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1. Introduction

Several applications of model-theoretic methods in the theory of cohomology
have appeared recently, most probably influenced by ideas of Macintyre. In his
programmatic paper [10], he shows that, after expanding the language of rings
by certain sorts and predicates for cohomology, the axioms of Weil cohomology
theories are first order and one can form new cohomology theories as ultraproducts
of already existing ones.

The present author has remarked that, although the cohomologies with torsion
coefficients do not satisfy the axioms for a Weil cohomology theory individually, they
do so ‘on average’, and one can obtain cohomologies with coefficients in pseudofinite
fields of characteristic zero by taking ultraproducts ([14]). He shows that this
‘pseudofinite cohomology’ is at least as good as the l-adic theory when dealing
with issues around the Weil conjectures. In parallel, Brunjes and Serpe developed
the theory of nonstandard sheaves systematically, and they even show that the
pseudofinite cohomology is better behaved than the l-adic one, the former being a
derived functor cohomology ([1]).

The purpose of this short note is to clarify which aspects and invariants of the
theory of (étale) constructible sheaves and cohomologies are definable in the lan-
guage of rings. It should serve as a bridge between the algebraic-geometric and
model-theoretic language and should encourage model-theorists to use the sophisti-
cated techniques already developed by geometers. We show that, in case one needs
to consider an invariant defined in terms of constructible sheaves over a finite or a
pseudofinite ground field, there is a good chance that it is definable.

We use the standard notation of algebraic geometry. For a field k, k̄ denotes the
algebraic closure of k, and for a scheme X over k, X̄ denotes X ×Spec(k) Spec(k̄).
A variety over S is a reduced and separated scheme of finite type over S.

This research was supported by a Marie Curie Fellowship.

2. Fundamental group and constructible sheaves

We recall the basic definitions and facts from algebraic geometry in an effort to
keep the presentation relatively self-contained. For more details we refer the reader
to [5], [11] or the widely available manuscript [12].

Given a connected scheme X and a geometric point ξ of X (i.e., a point with
values in some algebraically closed field), we have the profinite étale fundamental
group π1(X, ξ), which classifies finite étale coverings of X ([12], Section 3). This
gives a covariant functor on the category of pointed schemes (X, ξ). As in topol-
ogy, varying ξ just changes π1(X, ξ) up to an inner automorphism. Thus we shall
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usually omit the base point, writing π1(X), when we only require calculations up
to conjugacy.

In the special case X = Spec(k), where k is a field, a geometric point ξ is just
a choice of an algebraically closed overfield L of k, and π1(X, ξ) is just the Galois
group Gal(ksep/k), where ksep is the separable closure of k in L. Another interesting
special case is that of normal X . If a connected variety X is normal, it is irreducible,
say with generic point η. Its function field K is the residue field k(η). If we view an
algebraic closure K̄ of K as a geometric generic point η̄ of X , the group π1(X, η̄)
is the quotient of Gal(Ksep/K) which classifies those finite separable extensions
L/K with the property that the normalisation of X in L is finite étale over X (i.e.,
unramified).

Given a connected scheme X , a field k and a k-valued point x ∈ X(k), the
associated morphism Spec k → X induces a group homomorphism

π1(Spec(k)) = Gal(ksep/k)→ π1(X),

well-defined up to conjugacy. The image of this map is called the Artin symbol at
x and is denoted by Ar(x). We shall discuss several incarnations of it in Section 3.

If X is geometrically irreducible, we have the short exact sequence for the fun-
damental group:

1 πgeom
1 (X, η̄) π1(X, η̄) Gal(ksep/k) 1,

where πgeom
1 (X, η̄) = π1(X ×k k̄, η̄) is the geometric fundamental group. As a

contrast, π1 is sometimes called the arithmetic fundamental group.
Let us denote by É(X) the category of étale extensions of a scheme X . An

(étale) presheaf F on X in a category C (of sets, abelian groups, rings. . . ) is a
contravariant functor

F : É(X)→ C .

A presheaf F is an (étale) sheaf, if it satisfies these additional properties:

(1) F(U ∪̇V ) = F(U)×F(V );
(2) when U → V is surjective, the following sequence is exact:

F(V ) F(U) F(U ×V U)

For an object F in C, we can define the ‘constant sheaf’ FX on X by putting

FX(U) = F × · · · × F = F n(U), U ∈ É(X),

where n(U) denotes the number of connected components of U . Any sheaf isomor-
phic to a sheaf of this form is called constant.

Definition 2.1 ([12], 6, [5], I.4). (1) A sheaf F on a scheme X is called locally
constant, if there is an étale covering Ui → X such that each F � Ui is
constant. If the F(Ui) are all finite, we shall say that F is finite locally
constant.

(2) A sheaf F on X is constructible, if X can be written as a union of finitely
many locally closed subschemes Y ⊆ X such that F � Y is finite locally
constant.

The following characterisation of locally constant sheaves is of great interest for
our purpose.



CONSTRUCTIBLE SHEAVES AND DEFINABILITY 3

Proposition 2.2 ([12], 6.16, [5], A I.7). Let F be a finite locally constant sheaf of
abelian groups on a connected and normal scheme X. For any geometric point ξ of
X, the stalk Fξ is in a natural way a continuous π1(X, ξ)-module. The assignment
F 7→ Fξ establishes an equivalence between the category of finite locally constant
sheaves of abelian groups and the category of finite continuous π1(X, ξ)-modules.

In this context, continuity clearly implies that the action comes from a finite
quotient of π1(X, ξ).

Let X be a connected and normal scheme and l a prime invertible in X . By
analogy, we define a lisse Q̄l-sheaf F of rank r on X as an r-dimensional con-
tinuous Q̄l-representation of π1(X, η̄) (cf. [12], 19, [5], A I.8, [9], Appendix A). A
constructible Q̄l-sheaf F on X is given when X can be written as a union of finitely
many locally closed subschemes Ui such that each F � Ui is lisse. Note that in this
case the action need not factor through a finite quotient. In our study of defin-
ability, however, we mostly consider the Q̄l-sheaves with the (FQ)-property ; a lisse
Q̄l-sheaf F on X is labelled (FQ) if it factors through a finite quotient of π1(X),
while a constructible sheaf is called (FQ) if it is such on each piece of X where it
is lisse.

Let F be a constructible or a constructible Q̄l-sheaf on X , let x : Spec(k) → X
be a k-valued point of X and let x̄ : Spec(ksep) → X be a geometric point lying
over x. Since the underlying module of the stalk F x̄ coincides with that of the
pullback x∗ F , which can (tautologically) be considered as a sheaf on Spec(k), the
stalk F x̄ is naturally endowed with the action of Gal(ksep/k) = π1(x, x̄).

3. Galois formulae vs. formulae

We start with a general consideration of Galois stratification, developed in [7],
[6], but adopting the more geometric language as in [4].

Let A be an integral and normal variety. A morphism of varieties C → A is a
Galois cover, if C is integral, h is étale, and there is a finite group G = G(C/A)
acting on C such that h induces the isomorphism C/G ' A.

A Galois cover C → A is coloured, if G(C/A) is equipped with a family Con
of subgroups stable by conjugation. Let S be an integral normal scheme and let
X → S be a variety over S. A normal stratification of X ,

〈X, Ci/Ai : i ∈ I〉,

is a partition of X into a finite set of integral and normal locally closed S-subschemes
Ai, each equipped with a Galois cover Ci → Ai. A Galois stratification

A = 〈X, Ci/Ai, Con(Ai)|i ∈ I〉

consists of a normal stratification in which each Galois cover Ci/Ai is coloured (by
Con(Ai)).

Let S be an integral and normal scheme and let X → S be a variety over S.
For a field k, a point s ∈ S, associated with a morphism Spec k → S, we denote
by Xs the fibre of X over s (Xs = X ×S k(s)). Let A = 〈X, Ci/Ai, Con(Ai)|i ∈ I〉
be a Galois stratification of X , let s ∈ S(k), and let x ∈ Ai,s. The Artin symbol,
Ar(Ci/Ai, s, x) is the conjugacy class of subgroups of G(Ci/Ai) consisting of the
decomposition subgroups at x. More precisely, considering the map corresponding
to x, Spec(k)→ Ai,s → Ai, we have the induced map

Gal(ksep/k)→ π1(Ai,s)→ π1(Ai)→ G(Ci/Ai),
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and Ar(Ci/Ai, s, x) is its image, defined up to conjugacy.
Let A be a Galois stratification over S, as above. We will call an expression of

the form
A := {x ∈ X : Ar(x) ⊆ Con(A)}

a Galois formula over S. For a field k, s ∈ S(k) and x ∈ Ai,s(k), we write
Ar(x) ⊆ Con(A) for Ar(Ci/Ai, s, x) ⊆ Con(Ci/Ai), and we consider the set of
k-valued points of As,

As(k) := {x ∈ Xs(k) : Ar(x) ⊆ Con(A)}.

Formulae as above will be referred to as Galois formulae. The following result
shows that every Galois formula corresponds to a formula. The converse is true
only under additional assumptions on the base field, cf. [7].

Proposition 3.1. Let Y → X be a Galois cover over S with group G, and let
D ⊆ G be a conjugacy domain of subgroups. There exists a formula θD over S such
that for every field k, and every s ∈ S(k),

{x ∈ Xs(k) : Ar(x) ⊆ D} = {x ∈ Xs(k) : k |= θDs (x)}.

This result is stated under more restrictive hypotheses in [6], but they are not
needed in the proof. For the convenience of the reader, we repeat the proof in our
notation.

Proof. We can reduce to the case of affine varieties and we may assume that D is
full, i.e., that it contains all subgroups of each group in D. Indeed, if D is a single
conjugacy class of groups, then D = D′ \D′′, where D′ is the conjugacy domain
of all subgroups of the groups in D and D′′ is the conjugacy domain of all proper
subgroups of the groups in D. Then θD ≡ θD

′

∧ ¬θD
′′

. In general, a conjugacy
domain is a union of conjugacy classes and the required formula will be a disjunction
of formulae as above.

Consider the Galois extension F/E of function fields of Y and X . For each
subgroup H of G, let EH be the fixed field of H in F and let XH be the normalisation
of X in EH . Clearly, Y/XH is a Galois cover with group H .

Let x ∈ Xs(k), and let x̄ be a geometric point over x. We claim that for every
H , the image of π1(x, x̄) → π1(X, x̄) → G is a subgroup of H if and only if there
exists a z ∈ XH(k) that maps onto x. This will then imply (when we forget to
specify the base point x̄) that Ar(x) ⊆ D is equivalent to

∨

H max. in D

∃z ∈ XH(k) z 7→ x,

the latter condition being definable by a formula over S.
To prove the claim, let us choose geometric points ȳ in Y and z̄ in XH so that

ȳ 7→ z̄ 7→ x̄. If the image of π1(x, x̄) is contained in H and H fixes Z, then Gal(k)
fixes z̄ so we have found a k-rational point of XH mapping onto x.

Conversely, if there is such a z, we have the diagram (the last column is obtained
by quotienting the middle column by π1(Y, ȳ)):

π1(z, z̄) π1(XH , z̄) H

π1(x, x̄) π1(X, x̄) G

Since the left vertical arrow is an isomorphism, the image of π1(x, x̄) sits in H . �
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Corollary 3.2. Let F be a constructible sheaf (resp. a constructible Q̄l-sheaf with
(FQ)) on a variety X over S. There is a finite number of finite modules (resp. finite-
dimensional vector spaces Q̄l) Mi endowed with group actions such that for every
field k, s ∈ S(k), and x ∈ Xs(k), the action of Ar(x) on Fx is isomorphic to some
Mi. Moreover, for each Mi there is a formula θMi over S such that

{x ∈ Xs(k) : the action of Ar(x) on Fx is isomorphic to Mi}

= {x ∈ Xs(k) : k |= θMi

s (x)}.

Proof. Since Ar(x) is a conjugacy class of subgroups, it does make sense to talk
about the isomorphism class of the action as above and it is clear that the iso-
morphism type is fixed on a union of conjugacy classes (a conjugacy domain) of
subgroups. The sheaf has (FQ) using either assumption and on each stratum where
it is locally constant (resp. lisse) we only need to worry about the actions obtained
by restriction of the action of a finite quotient of the fundamental group to its
subgroups. Definability follows directly from the proposition. �

In model theory of fields, one often studies a class of fields with a specific struc-
ture of their absolute Galois groups. Although 3.2 looks quite interesting, it cannot
be used to, say, compute traces or characteristic polynomials of some distinguished
element of the Galois group of the ground field on the stalk F x̄, unless one ex-
pands the language with symbols which allow it to be mentioned, as in [8]. To
overcome this weakness of the language of rings, one is forced to restrict the class
of acceptable sheaves, as expounded in the following definition.

Definition 3.3. Let K be a class of fields containing a given field k0. Let F be
a constructible or a constructible Q̄l-sheaf on a variety X over k0. We shall say
that F is K-invariant, if for every k ∈ K, for every k-rational point x ∈ X(k), any
two geometric points x̄1, x̄2 ∈ X(ksep) lying over x, and every group isomorphism
ϕ : π1(x, x̄1)→ π1(x, x̄2), we have the isomorphism of Gal(k) = π1(x, x̄1)-modules

ϕ∗ F x̄2
' F x̄1

.

Motivated by a part of the above definition, when two isomorphic groups G
and G′ act on modules M and M ′, we shall say that these actions are strongly
isomorphic if for every isomorphism ϕ : G→ G′, the G-modules ϕ∗M ′ and M are
isomorphic.

Theorem 3.4. Let K be a class of fields. Let F be a K-invariant constructible
sheaf (resp. constructible Q̄l-sheaf with (FQ)) on a variety X over S. There is a
finite number of finite modules (resp. finite-dimensional vector spaces over Q̄l) Mi

endowed with group actions such that for every k ∈ K, s ∈ S(k), and x ∈ Xs(k),
the action of Gal(k) on Fx is strongly isomorphic to some Mi. Moreover, for each
Mi there is a formula θMi over S such that

{x ∈ Xs(k) : the action of Gal(k) on Fx is strongly isomorphic to Mi}

= {x ∈ Xs(k) : k |= θMi

s (x)}.

Proof. Having in mind that the action of Gal(k) on F x̄ is the pullback of the action
of Ar(x), we argue as in 3.2. By k-invariance, on each stratum Y where F is locally
constant, the left hand side of the above equality is of the form

{x ∈ Ys(k) : Ar(x) ⊆ D},
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for some conjugacy domain D. In other words, this set is given by a Galois formula
over S. By 3.1, there is a formula over S equivalent to it. �

Remark 3.5. At the end of Section 2, we mentioned that there exist lisse Ql-sheaves
which do not factor through a finite quotient of the fundamental group. It is intu-
itively clear that such sheaves encode information contained in an infinite sequence
of constructible sheaves and that we cannot expect their invariants to be definable,
but only possibly ∞-definable.

For example, let k be a field of characteristic different from a prime number l.
For each n, consider the group Tn of ln-th roots of unity in k̄, together with the
action of the absolute Galois group G of k. Then, T := lim

←−n
Tn ' Zl is a continuous

G-module in its l-adic topology, and we obtain a lisse Q̄l-sheaf as the representation
of G on T ⊗Zl

Q̄l. In particular, this sheaf ‘knows’ which ln-th roots of unity are
contained in k for all n, and this is clearly not something expressible by a single
formula.

4. Applications

4.1. Cohomology. Let us recall some facts about étale cohomology groups, as one
of the most important classes of locally constant sheaves. Let X be connected over
a finite field k and let F be a constructible sheaf. We have étale cohomology groups
with compact support (cf. [12], 18, [5], I.8),

H i
c(X̄,F),

which are finite continuous Gal(ksep/k)-modules, and which vanish unless i ∈
{0, . . . , 2d}. We consider them as locally constant sheaves on k.

Suppose now that S is a connected normal variety over Z, and let π : X → S
be a normal and connected variety over S. Let F be a constructible sheaf on
X . It is shown in algebraic geometry ([12], 18.4, [5], I.8.10) that the higher direct
images of F with compact support, Riπ! F , are constructible sheaves on S. Given
an algebraically closed field field Ω and any geometric point s̄ ∈ S(Ω), by the
proper base change theorem ([12], 17.10, [5], I.6.1, I.8.7) we have the specialisation
property:

(Riπ! F)s̄ = H i
c(Xs̄,F s̄),

where Xs̄ is the geometric fibre over s̄, and F s̄ is the restriction (pullback) of F to
Xs̄.

Theorem 4.1. Let F be a (torsion!) constructible sheaf on a variety X over S
which factors through a finite quotient of π1(X). There are finitely many finite
modules M r

i endowed with group actions such that for every field k, s ∈ S(k)
and every integer r, there exists an i such that Hr

c (X̄s,F) is isomorphic to M r
i .

Moreover, for all i and r, there is a formula θr
i such that

{s ∈ S(k) : Hr
c (X̄s,F) 'Mr

i } = {s ∈ S(k) : k |= θr
i (s)}.

Proof. The theorem follows from the étale cohomology facts mentioned above,
namely the constructibility of higher direct images with proper supports and the
specialisation property, together with 3.2. �
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4.2. Finite and pseudofinite fields. Let us consider a property related to K-
invariance, which turns out to be particularly well-behaved in the case of finite and
pseudofinite fields. The absolute Galois group of a finite or a pseudofinite field

being isomorphic to Ẑ, our attention is drawn to the consideration of properties
invariant of the choice of a topological generator of the Galois group.

Definition 4.2. Let G be a profinite group. We shall call a function f on G
Q-central, if f(x) = f(x′) whenever x and x′ topologically generate conjugate
subgroups of G.

Remark 4.3. Let K be the class of finite or pseudofinite fields. Suppose F is a
lisse Q̄l-sheaf on a scheme S. Then F is K-invariant if and only if its character is
Q-central.

For a (torsion) constructible sheaf, it can be rather intricate to talk about its
character. For a commutative ring Λ (usually Λ = Z /n Z), it is clearly possible
when it is a sheaf of free Λ-modules, but it can be shown that traces can be taken
even in the case of projective Λ-modules or even perfect complexes of Λ-modules
([5], II.3). By a slight abuse of notation, we will call a constructible (torsion) sheaf
Q-central if it is K-invariant.

We have isolated the property of Q-centrality precisely for the reason that, given
a Q-central sheaf F , the trace or the characteristic polynomial of σ on F x̄ does not
depend on the choice of the topological generator σ of the absolute Galois group of
the ground field. Moreover, it is hereditary in the sense that it is preserved under
taking direct images with proper supports.

Proposition 4.4. Let F be a constructible (resp. constructible Q̄l with (FQ)) Q-

central sheaf on a variety X
ϕ
→ S. Then the direct image with compact support,

ϕ! F , is also Q-central (resp. Q-central and (FQ)).

Proof. Firstly, we reduce to the case where ϕ is a proper map. Stein factorisation
tells us that ϕ can be written as a composition of a finite map and a map with
geometrically connected fibres. In both cases we have an explicit description of
the stalks of the direct image and it is straightforward to verify that Q-centrality
(resp. the property (FQ)) is inherited. �

The above concepts are best applied in conjunction with the Grothendieck-
Lefschetz fixed point formula and Deligne’s theory of weights ([3]). Using these
techniques, the author shows in [13] the following conceptual improvement of the
results from [6] and [2].

Theorem 4.5. Let S be a connected normal variety over Z and let F be a con-
structible Q̄l-sheaf on a variety X over S which is Q-central and (FQ). Let χ be its
character and fix a non-canonical embedding ι : Q̄l → C. Then there is a localisa-

tion Z[1/n] of Z, a finite number of (continuous) Q-central characters αi : Ẑ → C

and a constant C > 0 such that, writing S ′ for the restriction of S to Z[1/n], for
every finite field k, its extension kn of degree n, and every parameter s ∈ S ′(k),
there exists an i with

∣

∣

∣

∣

∣

∣

∑

x∈Xs(kn)

ιχs(Fkn,x)− αi(n)|kn|
dim(Xs)

∣

∣

∣

∣

∣

∣

≤ C|kn|
dim(Xs)−1/2,
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where Fk denotes the Frobenius x 7→ x|k| and Fk,x its image in Ar(x), the local
Frobenius element.

Moreover, for every i there is a formula θαi
in the language of rings which defines,

in each finite field k, the set of s ∈ S ′(k) for which the above estimate holds.

For further applications in pseudofinite fields, such as showing the rationality of
pseudofinite L-functions, results regarding pseudofinite version of Dirichlet density,
we refer the reader to [13].

Question 4.6. Is Q-centrality preserved under higher direct images with proper
supports? What is the most general class of fields K (with respect to properties
of their absolute Galois groups) such that K-invariance is preserved under taking
higher direct images?
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