancy’ L-
function L(X, x;T). When we wish to speak about L(Y/X, ) without explicitly
mentioning X, we write L(Y/G, x). Sometimes we substitute T = L™% and write
L(X,x;5).

Let us list some formal properties of L-functions (cf. [12], [19]). Proofs are
left as an exercise for the reader.

Proposition 7.3.

(1) L(X,x +X') = L(X, x)L(X, ).
(2) IfY is the disjoint union of the Y;, with Y; stable by G for each i,

L(Y/G, x;s) = I_IL(Y;/G7 X; S),

with absolute convergence for R(s) > dim(X).

(3) Let ¢ : G — G’ be a homomorphism, and let $.Y =Y xE G’ be the scheme
deduced from'Y by ‘extension of the structural group’. Let x' be a character
of G' and let ¢*x' = X' o ¢ be the corresponding character of G. We have

L(Y/G,¢*Y') = L(¢.Y/G', X").
(4) Let ¢ : G' — G be a homomorphism, and let ¢*Y denote the schemeY on

which G' operates through ¢. Let X' be a character of G' and let ¢.x’ be
its direct image in the sense of 3.11, which is a character of G. We have
L(Y/G,¢X') = L(¢"Y/G",X).
(5) Let Y = Spec(F,), X = Spec(F), G = Gal(F,,/F) ~ Z /nZ, and x an
irreducible character of G. Then
1
LY/X, x;T)= —————
Y/ X x:T) = 5 T

where o is the generator of G.
(6) If x =1 (unit character), L(Y/X,1) = Z(X).
(7) If x = r (character of the regular representation), L(Y/X,r) = Z(Y).
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Theorem 7.4 (Near-rationality of Z and L-functions).

(1) If X is a geometrically irreducible variety over a pseudofinite field F,
1

1 a7

(2) If Y/X is a Galois cover over F with group G and x € Co(G,Q) (3.9),
there is an 1 > 0 such that L(Y/X,x;T)! is a rational function of T and
L.

(3) If 6(x) is a formula over F, there is an | > 0 such that Z(0/F;T)! is a
rational function of T and L.

Z(X/F;T) =

Proof. (1) is obvious, all the u,(X) being 1. (2) Since x is Q-central, we can write
it as a rational linear combination of Q-central characters, x = >, rix;. Thus, by
7.3(1), (4) and (6),

LY/X,x;T) = [ [ L(X/Y, xa: )™,
H

so it clearly suffices to show rationality of L(Y/X, x;T) when x is a Q-central
character associated with a representation F of G. However, if A denotes the
direct image of x with respect to the structure map of X, the trace formula 6.8,
together with or, = o}, easily implies that

1

det (1 — A(o) LEm(X) T) '

LY/X,x;T) =

Item 3 follows from the description of formulae in terms of Galois formulae
(4.3):

ZO/F;T) = H Z((Cs/A;, Con(Ci, A)); T) = H L(Ci /A Leon(csnny; T).

K2

O

Remark 7.5. Near-rationality of a series ) a,T"™ shows a strong regularity in the
sequence of numbers (a,). In particular, only a finite number of a,,’s determine
the whole sequence. As a consequence, L-functions are definable invariants in the
same sense as the CDM-measure (6.1). We shall use this observation frequently.

Definition 7.6. Let §(z) be a formula over a pseudofinite field F' defining a subset

of a variety X of dimension d. We define the (definable) Dirichlet density of 6 with
respect to X to be

. InZ(0/F,s)

1) 0) ;== lim ————"—=.

xor(0) = e

Theorem 7.7 (Definable Cebotarev). Let X be a normal and connected variety
over F. Let f : m(X) — C be a continuous Q-central function with (FQ). Then

/X f(02) déx (z) = / o
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Proof. By 3.10, we reduce to proving the case when f = y is the character of an
irreducible Q-central representation F of 71 (X) with (FQ). By 7.4,

1
det (1 — A(o) Lm(X) T) ’
where A is the direct image of F via the structure map of X. Hence,

InL(Y/X,x;s) {0, when x is nontrivial,

LY/X,x;T) =

/XX(U“”) dox(w) =l X

as required. O

1, when x is trivial,

Remark 7.8. Let X be normal and geometrically connected over F'. Let us call
a Q-central function f on 71 (X) geometric if it has no w$*™(X)-coinvariants,
i.e., the direct image of f in G(F) is just the part of f coming from the trivial

character, i.e., fm(X) fdugaar - 1. Tt is clear then that for any n,

/X f(0) by (x) = /X £(@2) dpn(2).

8. COMPLETIONS

In this section we extend the CDM-‘measures’ ;1x,r and Dirichlet density
dx,r to measures in the sense of Section 2. The simplest way of accomplishing this
task is to exploit some notion of model-theoretic ‘largeness’. More precisely, we
shall say that a pseudofinite field § is large, if it is saturated and homogeneous in
cardinality much larger than all the other fields appearing in our considerations.
In particular, for any given field k, it is at least |k|T-compact, i. e., for every n,
every covering of A"™(F) by |k| many definable subsets has a finite subcovering.

Let us write 7 ~ 7’ in a profinite group G if (1) and (7') are conjugate in
G, i. e, if 7 and 7' are I'g-conjugate (cf. 3.8). By a slight abuse of notation, let
x ~ ' in X(F) if the corresponding oz, ~ 05, in m(X) or G(X).

Definition 8.1. Let X be a geometrically irreducible variety over a field k and
let § be a large pseudofinite field containing k.

Let (X, px,z) be the measure space described as follows. The underlying
topological space is X (§), with topology induced by all the definable subsets of
X with parameters from k. By largeness (in fact, |k|*-compactness), we conclude
that X (§) is compact. The measure px g is obtained by extending the already
known function on the base via 2.1.

We define the measure space (X, d x,5) analogously, the underlying topological

spaces being formed on lim = X (§n) = X ().

Definition 8.2. Let X = Spec k be an irreducible variety over a field k contained
in a pseudofinite field F. We wish to define a measure yp on G(X). If f : G(X) — C
is a continuous function, we let

vr(f) = (me f)(orK).
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Theorem 8.3 (‘Fancy’ Cebotarev). Let X be a geometrically irreducible variety
and let f : G(X) — C be a continuous Q-central function. Then

(1)
/ f(a&ﬂﬁ) daX,@(x) :/ [ ditgaar;
X G(X)

/ flog,) dpx,z(z) =/ fdvz.
X G(X)

Proof. First of all, let us remark that the function x — f(op;) is not defined
everywhere, since op, € G(X) makes sense only for generic x. However, the
integral is still meaningful, since the set where the function is not defined is lower-
dimensional and therefore of zero measure. By 3.10 and linearity of both sides of
the equality, we reduce (2) to the case of 6.8. Similarly, (1) reduces to 7.7. |

(2)

Remark 8.4. If we loosen the definition of maps of measure spaces to include maps
defined up to a set of measure zero, the map x — o, induces ‘equivalences’ of the
following measure spaces:

(1) (X,0x)/~ > (G(X), pnaar) /~;
(2) (X, pxn)/~ = (G(X),75)/~
In view of 4.2, the left side of (1) and (2) is the Stone space of types in X. In

particular, it follows that this very abstract model-theoretic object is metrisable
and admits a measure.

9. INDEPENDENCE THEOREM

In this section, all the ‘completed’ measures in the sense of the previous
section are taken with respect to a fixed large pseudofinite field §. First of all, we
need to study the behaviour of the CDM-measure with respect to the base change.

Lemma 9.1. Let us consider the Cartesian square involving X, S = Spec(k), X1,
S1 = Spec(k1), X1 = X xg51 like in Figure 2. Let us write f1y for the pushforward
with respect to the CDM-measures 11 on X1 and p on X, to distinguish it from
the direct image of generic sheaves. Then, for any generic sheaf F on X1, and any
representation A of the subgroup of G(k1) generated by op .,

fi(FerA) = fun For* 1. A = fig F @ frem] A

Proof. Working with the character x of F, by definition of pushforwards and 6.8,
for every character € of a generic sheaf on X,

(X [1€)(05,k1) = P17 (f1ax - €) (05,11 ),

or, generalising slightly, for any character a of (o3, ), using the scalar products
with respect to the Haar measures,

(r1e(x - fre),a") = ($17 (frex - €), 2").
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X1 xx Xo

T12

P1 P2 S1 Xg Sa
s

F1GURE 2. Commutative diagram for 9.2

After a short calculation using the adjointness of the direct and inverse image
functors, the above reads:

(fre(x - i), €”) = (figx - T drecr,€”),
for arbitrary €, and the desired conclusion follows. O

We are finally ready to state our refinement of the Independence Theorem in
pseudofinite fields.

Theorem 9.2. Let k, k1, ko be (small) elementary subfields of §, with k relatively
algebraically closed in § and ki1 and ko free over k. Let X be a geometrically
irreducible variety over k and let X; := X Xy k;. Then we have independences of
the following measure spaces:

(1) (X175X1) \L(X75X) (X276X2);
(2) (thqu) J’(X,Nx) (XZMqu);

Proof. Since k is relatively algebraically closed, k;/k are regular and so k; and ko
are linearly disjoint over k. Thus k1[ke] = k1 ® k2. Let us write S = Spec(k),
S; = Spec(k;). Using the properties of the fibre product,

X(kl[kz]) =X Xs (Sl Xs 52) = (X Xs Sl) X x (X Xs SQ) = X1 X x XQ,

up to canonical isomorphisms. This shows that the function fields of X; and X5
are linearly disjoint over the function field of X.

A model-theoretic proof of this fact: let z be a generic point of X over k. We
may assume (by an automorphism) that x is free from kq1ks over k and thus, by
assumptions, ki is free from ko(z) over k. However, both k1 and ka(z) are regular
extensions of k (by assumptions on k and geometric irreducibility), so in fact ki
is linearly disjoint from ko(x) over k. This implies that ki (x) is linearly disjoint
from ko(x) over k(x), as required.

If by L; we denote the function field of X; and by L that of X, we get that

G(L1Ls)/ G(L5 L) =~ Gal(L; L3/ L1 La) ~ G(L1) X (r) G(La).
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In other words, G (X1) Xg(x) G (X2) is a quotient of G (X(x, 1,))- In view of 3.13
and 8.4, we have obtained (1).

(2) In order to show the required independence inside (X2, p12), where X1
denotes the fibre product X7 x x X5, we need to show that pq2 is the fibre product
of u1 and po over p, i. e., that for any two generic sheaves F; on X; and their
characters x;, with notation from Figure 2,

p2(pix1 - pax2) = 1(figxa - fagxa),

where by fiyx: we denote the pushforward of y; with respect to the measures
w; and p. Clearly, it suffices to prove the following CDM-version of the Kiinneth
formula:

(fi X f2)g(F1 X F2) = f1y F1 @ fy Fo.
By the usual Kiinneth formula, for suitable A; and Ay (as in 9.1), we get:

fremi AL ® fouTi A2 @ (f1 X fa)u (F1 R Fa @715 (A1 K Ag))
= (1 X f2)« (T AL W7y A2) @ (f1 X f2)« (F1 @71 A1) B (F2 @75 A2))
= (f1 X f2)xT12 (A1 K A2) ® f1.(F1 @77 A1) ® fou (F2 @75 A2).
The CDM-version of Kiinneth can be read off from the above using 9.1. O

At a first glance, this result does not resemble the classical form of the in-
dependence theorem. Let us derive the latter as a special case, after introducing
some language.

We call a definable subset of a geometrically irreducible variety X elementary,
if it corresponds to a single Q-conjugacy class in the group G associated with a
Galois cover of X. If p is any measure and 6 an event, by pp we denote the
conditional probability with respect to 6,

ENICERT)

Corollary 9.3. Let k, k1, ko be (small) submodels of §, with k1 and ko free over
k. Let p be a complete type over k and let p; be generic extensions of p to k;. Let
0 be the Dirichlet density on the locus X of p over E, and let p = ugz be the
CDM-measure.

(1) Given elementary formulae 6; € p;, there is a formula 6 € p such that
po (61 A O2) = g (01) e (02).
(2) Given elementary formulae 6; € p;, there is a formula 6 € p such that
09(01 N O2) = 6g(61)d0(62),
i. e., 01 and Oy are independent as events with respect to 6.

Proof. Let X/E be the variety associated with p (i.e. the positive quantifier-free
part of p) and let C' be the corresponding conjugacy class in G(X). Since p; are
generic extensions, their associated varieties are X; := X Xgpeo(m) Spec(K;). Let
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us adopt the notation of the left side of the diagram in the proof of 9.2. The types
p; then correspond to some conjugacy classes C; in G(X;), with C= fz(él)

Let now 6; € p; be formulae, whose X;-part corresponds to some C; D CN’Z-
which comes from a finite factor of G(X;). Then fi1(C1) N f2(Co) =: C D C
also comes from a finite factor of G(X) and thus corresponds to a formula 6 €
p (essentially because intersection of subgroups of finite index is again of finite
index). We have

01 N O2(F) = {x € X(F) : 0, € p; "(C1) Np;3 ' (C2) = C1 xg(x) Cal,

where p; are the maps G(X; xx X2) — G(X;). Part (2) follows directly from
(3.16) (the sets C; in question being Q-conjugacy classes).
For (1), by the above, the measure of the intersection equals

/1*12(1C1 O 102) = ,Uz(flthl : thI]-Cz)'

Since for every z € X;(§), 7i(05,2) = 05k, Wwe may assume lc, - 7,15, = lc;.
Also, ¢l =0iloy ,, for some ¢;. Then, by 9.1 and 3.15,

I3,k

1
figle, = Wmilﬁ(ci)

I3,k

Thus

mim ]' 1 1 2 2 m m
(01 NO2) = 7, | 2 THCNORCD ) () = T2 1) = g (01)1160(02)(6),
51527’ 103,16 51 52

and dividing both sides by () yields the claim.
([

Since any formula is a disjoint union of elementary formulae, the statement
(1) of the above corollary implies that for arbitrary formulae 0; € p;, u(61N0) £ 0
and thus retrieves the usual form of the Independence Theorem, showing that p;
and py have a common refinement of the same dimension (a set of nonzero measure
has the same dimension as the ambient space).

Example 9.4. This is in fact a non-example, showing how various Cebotarev
theorems can be used when Independence Theorem cannot. In the Introduction
we have mentioned the usefulness of 6.8, 7.7 and 8.3 when dealing with ‘random’
reducts of pseudofinite fields. In such applications, they are used as a much more
precise substitute for the Independence Theorem, as we illustrate below.

Suppose then that we have a geometrically irreducible variety X over a pseu-
dofinite field F equipped by two Galois covers X;/X and X5/X with groups
G; and Ga, respectively. Assume X; are also geometrically irreducible (the geo-
metric case). Let 6; := {z € X(F) : 0, € C;} be definable subsets of X, for
Q-rational conjugacy domains C;. In applications we usually need to show that
01(F) A 63(F) # 0. Suppose we have some extra condition that guarantees that
X1 xx Xs is irreducible (e.g., when k(X;) and k(X2) are linearly disjoint over
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k(X)). Then X; xx X2 — X is a Galois cover with group G x G2 and
01/\02(F) = {IGX(F) o, € O X 02}
Therefore, Cebotarev’s Theorem implies that

px (01 AO2) = px (61)px(62) # 0,

allowing us to conclude that 6; A 62(F') is nonempty.

In many such cases the Independence Theorem cannot be applied. For exam-
ple, X1 X x X5 can be irreducible even if fields of definitions of X; and X5 are not
(nontrivially) linearly disjoint over that of X.

10. MOTIVES

In this section we give a quick overview of everything we have done so far
in the language of motives and cohomology. The goal is to convince the reader
that the measure-theoretic Independence Theorem for pseudofinite fields is essen-
tially contained in the ‘relative’ Kiinneth formula for the cohomology of the fibre
product. We use the notation from [7].

Let k£ be a field of characteristic zero for the rest of this section. Let Schy
be the category of algebraic varieties over k. We denote by Moty ¢ the category
of Chow motives over a field k, with coefficients in C, and by Ko(Mot,c) its
Grothendieck group. Objects in Moty ¢ are triples (X, p,n) with X a proper and
smooth variety over k, p an idempotent correspondence with coefficients in C on
X, and n € Z. There is a natural functor x. from Schy to Moty ¢, given on smooth
and proper X by x.(X) := (X,id,0).

Let G be a finite group. Let X € Schy be endowed with a G-action. We say
that X is a G-variety if the G-orbit of every closed point in X is contained in an
affine open subscheme. This is a sufficient condition for the quotient X /G to exist
and it is always satisfied when X is quasi-projective. Considered with the natural
notion of G-morphism, this forms a category, and we may define the corresponding
Grothendieck ring Ko(Schg, G).

Let « be the character of a representation G — GL(V,,) with n, = dim(V,),

and let n
pai=15> a (9]
| | geG

be the corresponding idempotent in C[G]. There is a natural ring morphism I'
from C[G] to the ring of correspondences on X with coefficients in C sending a
group element g onto the graph of multiplication by g. We recall the group R(G)
of virtual characters from 3.

The fundamental result relating these notions is the following result from [3].

Theorem 10.1. Let G be a finite group. For every a € R(G), there exists a unique
morphism of rings

Xc(', a) : Ko(schk, G) — K()(Motk)c)
such that
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(1) If X is projective and smooth with G-action and « is an irreducible char-
acter, noX([X], ) is the class of the motive (X,T'(pa),0) in Ko(Moty ¢).
(2) For every G-variety X,

XC(X) = ZnaXC(Xa Oé),

where a runs over the irreducible characters of G.
(3) For every G-variety X, the function o — x.(X, ) is a group morphism
R(G) — KO(MOtk,(C).

This is a slight improvement of a result from [3] and [7]. Note the formal
similarity to 7.3.

Proposition 10.2. (1) Let ¢ : G — G’ be a homomorphism of finite groups,
let Y be a G-variety, and let ¢,.Y =Y xC G’ be the G'-variety deduced
from'Y by ‘extension of the structural group’. Let o be a character of G’
and let ¢*a’ be its pullback to G. Then

Xc(Ya (b*al) = Xc(¢*Y; X/)'
(2) Let ¢ : G' — G a homomorphism of finite groups. Let Y be a G-variety
and let $*Y denote the variety Y on which G’ operates through ¢. Let o
be a character of G' and let ¢’ be its direct image on G. Then

xe(Y, ¢*O/) = Xc(9"Y, O/)'

Being able to associate the motive to a Galois cover with a given virtual
character, Denef and Loeser [7] proceed and define the motives associated with
arbitrary definable sets in pseudofinite fields. The procedure is similar to the stages
in our definition of v in 6.3. Thus, from this point on we assume that we have the
motivic measure y. which can integrate definable C-functions, and the integrals
take values in Ko(Moty c) ® C.

Suppose now we have a diagram:

Xl XxXg

X1 X5
NS
X

Let us also assume that we have Galois covers Y, Y7 and Y5 of X, X; and X5 with
groups G, G1, Gs, respectively and that Y; xy Y3 is a Galois cover of X; x x Xo
with group G; x¢g Gs2. Let us write ¢; for the maps Y; — Y and @« for ¢ X ¢s.
Let a; be a character of G;. We write oy [ as for the product of pullbacks of «;
to G1 Xg Ga. A repeated application of 10.2, as well as 3.13, yield

Xe(Y1 xy Yo, 01 B ag) = xe(0y Y, 1 Has) = xe(Y, ox (a1 D)) =
= xc(Y, @140 - p2.02).
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In a forthcoming paper we make an effort to write the right-hand side of the above
as a product in a suitable category. This special case justifies the independence of
spaces with finitely additive measure,

(X17 Xc) \|_, (XQa Xc)
(X,xe)

We argue below that the CDM-measure and Dirichlet density are just tiny invari-
ants of x., and therefore this independence implies all the previous results of the
paper.

Indeed, it follows from 6.8 that the CDM-measure of a motive over a pseu-
dofinite field F is calculated using its H2d(-, @Q,). Let F; be the lisse Q;-sheaves on
X; corresponding to «; via ¢. Note that, given a lisse sheaf F on X corresponding
to a representation of the Galois group G of the cover Y — X with character «,

H](X,F) = H.(x.(Y,), Q).
Thus the calculations
H?* (xe(Y1 xy Ya,00 D), Q) = H** (X1 xx Xo, F1 R Fa),

and

H?! (X (Y, pre01 - 2002), Qp) = H* (X, ¢1. F1 @b Fo)
give the same result. However, the equality of the right-hand sides in the above is
just a very special case of the Kiinneth formalism from [5]. If we let ¢y := ¥ o ¢y,
1) being the structure map of X,

R (F1®Fa) = Ry Rox1(F1 R Fa) = Rip(Rp1 F1 QRpar Fa).

Thus, in a sense, the assumptions of the Independence Theorem just give a suf-
ficient condition under which a diagram like above arises, and everything else is
handled by the Kiinneth formula.
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