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SUMMARY

In this thesis we will classify the possible torsion structures of elliptic curves with rational

j-invariant defined over number fields.

We start with elliptic curves defined over Q. Let K be a sextic number field. We

determine all the possibilities G for E(K)tors and we prove that for each such possible

group G, with the exception of the group C3⊕C18, that there exist an elliptic curve E/Q

and a sextic number field K such that E(K)tors ∼= G. Additionally, we provide a partial

result regarding the group C3⊕C18.

For a positive integer d, define Φ(d) to be the set of possible isomorphism classes

of groups E(K)tors, where K runs through all number fields K of degree d and E runs

through all elliptic curves over K.

For a positive integer d, define ΦQ(d) to be the set of possible isomorphism classes

of groups E(K)tors, where K runs through all number fields K of degree d and E runs

through all elliptic curves over Q.

Define Φ j∈Q(d) to be the set of possible isomorphism classes of groups E(K)tors,

where K runs through all number fields K of degree d and E runs through all elliptic

curves over K with j(E) ∈Q.

With the help of the previously mentioned result, we are able to completely determine

the sets Φ j∈Q(p), where p is a prime number. More precisely, our result is the following.

Let K be a number field such that [K : Q] = p and E/K an elliptic curve with rational

j-invariant. The following holds:

1. If p≥ 7, then E(K)tors ∈Φ(1).

2. If p = 3 or p = 5, then E(K)tors ∈ΦQ(p).

3. If p = 2, then E(K)tors ∈ΦQ(2) or E(K)tors ∼= Z/13Z.
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Summary

In the sixth chapter, we are able to determine all the sets ΦQ(pq), where p and q

are prime numbers. Most of these cases follow easily from previously known results

and the results in the first two chapters of this thesis. In most cases we have ΦQ(pq) =

ΦQ(p)∪ΦQ(q). A detailed description of the sets ΦQ(pq) can be found in the fifth

chapter of this thesis.

Some of the proofs in the thesis rely on extensive computations in Magma [3]. All of

the programs and calculations used for the proofs can be found in the last chapter.
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SAŽETAK

U ovoj disertaciji odredit ćemo moguće torzijske strukture eliptičkih krivulja s racional-

nom j-invarijantom definiranih nad nekim poljem algebarskih brojeva .

Prvo ćemo promatrati eliptičke krivulje definirane nad Q. Neka je K sekstično polje.

Odredit ćemo sve mogućnosti G za E(K)tors i dokazati da za svaku moguću grupu G osim

C3⊕C18 postoji eliptička krivulja E/Q i sekstično polje K takvo da je E(K)tors ∼= G.

Nadalje, dokazat ćemo parcijalni rezultat za grupu C3⊕C18.

Za prirodan broj d definiramo Φ(d) kao skup mogućih klasa izomorfizama grupa

E(K)tors, gdje K varira po svim poljima algebarskih brojeva K stupnja d i E varira po

svim eliptičkim krivuljama nad K.

Za prirodan broj d definiramo ΦQ(d) kao skup mogućih klasa izomorfizama grupa

E(K)tors, gdje K varira po svim poljima algebarskih brojeva K stupnja d i E varira po

svim eliptičkim krivuljama nad Q.

Za prirodan broj d definiramo Φ j∈Q(d) kao skup mogućih klasa izomorfizama grupa

E(K)tors, gdje K varira po svim poljima algebarskih brojeva K stupnja d i E varira po

svim eliptičkim krivuljama nad K, te j(E) ∈Q.

Uz pomoć prethodnog rezultata u mogućnosti smo u potpunosti odrediti skupove

Φ j∈Q(p), gdje je p prost broj. Preciznije, naši rezultati su sljedeći. Neka je K polje

algebarskih brojeva takvo da je [K : Q] = p i E/K eliptička krivulja s racionalnom j-

invarijantom. Tada

1. Ako je p≥ 7, tada E(K)tors ∈Φ(1).

2. Ako je p = 3 ili p = 5, tada E(K)tors ∈ΦQ(p).

3. Ako je p = 2, tada E(K)tors ∈ΦQ(2) ili E(K)tors ∼= Z/13Z.
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Sažetak

U šestom poglavlju odredit ćemo sve skupove ΦQ(pq), gdje su p i q prosti brojevi.

Mnoge takve skupove ćemo odrediti koristeći već poznate rezultate, te rezultate dokazane

u drugom i trećem poglavlju. U većini slučajeva vrijedit će

ΦQ(pq) = ΦQ(p)∪ΦQ(q).

Detaljniji opis skupova ΦQ(pq) može se pronaći u petom poglavlju.

Dokazi nekih rezultata u ovoj disertaciji temelje se na računanju u Magmi [3]. Svi

programi i izračuni korišteni u dokazima mogu se pronaći u posljednjem poglavlju.
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1. INTRODUCTION

Definition 1.0.1. Let K be a number field and let F ∈ K[x,y,z] be a homogenous poly-

nomial. The set

CF := {P ∈ P2(K) : F(P) = 0}

is the set of K-rational points on the curve C. The degree of a projective curve C is defined

as the degree of the polynomial F .

A classical problem in number theory is to determine whether a certain curve C de-

fined over a number field K has a K-rational point. Denote by C(K) the set of K-rational

points on C. If we know that a given curve C has a K-rational point, then it is natural

to ask what is the cardinality of the set C(K). If card(C(K)) is finite, can we determine

card(C(K))? Can we find all the points on C(K)?

Let C be a smooth irreducible projective curve.

A celebrated theorem of Faltings gives an answer to some of the questions raised

above.

Theorem 1.0.2. Let C be a smooth, irreducible, projective curve of genus at least 2

defined over number field K. Then the set C(K) is finite.

It is natural to ask ourselves what happens if the curve C has genus equal to 1 or 0. In

the second case, an elementary argument can be used to show that C(K) is either empty

or infinite. It remains to consider the case when C has genus 1.

In this thesis we will exclusively work with elliptic curves defined over number fields.

We are interested in understanding the number theoretic properties of such curves. To

begin with, we will list the basic definitions and results in the theory of elliptic curves.

Definition 1.0.3. Let K be a number field. An elliptic curve E defined over K is a smooth

projective curve of genus 1 with a distinguished K-rational point O.

1



Introduction

We note that although E is a projective curve, we will always use its affine model.

Lemma 1.0.4. Let K be a number field and E/K an elliptic curve. Then E has a model

of the form

E : y2 +a1xy+a3y = x3 +a2x2 +a4x+a6,

where ai ∈K, for all i. This model is called the long Weierstrass model of an elliptic curve

E.

Since the characteristic of any number field is 0, we can actually obtain a simpler

model for E,

E : y2 = x3 +ax+b,

where a,b ∈ K. This is called the short Weierstrass model.

Definition 1.0.5. Let K be a number field and E/K an elliptic curve. Assume that E is

given in its short Weierstrass form. The discriminant ∆(E) of elliptic curve E is defined

as

∆(E) :=−16(4a3 +27b2).

It is worth noting that the discriminant ∆(E) is equal (up to a constant 16) to the

discriminant of the cubic polynomial x3 +ax+b. It can be shown that E is smooth if and

only if ∆(E) 6= 0.

Obviously we can have different Weierstrass models for the same elliptic curve. In

that case, we would like to have a way to see whether two Weierstrass models correspond

to the same elliptic curve.

Definition 1.0.6. The j-invariant of an elliptic curve E/K is

j = j(E) =
1728(−4a)3

∆(E)
.

We say that the elliptic curves

E : y2 = x3 +ax+b and E ′ : y2 = x3 +a′x+b′,

where a,b,a′,b′ ∈K are isomorphic (over a field L containing K) if there exists u∈ L\{0}

such that

a′ = u4a,

2



Introduction

b′ = u6b.

If we are given two elliptic curves E and E ′, it is easier to see if they are isomorphic

over K by using the j-invariant.

Proposition 1.0.7 ([50, Proposition 1.4]). Let E/K and E ′/K be elliptic curves defined

over a field K. Then

1. E and E ′ are isomorphic over K̄ if and only if j(E) = j(E ′).

2. For every j ∈ K, there exists an elliptic curve E1/K such that j = j(E1).

We have seen that if elliptic curves E/K and E ′/K have the same j-invariants, then

they are isomorphic over K̄. Actually, we can do much better then that. Most of the time

these curves will be isomorphic over a quadratic extension L of K.

Proposition 1.0.8. Let E/K and E ′/K be elliptic curves such that j = j(E) = j(E ′).

If j /∈ {0,1728}, then there exists a quadratic extension L of K such that E and E ′ are

isomorphic over L.

We can define a group operation on the set E(K). A famous theorem of Mordell and

Weil tells us much more.

Theorem 1.0.9 (Mordell-Weil). Let K be a number field and let E/K be an elliptic curve.

Then the group E(K) is a finitely generated abelian group.

An immediate consequence of this theorem and the classification theorem for finitely

generated abelian groups is that

E(K)∼= E(K)tors⊕T r,

where r ≥ 0 is an integer, called the rank of E over K and E(K)tors denotes the torsion

subgroup of E(K).

We now state an important lemma and its corollary. Often when dealing with elliptic

curve E/K with rational j-invariant that is not isomorphic to a base change of elliptic

curve defined over Q, we will make use of this result by taking a quadratic twist E ′ of E

that is defined over Q and by studying its torsion growth. That way we can obtain some

information about E(K)tors.

3
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Lemma 1.0.10 ([21, Theorem 3]). Let L/K be a quadratic extension of number fields

and let L = K(
√

d). There exist homomorphisms

f : E(K)⊕Ed(K)→ E(L),

g : E(L)→ E(K)⊕Ed(K),

such that the kernels and cokernels of f and g are contained in the kernel of multiplication

by 2.

Corollary 1.0.11. Let n be an odd integer. Using the same notation as in the previous

Lemma, we have

E(K)[n]⊕Ed(K)[n]∼= E(L)[n].

Let us now consider the simplest case, when K = Q. It is natural to consider the

following question. For an elliptic curve E/Q, what are the possibilities for the rank r of

E over Q and E(Q)tors? The first part of the question is still unanswered. We know that

there exists an elliptic curve E/Q with a rank of at least 28. This curve has been found by

Noam Elkies and it is currently the elliptic curve with largest known rank. It is not known

whether there exists an upper bound for r.

On the other hand, the second part of the question was completely answered by Mazur.

From now on we shall denote Z/nZ by Cn.

Theorem 1.0.12 (Mazur, [35]). Let E/Q be an elliptic curve. Then

E(Q)tors ∼=

Cm, m = 1, ...,10,12,

C2⊕C2m, m = 1, ...,4.

Following Mazur’s theorem on torsion subgroups of elliptic curves over the rational

numbers, the possible torsion subgroups of elliptic curves over quadratic number fields

were classified by Kamienny and Kenku-Momose:

Theorem 1.0.13 (Kenku, Momose, [31], Kamienny [26]). Let E/F be an elliptic curve

4
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over a quadratic number field F . Then

E(F)tors ∼=



Cm, m = 1, ...,16,18,

C2⊕C2m, m = 1, ...,6,

C3⊕C3m, m = 1,2,

C4⊕C4.

One can ask a similar question.

Question. Let E/Q be an elliptic curve and d a positive integer. What are the possible

torsion subgroup structures of E(K), where K is a number field such that [K : Q] = d?

This is a natural question to consider as, apart from being interesting in itself, it is

often important to study how the torsion of elliptic curves defined over Q behaves after a

base change to a number field.

Definition 1.0.14. Let E1/K and E2/K be elliptic curves defined over a number field K.

An isogeny from E1 to E2 is a nonconstant morphism α : E1→ E2 that is given by rational

functions and satisfying α(0) = 0.

It can be shown that α(P+Q) = α(P)+α(Q) for all P,Q ∈ E1(K̄). If there exists an

isogeny α : E1→ E2, then we say that elliptic curves E1 and E2 are isogenous.

An immediate example of an isogeny from one elliptic curve to itself is a multiplica-

tion by an integer n. More precisely, let E/K be an elliptic curve defined over a number

field K and let n be an integer. Consider a function defined by

[n] : E→ E, [n](P) := P+P+ . . .+P︸ ︷︷ ︸
n-times

.

This is obviously an isogeny.

Definition 1.0.15. Let E/K be an elliptic curve defined over a number field K. We say

that E has a complex multiplication (CM) if End(E)) Z.

If E/Q is an elliptic curve with CM, then j(E) is equal to one of the 13 possible values

listed in [49, Appendix 3].

5



2. KNOWN RESULTS

Let K be a number field such that [K : Q] = d and let E/K be an elliptic curve. Theorem

1.0.9 shows that E(K) is a finitely generated abelian group. Therefore this group can be

decomposed as E(K) = E(K)tors⊕Zr, r ≥ 0. It is known that E(K)tors is of the form

Cm⊕Cn for two positive integers m,n such that m divides n, where Cm and Cn denote

cyclic groups of order m and n, respectively.

One of the goals in the theory of elliptic curves is the classification of torsion groups

of elliptic curves defined over various fields. We will now briefly describe results related

to this thesis.

Let d be a positive integer. Define Φ(d) to be the set of possible isomorphism classes

of groups E(K)tors, where K runs through all number fields K of degree d and E runs

through all elliptic curves over K. In [37], Merel proved that Φ(d) is finite for all positive

integers d. The set Φ(1) can be seen in Theorem 1.0.12 and was determined by Mazur

[35]. The set Φ(2) can be seen in Theorem 1.0.13 and was determined by Kenku, Momose

and Kamienny [31], [26]. Derickx, Etropolski, Hoeij, Morrow and Zureick-Brown have

determined Φ(3) in [13].

Define ΦCM(d) to be the set of possible isomorphism classes of groups E(K)tors,

where K runs through all number fields K of degree d and E runs through all elliptic curves

with complex multiplication (CM). The set ΦCM(1) has been determined by Olson in [43]

and ΦCM(d) for d = 2,3 by Zimmer and his collaborators in [15], [40] and [44]. The sets

ΦCM(d), for 4 ≤ d ≤ 13 have been determined by Clark, Corn, Rice and Stankiewicz in

[9]. Bourdon and Pollack and Stankewicz have determined torsion groups of CM elliptic

curves over odd degree number fields in [5].

Define ΦQ(d)⊆Φ(d) to be the set of possible isomorphism classes of groups E(K)tors,

where K runs through all number fields K of degree d and E runs through all elliptic curves

6



Known results Auxiliary results

defined over Q. For d = 2,3, the sets ΦQ(d) have been determined by Najman [42] while

ΦQ(4) has been determined by Chou [7] and González-Jiménez and Najman [19]. The

set ΦQ(5) has been determined by González-Jiménez in [16]. González-Jiménez and Na-

jman have also proved that ΦQ(p) = Φ(1) for primes p ≥ 7 in [19]. For an odd prime `

and a positive integer d, Propp [45] has determined when there exists a degree d number

field K and an elliptic curve E/K with j(E) ∈Q\{0,1728} such that E(K)tors contains a

point of order `.

2.1. AUXILIARY RESULTS

Let E/F be an elliptic curve defined over a number field F . There exists an F-rational

cyclic isogeny φ : E → E ′ of degree n if and only if 〈P〉, where P ∈ E(F) is a point of

order n, is a Gal(F/F)-invariant group; in this case we say that E has an F-rational n-

isogeny. When F = Q, the possible degrees of n-isogenies of elliptic curves over Q are

known by the following theorem.

Theorem 2.1.1 (Mazur [36], Kenku [27], [29], [28], [30]). Let E/Q be an elliptic curve

with a rational n-isogeny. Then

n ∈ {1, ...,19,21,25,27,37,43,67,163}.

There are infinitely many elliptic curves (up to Q̄-isomorphism) with a rational n-isogeny

over Q for

n ∈ {1, ...,10,12,13,16,18,25}

and only finitely many for all the other n. If E does not have complex multiplication, then

n≤ 18 or n ∈ {21,25,37}.

Now we mention a result which will be used frequently. If E/Q is an elliptic curve

with independent rational m and n-isogenies, we can deduce the existence of a rational

mn-isogeny on an isogenous curve E ′/Q.

Lemma 2.1.2 ([42, Lemma 7]). Let E/F be an elliptic curve with 2 independent F-

rational isogenies (the intersection of their kernels is trivial) of degrees m and n. Then E

is isogenous (over F) to an elliptic curve E ′/F by an F-rational mn-isogeny.

7



Known results Auxiliary results

We can ask ourselves what happens with the torsion subgroup of an elliptic curve E/Q

over number fields. More precisely if E/Q is an elliptic curve and d is a positive integer,

what are the possibilities for E(F)tors, where F is a number field such that [F : Q] = d ?

We now mention the results of this type that we will frequently use in this thesis.

Theorem 2.1.3 ([42, Theorem 2]). Let E/Q be an elliptic curve and F a quadratic field.

Then

E(F)tors ∼=



Cm, m = 1, ...,10,12,15,16,

C2⊕C2m, m = 1, ...,6,

C3⊕C3m, m = 1,2,

C4⊕C4.

Theorem 2.1.4 ([42, Theorem 1]). Let E/Q be an elliptic curve and K a cubic field.

Then

E(K)tors ∼=

Cm, m = 1, ...,10,12,13,14,18,21,

C2⊕C2m, m = 1, ...,4,7.

Chou [7] has first partially classified ΦQ(4) by considering only quartic Galois num-

ber fields. González-Jiménez and Najman [19] have completed the classification by con-

sidering the non-Galois number fields.

Theorem 2.1.5 ([7, 19]). Let E/Q be an elliptic curve and K a quartic field. Then

E(K)tors ∼=



Cm, m = 1, ...,10,12,13,15,16,20,24,

C2⊕C2m, m = 1, ...,6,8,

C3⊕C3m, m = 1,2,

C4⊕C4m, m = 1,2,

C5⊕C5,

C6⊕C6.

Theorem 2.1.6 ([16, Theorem 1]). Let E/Q be an elliptic curve and K a quintic field.

Then

E(K)tors ∼=

Cm, m = 1, ...,12,25,

C2⊕C2m, m = 1, ...,4.

8



Known results Auxiliary results

The next theorem is one of the most commonly used results in this thesis. When

dealing with an elliptic curve E/Q and studying its torsion growth over number fields

of fixed degree d, we always need to know the possibilities for [Q(P) : Q], where P ∈

E(Q)tors.

Theorem 2.1.7 ([19, Theorem 5.8.]). Let E/Q be an elliptic curve, p a prime and P a

point of order p on E. Then all of the cases in the table below occur for p≤ 13 or p = 37,

and they are the only ones possible. The possibilities listed in cases 3., 4. and 5. occur

only for CM elliptic curves E/Q.

p [Q(P) : Q]

2 1,2,3

3 1,2,3,4,6,8

5 1,2,4,5,8,10,16,20,24

7 1,2,3,6,7,9,12,14,18,21,24,36,42,48

11 5,10,20,40,55,80,100,110,120

13 3,4,6,12,24,39,48,52,72,78,96,144,156,168

37 12,36,72,444,1296,1332,1368

For all other p, for [Q(P) : Q] the following cases do occur:

1. p2−1 for all p,

2. 8, 16, 32, 136, 256, 272, 288 for p = 17,

3.
p−1

2
, p−1,

p(p−1)
2

, p(p−1) if p ∈ {19,43,67,163},

4. 2(p−1), (p−1)2 if p≡ 1 (mod 3) or
−D

p
= 1,

for some D ∈ {1,2,7,11,19,43,67,163},

5.
(p−1)2

3
,

2(p−1)2

3
if p≡ 4,7 (mod 9),

6.
p2−1

3
,

2(p2−1)
3

if p≡ 2,5 (mod 9),

Apart from the cases above that have been proven to appear, the only other options

that might be possible are:

p2−1
3

,
2(p2−1)

3
, for p≡ 8 (mod 9).

9
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Proposition 2.1.8 ([19, Proposition 4.6.]). Let F be a number field and E/F be an elliptic

curve. Let p be a prime number, n ∈ N and P ∈ E(F) a point of order pn+1. Then

[F(P) : F(pP)] divides p2 or (p−1)p.

Assume that K is a number field such that [K : Q] = d. Let E/Q be an elliptic curve

and let Pp2 ∈ E(K) be a point of order p2. We want to determine [Q(Pp2) : Q]. Obviously

[Q(Pp2) : Q(pPp2)] divides [K : Q] = d. We also know by the previous proposition that

[Q(Pp2) : Q(pPp2)] divides (p− 1)p2, so it divides the gcd((p− 1)p2,d). Often we will

have that d is either a prime or a product of two primes and p will be a relatively small

prime number. That way we will be able to determine the possibilities for [Q(Pp2) : Q]

without knowing what GE(p2) actually is.

We now mention a result proved by Rouse, Sutherland and Zureick-Brown in [46].

Theorem 2.1.9. Let E/Q be an elliptic curve without CM and let G be the 3-adic repre-

sentation of E. Let G3k be the group G (mod 3k). Then the corresponding modular curve

XG has genus zero or G27 is contained in the normaliser of the non-split Cartan subgroup

of level 27, which we will denote by 27Nn.

10



3. THEORETICAL BACKGROUND

The purpose of this chapter is to explain the basic notation and results which will be

used in the thesis. The reader can find more information about the topics we will cover

in [54], [50] and [49].

3.1. THE WEIL PAIRING

The Weil pairing on the torsion on an elliptic curve is a major tool in the study of elliptic

curves. Let E be an elliptic curve over a number field K and let n be a positive integer.

Denote by E[n] the set of n-torsion points on E, i.e.

E[n] = {P ∈ E(K) : nP = O}.

The group E[n] is obviously a subgroup of E(K). It can be shown that we have

E[n]∼= Z/nZ⊕Z/nZ.

Let

µn = {x ∈ K̄ : xn = 1}

be the group of nth roots of unity in K. This is a cyclic group. Any generator ζ of µn is

called a primitive nth root of unity.

Theorem 3.1.1. Let E be an elliptic curve defined over a number field K and let n be a

positive integer. Then there is a pairing

en : E[n]×E[n]→ µn,

called the Weil pairing, that satisfies the following properties:

11



Theoretical background The Weil pairing

• en is bilinear. This means that for all S,S1,S2,T,T1,T2 ∈ E[n] we have

en(S1 +S2,T ) = en(S1,T )en(S2,T ),

en(S,T1 +T2) = en(S,T1)en(S,T2).

• en is alternating. For every T ∈ E[n] we have

en(T,T ) = 1.

Equivalently, for all S,T ∈ E[n] we have en(S,T )−1 = en(T,S).

• en is nondegenerate in each variable. If T ∈ E[n] is such that

en(S,T ) = 1, for all S ∈ E[n],

then T = 0.

• en is Galois invariant. For each S,T ∈ E[n] and for all σ ∈ Gal(K(E[n])/K) we

have

(en(S,T ))σ = en(Sσ ,T σ ).

• For every positive integer m and for all S ∈ E[nm] and T ∈ E[n] we have

enm(S,T ) = en(mS,T ).

We will derive some consequences of this theorem.

Corollary 3.1.2. Let {T1,T2} be the basis for E[n]. Then en(T1,T2) is a primitive nth

root of unity.

Proof. Suppose that en(T1,T2) = ζ , with ζ d = 1 for some positive integer d. Without

the loss of generality, assume that d is the smallest positive integer with this property.

Then en(T1,dT2) = 1. We also have en(T2,dT2) = en(T2,T2)
d = 1. Let S ∈ E[n]. Then

S = aT1 +bT2, for some a,b ∈ Z. Therefore

en(S,dT2) = en(T1,dT2)
aen(T2,dT2)

b = 1.

Since the equality holds for all S ∈ E[n], we have that dT2 = 0. This implies that n divides

d. Therefore we conclude that d = n and that en(T1,T2) = ζ is a primitive n-th root of

unity. �

12
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We will now mention a fact which will be frequently used in this thesis. It allows us

to immediately eliminate possibilities for full torsion over small number fields. We will

often have plenty of information about the properties of the number field K so we will be

able to deduce that it does not contain certain cyclotomic subfields.

Corollary 3.1.3. If E[n]⊆ E(K), then µn ⊂ K.

Proof. Let σ ∈ Gal(K/K). Let {T1,T2} be a basis for E[n]. Since E[n]⊆ E(K), we have

T1,T2 ∈ E(K). It follows that σ(T1) = T1 and σ(T2) = T2. Finally we have

ζ = en(T1,T2) = en(σ(T1),σ(T2)) = σ(en(T1,T2)) = σ(ζ ).

The fundamental theorem of Galois theory implies that if an element x ∈ K is fixed by all

such automorphisms σ , then x ∈ K. We conclude that ζ ∈ K. Since ζ is a primitive nth

root of unity by the previous corollary, it follows that µn ⊂ K. �

Corollary 3.1.4. Let E be an elliptic curve defined over Q. Then E[n] 6⊆E(Q), for n≥ 3.

Proof. By the previous corollary, we have µn ∈ Q. Therefore Q contains all primitive

nth roots of unity. It is well known that the nth cyclotomic polynomial Φn(x) ∈ Z[x] is

irreducible and that the degree of Φn(x) is equal to φ(n), where φ denotes the Euler totient

function. Let ζ be one root of Φn(x). On the one hand we have [Q(ζ ) : Q] = φ(n), but

since ζ ∈Q by assumption, we need to have φ(n) = 1. We conclude that n≤ 2. �

13
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3.2. DIVISION POLYNOMIALS

Let E be an elliptic curve defined over Q. Assume that the model of E is given by the

short Weierstrass form

E : y2 = x3 +Ax+B,

where A,B ∈ Z.

We define division polynomials ψm ∈ Z[x,y] in the following manner:

ψ0 = 0,

ψ1 = 1,

ψ2 = 2y,

ψ3 = 3x4 +6Ax2 +12Bx−A2,

ψ4 = 4y(x6 +5Ax4 +20Bx3−5A2x2−4ABx−8B2−A3),

ψ2m+1 = ψm+2ψ
3
m−ψm−1ψ

3
m+1, m≥ 2

ψ2m = (2y)−1 ·ψm · (ψm+2ψ
2
m−1−ψm−2ψ

2
m+1), m≥ 3

We now define the polynomials

φm = xψ
2
m−ψm+1ψm−1,

ωm = (4y)−1(ψm+2ψ
2
m−1−ψm−2ψ

2
m+1).

Now we state a Theorem which will be extremely useful to us.

Theorem 3.2.1. Let P = (x,y) be a point on the elliptic curve

E : y2 = x3 +Ax+B

and let n be a positive integer. Then

nP =
(

φn(x)
ψ2

n (x)
,

ωn(x,y)
ψ3

n (x,y)

)
.

Division polynomial method

Let E/Q be an elliptic curve and n a positive integer. We denote by ψE,n the n-th division

polynomial of E. If n is odd, then the roots of ψE,n are precisely the x-coordinates of

14



Theoretical background Division polynomials

the points P ∈ E[n]. Similarly, if n is even, then the roots of ψE,n/ψE,2 are precisely

the x-coordinates of points P ∈ E[n] \E[2]. Let fE,n denote the corresponding primitive

n-division polynomial associated to E, i.e. its roots are the x-coordinates of points P on

E(Q) of order n. We briefly describe the construction of fE,n. If n = p is prime, then

fE,p = ψE,p. For an arbitrary n, we have

fE,n :=
ψE,n

∏
d|n,d 6=n

fE,d
.

Note that if Ed/Q is a quadratic twist of E/Q, then ψE,n = αψEd ,n and fE,n = β fEd ,n, for

some rational constants α , β . Consider the following question:

Question. Given a rational number j and K a number field of degree d, does there exist

an elliptic curve E/Q such that j = j(E) and E(K) contains a point P of order n?

Let E0/Q be any elliptic curve with j = j(E0). In Magma [3], we compute the primi-

tive division polynomial fE0,n. Since every elliptic curve E/Q with j(E) = j is a quadratic

twist of E0, we have fE0,n = β fE,n, for some rational number β . Next, we factor fE0,n over

Q[x]. Let d′ denote the degree of the smallest irreducible factor f of fE0,n and let x0 be a

root of f . If d′ > d, then [Q(P) : Q]≥ [Q(x0) : Q] = d′ > d = [K : Q] and so a point P of

order n on E(Q) cannot be defined over K.

15
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3.3. GALOIS REPRESENTATIONS

Let E/Q be an elliptic curve and let n a positive integer. The field Q(E[n]) is the number

field obtained by adjoining to Q all the x and y-coordinates of the points of E[n]. The

absolute Galois group Gal(Q/Q) acts on E[n] by its action on the coordinates of the

points, inducing a mod n Galois representation attached to E:

ρE,n : Gal(Q/Q)→ Aut(E[n]).

After we fix a basis for the n-torsion, we can identify Aut(E[n]) with GL2(Z/nZ). This

means that we can consider ρE,n(Gal(Q/Q)) as a subgroup of GL2(Z/nZ), uniquely

determined up to conjugacy. We shall denote ρE,n(Gal(Q/Q)) by GE(n). Moreover,

since Q(E[n]) is a Galois extension of Q and kerρE,n = Gal(Q/Q(E[n])), by the first

isomorphism theorem we have GE(n)∼= Gal(Q(E[n])/Q).

We would like to know what are the possibilities for GE(n) as a subgroup of GL(Z/nZ).

For some values of n, this can be seen in Tables 6.1 and 6.2. For most values of n we do

not have a list of possibilities of GE(n), but we have a result that helps us see if for

a given matrix subgroup M of GL(Z/nZ) there exists an elliptic curve E/Q such that

ρE,n(Gal(Q/Q)) = M (up to conjugation).

Definition 3.3.1 ([55, Definition 2.1]). A subgroup G of GL(Z/nZ) is called applicable

if it satisfies the following conditions:

• G 6= GL(Z/nZ)

• −I ∈ G and det(G) = (Z/nZ)×

• G contains an element with trace 0 and determinant−1 that fixes a point in (Z/nZ)2

of order n.

Proposition 3.3.2 ([55, Proposition 2.2]). Let E be an elliptic curve over Q for which

ρE,n is not surjective. Then ±ρE,n(Gal(Q/Q)) is an applicable subgroup of GL(Z/nZ).

We will now briefly introduce the `-adic Galois representation attached to elliptic

curve.
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Definition 3.3.3. Let E/K be an elliptic curve and let ` be a prime number. The Tate

module of the elliptic curve E is the group

T`(E) = lim←−
n

E[`n],

where the inverse limit is taken with respect to the maps

E[`n+1]
[`]−→ E[`n].

Definition 3.3.4. Let E/K be an elliptic curve and let ` be a prime number. The `-adic

Galois representation of E is

ρ` : Gal(K/K)→ Aut(T`(E))

induced by the action of Gal(K/K) on the Tate module T`(E).

When E does not have CM, Rouse and Zureick-Brown [47] have classified all the

possible 2-adic images of ρE,2∞ : Gal(Q/Q)→GL2(Z2), and have given explicitly all the

1208 possible images. When denoting certain subgroups of GL2(Z2) we will use the same

notation introduced by Rouse and Zureick-Brown in [47]. Those subgroups will be noted

by Hs, where s is a string. The case for CM curves has been done by Lozano-Robledo

in [33]. We will use the same notation as in [47] for the 2-adic image of a given elliptic

curve E/Q. In [17], González-Jiménez and Lozano-Robledo have determined for each

possible image the degree of the field of definition of any 2-subgroup. From the results

of [17] one can see if a given 2-subgroup is defined over a number field of given degree

d.

Group labels

In this subsection we will define group labels used in this thesis. A more detailed descrip-

tion of these group labels can be found in [51, Page 35]. The explicit set of generators for

each group mentioned in this thesis can be found in [51, Table 3].

Let p be an odd prime and φ = −1 if p ≡ 3 (mod 4) and otherwise let φ ≥ 2 be the

smallest integer such that (φ

p ) =−1.

Define the following matrices in GL2(Z/pZ), for some a,b ∈ Z/pZ :

D(a,b) =

a 0

0 b

 , Mφ (a,b) =

a bφ

b a

 , T =

0 1

1 0

 and J =

1 0

0 −1

 .
17
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We define the following subgroups of GL2(Z/pZ):

pCs = {D(a,b) : a,b ∈ (Z/pZ)×},

pCn = {D(a,b),T ·D(a,b) : a,b ∈ (Z/pZ)×},

pNs = {Mφ (a,b) : a,b ∈ (Z/pZ)2,(a,b) 6= (0,0)},

pNn = {Mφ (a,b),J ·Mφ (a,b) : a,b ∈ (Z/pZ)2,(a,b) 6= (0,0)}.

Let pB denote the subgroup of GL2(Z/pZ) consisting of upper triangular matrices

and let r be the smallest positive integer that generates (Z/pZ)×.

1. The label pCs.a.b denotes the subgroup of pCs generated bya 0

0 1/a

 ,
b 0

0 r/b

 ,
with a,b > 0 minimal.

2. For p = 2, the label 2Cn denotes the index 2 subgroup of GL2(Z/2Z). For p ≥ 3,

the label pCn.a.b denotes the subgroup of pCn generated bya bφ

b a


with a≥ 0, b > 0 chosen to make (a,b) lexicographically minimal.

3. The label pNs.a.b denotes the subgroup of pNs generated bya 0

0 1/a

 ,
 0 b

−r/b 0

 ,
with a,b > 0 minimal.

4. The label pNn.a.b denotes the subgroup of pNn generated bya bφ

b a

 , J,

with (a,b) lexicographically minimal.
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5. The label pB.a.b denotes the subgroup of pB generated bya 0

0 1/a

 ,
b 0

0 r/b

 ,
1 1

0 1

 ,
with a,b > 0 minimal.

We now mention a theorem proven by Dickson [14].

Theorem 3.3.5 (Dickson [14]). Let H be a subgroup of GL2(Z/pZ) not containing

SL2(Z/pZ). Then (up to conjugation)

1. Either H ⊆ pB (Borel subgroup)

2. or H ⊆ pNs (normalizer of split Cartan)

3. or H ⊆ pNn (normalizer of non-split Cartan)

4. or the image of H in PSL2(Z/pZ) is isomorphic to A4, S4 or A5 (these are called

the exceptional subgroups of GL2(Z/pZ)).

A famous question of Serre is the following:

Question. Does there exist C > 0 such that for all primes p>C and for all elliptic curves

E/Q without CM, the mod p Galois representation ρE,p is surjective?

The classification of maximal subgroups of GL2(Z/pZ) by Dickson is extremely im-

portant in the general approach to this problem. The idea is to show the following: for

p large enough, there are no elliptic curves without complex multiplication for which the

image of ρE,p is contained in any of these maximal subgroups. The exceptional cases

were solved by Serre in [48]. In [36], Mazur solved the Borel case by finding all the pos-

sible prime degrees of rational isogenies of elliptic curves defined over Q. Bilu, Parent

and Rebolledo studied the case of the normaliser of a split Cartan. In [2], they proved that

if E/Q is an elliptic curve without complex multiplication, and p≥ 11 is a prime different

from 13, then the image of ρE,p is not contained in the normaliser of a split Cartan sub-

group of GL2(Z/pZ). The case p = 13 has been covered in [1], by Balakrishnan, Dogra,

Müller, Tuitman and Vonk. In order to give an answer to the question of Serre, it remains

to show that the image of the mod p Galois representation of any elliptic curve defined
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over Q without complex multiplication is not contained in the normaliser of the non-split

Cartan subgroup of GL2(Z/pZ). This is, as of writing this thesis, still an open problem,

but some progress has has been made. In [32], Le Fourn and Lemos have shown that if

p > 1.4 ·107 and E/Q is an elliptic curve without CM, then the image of ρE,p is equal to

GL2(Fp) or to the normaliser of non-split Cartan subgroup of GL2(Z/pZ).
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4. TORSION GROWTH OVER SEXTIC

NUMBER FIELDS

This chapter is based on the paper [22].

The main result of this chapter is the following theorem.

Theorem 4.0.1. Let E/Q be an elliptic curve and let K be a sextic number field. Then

E(K)tors ∼=



Cm, m = 1, ...,16,18,21,30,m 6= 11,

C2⊕C2m, m = 1, ...,7,9,

C3⊕C3m, m = 1, ...,4,

C4⊕C4m, m = 1,3,

C6⊕C6,

C3⊕C18.

Additionally, if E does not have a Q-rational point of order 2, then E(K)tors is not

isomorphic to C3⊕C18.

We prove the theorem using a series of lemmas. At the end, we briefly discuss what

problems occur when we consider the case C3⊕C18.

4.1. AUXILIARY RESULTS

From now on, let K denote a degree 6 extension of Q. First we shall handle the CM case.

This is done by the next two results.
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Proposition 4.1.1 ([11, Proposition 7.]). Let E/Q be an elliptic curve with CM. Then

11,13,17 and 19 do not divide the order of E(K)tors.

Theorem 4.1.2. Let E/Q be an elliptic curve with CM. Then E(K)tors is one of the

groups listed in Theorem 4.0.1.

Proof. By [9, Section 4], we see that the only groups contained in ΦCM(6) that do not

appear in

ΦQ(2)∪ΦQ(3)∪{C30,C2⊕C18,C3⊕C9,C3⊕C12,C4⊕C12,C6⊕C6}

are C19 and C26. By Proposition 4.1.1, both of these groups cannot occur. �

Lemma 4.1.3 ([18, Lemma 2.6, Lemma 2.8, Lemma 2.9]). Let E/Q be an elliptic curve

without CM. Then the following claims hold:

• There are no points of order `2, where ` ≥ 11 on an elliptic curve E/Q over any

number field of degree d < 55. If E has a rational `-isogeny, then [Q(P̀ 2) : Q(`P̀ 2)]

is divisible by `2.

• There are no points of order 49 on an elliptic curve E/Q over any number field of

degree d < 42.

• There are no points of order 125 on an elliptic curve E/Q over any number field of

degree d < 50.

Throughout this thesis, some elliptic curves will be denoted by their unique LMFDB

[53] label. We note that LMFDB label of every elliptic curve is of the form a.bc, where a

is the conductor of the elliptic curve, b is a string and c is an integer. More details can be

found on LMFDB website lmfdb.org.

Lemma 4.1.4 ([11, Lemma 5]). Let E/Q be an elliptic curve without CM, K/Q a sextic

field and Pp ∈ E(K)tors a point of odd prime order p. Then E has a rational p-isogeny,

except if E has LMFDB label 2450.y1 or 2450.z1, and p = 7, where there are not rational

7-isogenies. Moreover, in those last cases, the unique sextic fields where the torsion grows

are K = Q(E[2]) and K′ = Q(P7) (K′/Q is non-Galois), where E(K)tors ∼= C2⊕C2 and

E(K)tors ∼=C7 respectively.
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Lemma 4.1.5. Let K be a number field such that [K : Q] = 6. If L and L′ are cubic

subextensions of K and if L/Q is Galois, then L = L′.

Proof. Assume that L 6= L′. Obviously L ∩ L′ = Q and LL′ = K. By [10, Theorem

12.2.5] we have Gal(K/L′) ∼= Gal(LL′/L′) ∼= Gal(L/Q). Since |Gal(K/L′)| = 2 and

|Gal(L/Q)|= 3, we arrive at a contradiction. �

Definition 4.1.6 ([12, Definition 3.1]). We say that a finite group G is of generalized

S3-type if it is isomorphic to a subgroup of the direct product S3×S3× ...×S3.

Theorem 4.1.7 ([12, Lemma 3.2, Corollary 3.4]). A finite group G is of generalized

S3-type if and only if

• G is supersolvable,

• Sylow subgroups of G are abelian, and

• Exponent of G divides 6.

Additionally, if G is of generalized S3-type, then every subgroup and every quotient group

of G is also of generalized S3-type. If G1 and G2 are of generalized S3-type, then so is

G1×G2.

Theorem 4.1.8 ([12], Theorem 3.5, Theorem 3.6). Let L be a number field such that

Gal(L̂/Q) is of generalized S3-type, where L̂ denotes the Galois closure of L over Q.

Then L⊆ L̂⊆Q(3∞). Let L be a number field in Q(3∞). Then L̂⊆Q(3∞) and Gal(L̂/Q)

is of generalized S3-type.

It is easy to see that the groups S3, C2 and C3 are of generalized S3-type and so are

their direct products, S3×C2, S3×C3, C2×C3 ∼=C6.
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4.2. CYCLIC CASES

Theorem 4.2.1. Let E/Q be an elliptic curve without CM. Then E(K)tors cannot contain

C20, C24, C25, C26, C27, C28, C32, C35, C36, C39, C42, C45, C49, C63, C65, C91, C169.

Proof. If E has LMFDB label 2450.y1 or 2450.z1, this holds by Lemma 4.1.4. Suppose

this is not the case. By Lemma 4.1.3, E(K) cannot contain C49 and C169. By Lemma

4.1.4, if E(K) contains points Pp,Pq of odd prime orders p and q, p 6= q, then E(K) has

rational p and q-isogenies, so it has a rational pq-isogeny. When pq ∈ {35,39,65,91},

this cannot happen, because of Theorem 2.1.1 and so E(K) cannot contain C35,C39,C65

or C91. In [11, Proposition 6.], it has been proven that E(K) cannot contain C20, C26 or

C28.

C24 : By Lemma 4.1.4, ρE,3 is not surjective. Also ρE,8 cannot be surjective because

a point P8 of order 8 on E(Q) would satisfy [Q(P8) : Q] > 6. By [39, Theorem A (3)],

we have that GE(8)⊆H, for H ∈ {H30,H31,H39,H45,H47,H50}. Each of these six groups

has order equal to 128. This means that [Q(E[8]) : Q] is a power of 2 that divides 128.

Consequently, [Q(E[2]) : Q] is a power of 2. Hence, each 2-torsion point on E is defined

over an at most a quadratic extension of Q. Since 2k-torsion grows in extensions of degree

1,2 or 4 ( [19, Proposition 4.8)]) and since E(K) ⊇C8, we need to have point of order 8

on E defined over at most a quadratic extension of Q. Since E has a rational 3-isogeny,

by Table 6.1 we see that E must have a point P3 of order 3 such that [Q(P3) : Q] ∈ {1,2}.

Therefore a point P8+P3 of order 24 on E is defined over the field F =Q(P3,P8) for which

Gal(F/Q) ∈ {C1,C2,C2⊕C2}. This is impossible because of Theorem 1.0.12, Theorem

2.1.3 and [7, Theorem 1.4.].

C25 : By Lemma 4.1.4, E has a rational 5-isogeny. By [19, Table 2], we see that

GE(5) ∈ {5Cs.1.1,5Cs.1.3,5Cs.4.1,5B.1.1,5B.1.4,5B.4.1}. For each of these possibili-

ties of GE(5), we find all subgroups G of GL2(Z/25Z) with surjective determinant that

reduce to GE(5) modulo 5. Then for each vector v ∈ (Z/25Z)2 of order 25 we calculate

the index of Gv in G, where Gv is stabiliser subgroup corresponding to vector v. By The-

orem 1.0.12, Theorem 2.1.3 and Theorem 2.1.4 we have that [Q(P25) : Q] /∈ {1,2,3}, so

we have [Q(P25) : Q] = 6. This means that [G : Gv] = 6. Computation in Magma [3] (code

7.1) shows that this does not occur. Therefore, E cannot have a point P25 defined over K.
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C27 : Let P27 be a point of order 27 in E(K) and P81 be a point of order 81 in E(Q)

such that 3P81 = P27. From [19, Proposition 4.6.], we have [Q(P81) : Q(P27)] ≤ 9. Since

[Q(P27) : Q]≤ 6, we have [Q(P81) : Q] = [Q(P81) : Q(P27)] · [Q(P27) : Q]≤ 54. From the

results of [46] it follows that P81 is defined over a number field of degree at least 81, a

contradiction.

C36 : Let P9,P4 be points of order 9 and 4, such that [Q(P9 + P4) : Q] = 6. If

[Q(P9) : Q] ∈ {1,2,3}, then we have Q(P9) ⊆ Q(3∞), since every quadratic and cubic

extension is contained in Q(3∞). If [Q(P9) : Q] = 6, we check using Magma [3] (code

7.2) that Gal(’Q(P9)/Q) (where ’Q(P9) denotes the Galois closure of Q(P9) over Q) is

isomorphic to one of the following groups: C6,S3,S3×C3,S3×C2. All these groups are

of generalized S3-type, so it follows that Q(P9) ⊆ Q(3∞). Similarly, the point P4 can be

defined over extensions of degree 1,2,3 or 6. If [Q(P4) : Q] ∈ {1,2,3}, then we have

Q(P4) ⊆ Q(3∞). If [Q(P4) : Q] = 6, by a search through the data of [47] we see that we

see that if [Q(P4) : Q] = 6, then Q(P4) is an S3 extension of Q, hence of generalized S3-

type. We conclude that in any case we have Q(P4) ⊆ Q(3∞). We can now conclude that

Q(P9 +P4) =Q(P9,P4)⊆Q(3∞), which is impossible by [12, Theorem 1.8.].

C42, C63 : From Lemma 4.1.4 we conclude that E has rational 3 and 7-isogenies, so

it has a rational 21-isogeny, so

j(E) ∈ {−32 ·56/23,33 ·53/2,33 ·53 ·1013/221,−33 ·53 ·3833/27}

by [34, Table 4]. For each of the possible j-invariants, using the division polynomial

method in Magma [3] (code 7.3) we compute the primitive division polynomials fE,63

and fE,42. Neither of these polynomials has an irreducible factor of degree less then or

equal to 6. Hence, a point P of order 63 (resp. 42) cannot be defined over K.

C45 : Since E has rational 3 and 5 isogenies by Lemma 4.1.4, E has a rational 15-

isogeny, so j(E) ∈ {−52/2,−52 · 2413/23,−293 · 5/25,2113 · 5/215} by [34, Table 4].

Using exactly the same method as in the C63 and C42 case (code 7.4), we find that a point

of order 45 cannot be defined over K. �
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4.3. GROUPS OF THE FORM C2⊕C2n

Theorem 4.3.1. Let E/Q be an elliptic curve without CM. Then E(K)tors cannot contain

C2⊕C16 or C2⊕C30.

Proof. C2⊕C16 : By [17, Corollary 3.5], we get that if T ∼= C2⊕C16, then [Q(T ) : Q]

must be divisible by 4, which is impossible since Q(T )⊆ K.

C2⊕C30 : By Lemma 4.1.4, E has rational 3 and 5-isogenies, so it has a rational

15-isogeny. If E(Q)[2] ⊇ C2, then E has a rational 30-isogeny, which is impossible by

Theorem 2.1.1. If GE(2) = 2Cn, then j(E) = y2 + 1728 for some y ∈ Q and since E

has 15-isogeny, we have j(E)∈ {−52/2,−52 ·2413/23,−293 ·5/25,2113 ·5/215} by [34,

Table 4]. Let a be one of those 4 values. We have that a < 1728, so y2 + 1728 = a

does not have a solution in real numbers, so this case is impossible. Consider now the

case when GE(2) = GL2(F2). This means that E attains its full 2-torsion over a degree 6

extension of Q. Since E(K)[2] = C2⊕C2, we have K = Q(E[2]) ⊆ Q(3∞), because the

Galois group of Q(E[2]) is of generalized S3-type. Therefore, C2⊕C30 ⊆ E(K)⊆ E(3∞).

By [12, Theorem 1.8., Table 1] we see that j(E)∈ {−293 ·5/25,2113 ·5/215}. For each of

these two possibilities, using the division polynomial method we calculate the primitive

division polynomial fE,30 whose roots are the x-coordinates of the points of order 30 on

E. If j(E) = −293 · 5/25, the smallest degree irreducible factors of f30 are polynomials

f ,g of degree 6. Since C30 ⊆ E(K) = E(Q(E[2])), one of those polynomials needs to

have a root in K, but since K is Galois, it splits in K. But we check using Magma [3]

(code 7.5) that the splitting fields of f and g are degree 12-extensions of Q, which is a

contradiction. If j(E) = 2113 ·5/215, we do the same as in the previous case. This time,

the polynomial fE,30 does not have irreducible factors of degree ≤ 6, so C30 6⊆ E(K). �
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4.4. GROUPS OF THE FORM C3⊕C3n

Theorem 4.4.1. Let E/Q be an elliptic curve without CM. Then E(K)tors cannot contain

C3⊕C15 or C3⊕C21.

Proof. C3⊕C15, C3⊕C21 : Since Q(E[3])⊆ K, we need to have

GE(3) ∈ {3Cs.1.1,3B.1.1,3B.1.2}. Assume that GE(3) = 3Cs.1.1. From Lemma 4.1.4

it follows p ∈ {5,7}, then E has a rational p-isogeny. Let Pp ∈ E(K) be a point of

order p. Let {P3,Q3} be a basis for E[3] such that GE(3) = 3Cs.1.1 with respect to

this basis. This means that 〈P3〉 and 〈Q3〉 are kernels of two independent rational 3-

isogenies. Now 〈Pp +P3〉 and 〈Q3〉 are kernels of independent rational 3p and 3 isoge-

nies, respectively. We conclude that E is isogenous to E ′/Q with a rational 9p-isogeny,

which is impossible by Theorem 2.1.1. Therefore it remains to consider the cases when

GE(3) ∈ {3B.1.1,3B.1.2}.

Assume that C3⊕C15 ⊆ E(K). We have that K =Q(E[3]) and Gal(K/Q)∼= S3. Let P5

be a point of order 5 in E(K). From Table 6.1 we see that [Q(P5) : Q] ∈ {1,2}. Denote by

F the unique quadratic subextension of K. By Table 6.1, we see that for both possibilities

of GE(3) there exists a point P3 of order 3 in E(K) defined over F . Therefore we have

Q(P5),Q(P3)⊆ F . It follows that C15 ⊆ E(F). By [42, Theorem 2.c)], the LMFDB label

of E is 50.b3, 50.b4, 50.a2 or 450.g4. Using the algorithm from [18], we see that none of

these four curves have C3⊕C15 torsion over sextic field.

Assume that C3⊕C21 ⊆ E(K). We have that K =Q(E[3]) and Gal(K/Q)∼= S3. Let P7

be a point of order 7 in E(K). If [Q(P7) : Q] ∈ {3,6}, then by Table 6.1 and [34, Theorem

9.3] it follows that Q(P7) is cyclic over Q. But K is not cyclic and it does not have any

Galois cubic subextensions over Q. We conclude that [Q(P7) : Q] ∈ {1,2}. Let P3 denote

a point of order 3 in E(K) defined over an at most a quadratic extension of Q. Therefore,

Q(P7),Q(P3)⊆ F so E(F)⊇C21, but this is impossible, by Theorem 2.1.3. �
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4.5. GROUPS OF THE FORM Cm⊕Cmn, m≥ 4

Theorem 4.5.1. Let E/Q be an elliptic curve without CM. Then E(K)tors cannot contain

C4⊕C8.

Proof. By [17, Corollary 3.5], we get that if T is one of these three groups, then [Q(T ) :Q]

must be divisible by 4, which is impossible since Q(T )⊆ K. �

Theorem 4.5.2. Let E/Q be an elliptic curve without CM. Then E(K)tors cannot contain

C6⊕C12.

Proof. If GE(3)∈ {3B.1.1,3B.1.2}, we have K =Q(E[3]), K is an S3 extension of Q and

j(E) = 27(y+1)(y+9)3

y3 , for some y ∈Q×.

If GE(2) = 2Cn, then Q(E[2]) is cubic Galois over Q contained in K, which is impos-

sible since K is an S3 extension of Q and hence cannot contain Q(E[2]).

Assume that GE(2) = GL2(F2). By a search through the data of [47] we see that if

E attains a point of order 4 over a sextic field and GE(2) = GL2(F2), then the image of

2-adic representation associated to E is contained in H20, so j(E) = (x2−3)3(−4x2+32x+44)
(x+1)4 .

Taking the fiber product of X0(3) and X20 we get a singular genus 1 curve C whose nor-

malization is the elliptic curve E ′/Q with LMFDB label 48.a3 (code 7.6). Inspecting the

rational points on C we get that there are 4 non-cuspidal points corresponding to the j-

invariants 109503/64 and −35937/4. Additionally, since Q(E[2])⊆Q(E[3]), by [6, Re-

mark 1.5], we have j(E) = 21033y3(1− 4y3). For a ∈ {109503/64,−35937/4} we find

that 21033y3(1−4y3)−a = 0 has no rational solutions. Therefore, this case cannot occur.

Consider the case GE(2)∈{2B,2Cs}. There is a unique quadratic extension contained

in K = Q(E[3]), namely Q(ζ3) and we have Q(E[2]) ⊆ Q(ζ3). Since every point P2 of

order 2 on E is defined over an at most a quadratic extension of Q, by [19, Proposition 4.8]

we have that a point P4 of order 4 on E(K) satisfies [Q(P4) : Q] ∈ {1,2}. It follows that

C2⊕C4 ⊆ E(Q(E[2])) ⊆ E(Q(ζ3)). Since GE(3) ∈ {3B.1.1,3B.1.2}, by Table 6.1 we

can see that there must exist a point P3 of order 3 in E(K) such that [Q(P3) : Q] ∈ {1,2},

so P3 is defined over Q(E[2]) ⊆ Q(ζ3). Finally, we have that C2⊕C12 ⊆ E(Q(ζ3)), but

this is impossible by [41, Theorem 1, iii)].
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Assume that GE(3) = 3Cs.1.1⊆ 3Ns. It follows that j(E) = y3 by [55, Theorem 1.1].

If GE(2) = GL2(F2), then again we get that the 2-adic representation associated to E is

contained in H20. We have that y3 = (x2−3)3(−4x2+32x+44)
(x+1)4 induces a genus 2 hyperelliptic

curve C. In Magma [3] (code 7.6), we compute its Jacobian J(C) and see that it has rank

0 over Q. Using the Chabauty method implemented in Magma [3] we conclude that it

does not have an affine rational point. If GE(2) = 2Cn then j(E) = x2 + 1728 and the

corresponding fiber product X2Cn×X0(1) X3Ns is birational to y3 = x2 +1728, which is an

elliptic curve E ′/Q with LMFDB label 36.a3. The rational point on E ′ corresponds to the

j-invariant 1728, so E would have CM, which contradicts our assumption.

Consider the case GE(2) ∈ {2B,2Cs}. Using exactly the same reasoning as before,

we conclude that C2⊕C4 ⊆ E(Q(E[2])) and Q(E[2]) is an at most quadratic over Q.

On the other hand, since GE(3) = 3Cs.1.1, Q(E[3]) is quadratic over Q. Therefore, the

composite field L :=Q(E[2])Q(E[3]) is either a C2⊕C2 or C2 extension of Q and we have

C6⊕C12 ⊆ E(L). But this is impossible by [7, Theorem 1.4.]. �

Theorem 4.5.3. Let E/Q be an elliptic curve without CM. Then E(K)tors cannot contain

C7⊕C7.

Proof. Since Q(E[7])⊆K we have |GE(7)| ≤ 6, but looking at the possible mod 7 images

in Table 6.1 we see that |GE(7)| ≥ 18, a contradiction. �

Theorem 4.5.4. Let E/Q be an elliptic curve without CM. Then E(K)tors cannot contain

C9⊕C9.

Proof. Since Q(E[9])⊆ K we have |GE(9)|= 6, because otherwise we would have C9⊕

C9 ∈ΦQ(3) or C9⊕C9 ∈ΦQ(2), which is not true by [42]. Using Magma [3] (code 7.2),

we find all subgroups G of GL2(Z/9Z) of order 6 such that det(G) = (Z/9Z)×. All such

groups G are (up to conjugacy) subgroups of the group of upper triangular matrices, so E

has a rational 9-isogeny. Additionally, all such groups G reduce modulo 3 to 3Cs.1.1 (up

to conjugacy), which implies that E has two independent rational 3-isogenies. Therefore

E has independent rational 9 and 3-isogenies, so it is isogenous over Q to E ′/Q with a

rational 27-isogeny. It follows that E ′ has CM and so does E, which is a contradiction to

our assumption. �
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4.6. GROUP C3⊕C18

Theorem 4.6.1. Let E/Q be an elliptic curve without CM. If E does not have a rational

point of order 2, then E(K)tors cannot contain C3⊕C18.

Proof. We will split the proof into two main cases, depending on GE(3).

GE(3) ∈ {3B.1.1,3B.1.2} .

We have K =Q(E[3]) and K is S3 extension of Q.

If GE(2) = 2Cs, this is shown to be impossible by [11, Proposition 6.(m)].

If GE(2) = 2Cn, then Q(E[2]) is cubic Galois over Q contained in K, which is impos-

sible since K is an S3 extension of Q.

Assume first that E has a rational 9-isogeny.

Assume that GE(2) = GL2(F2). Since K is Galois and E has a point of order 2 in K

and the defining cubic polynomial f (x) of E is irreducible and has a root in K, it splits

in K. Therefore we have K = Q(E[2]) = Q(E[3]). Since E has a rational 9-isogeny,

by [25, Appendix], we have that E is a twist of elliptic curve

Et : y2 = x3−3t(t3−24)x+2(t6−36t3 +216),

where t ∈ Q \ {3}. We have j(Et) =
t3(t3−24)3

t3−27 and ∆(Et) = 21236(t3− 27). Note that

j(E0) = 0 and j(E−6) = −215 · 3 · 53. It follows that for t ∈ {−6,0}, Et has CM by

[49, Appendix 3]. Assume that t 6∈ {−6,0,3}. Since E is a twist of some Et , we have

∆(E) = u6∆(Et), for some u ∈ Q. The Corollary 3.1.3 implies that Q(ζ3)⊆ K and since

K is an S3 extension of Q, we conclude that Gal(K/Q(ζ3)) ∼=C3, which implies that the

discriminant of E is a square in Q(ζ3), which is equivalent to

C : y2 = t3−27, t ∈Q\{−6,0,3}, y ∈Q(ζ3)

having a solution. Put y := a+b
√
−3, where a,b ∈Q. We get

a2 +2ab
√
−3−3b2 = t3−27.

Since a,b, t ∈ Q, we must have 2ab
√
−3 ∈ Q. We conclude that ab = 0. If b = 0, then

y ∈ Q. The curve C has LMFDB label 36.a3 and it can be seen that (0,3) is the only
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rational affine point on C, but this is impossible since t 6∈ {−6,0,3}. If a = 0, then we put

b := 3b1 and t :=−3t1. We get an elliptic curve

E ′ : b2
1 = t3

1 +1.

The curve E ′ has LMFDB label 36.a4 and it can be seen that

E ′(Q) = {O,(−1,0),(0,±1),(2,±3)}.

It follows that t1 ∈ {−1,0,2}, so t ∈ {3,0,−6}, but this contradicts our assumption.

Therefore, in this case there does not exist an elliptic curve with C3⊕C18 torsion defined

over Q.

Assume now that E does not have a rational 9-isogeny.

Obviously, E(Q(3∞)) contains a point of order 9, since E(Q(3∞)) ⊇ E(K). By [12,

Lemma 6.13.], we get that j(E) = (x+3)(x2−3x+9)(x3+3)3

x3 .

Assume that GE(2) = GL2(F2). Since f (x) is irreducible and it has a root in K, it

splits in K, since K is Galois. Therefore we have Q(E[2]) =Q(E[3]) = K. By [6, Remark

1.5], we have j(E) = 21033y3(1−4y3), for some y ∈Q. As in the previous case, we must

have
(x+3)(x2−3x+9)(x3 +3)3

x3 = 21033y3(1−4y3).

We obtain a curve C which is birational to the elliptic curve

E : y2 +52488y = x3−918330048.

The elliptic curve E has C3 torsion and rank 0 over Q. None of the points on this curve

correspond to elliptic curves with C3⊕C18 torsion over sextic field, which is checked us-

ing Magma [3] (code 7.8).

GE(3) = 3Cs.1.1 Since 3Cs.1.1⊆ 3Ns, we have j(E) = y3.

If GE(2) ∈ {2Cn,2Cs}, this has already been shown to be impossible by Theorem

4.5.2, in C6⊕C12 case.

Assume that GE(2) = GL2(F2). We have K = LQ(ζ3), where L is degree 3 extension

of Q contained in Q(E[2]). Obviously, E(L)[2] =C2.

Assume that Q(E[2]) does not contain Q(ζ3). Then we have Gal(K̂/Q) ∼= S3×C2.

In has been shown in the proof of [11, Proposition 8 (l)] that if P9 is a point of order 9
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defined over K and GE(3) = 3Cs.1.1, then the Galois closure of Q(P9) over Q is one of the

following groups: C6, S3, S3×C3. It follows that we cannot have [Q(P9) : Q] = 6 because

K =Q(P9) and Gal(K̂/Q)∼= S3×C2. Since K contains only two subfields, Q(ζ3) and L,

we either have Q(P9)⊆Q(ζ3), in which case E(Q(ζ3))⊇C3×C9 (which is impossible by

Theorem 2.1.3) or Q(P9) = L. Therefore we have Q(P9) = L. This means that E(Q) =C3

and E(L) = C18, but this is impossible by [20, Theorem 2]. Therefore, we need to have

Q(ζ3) ⊆ Q(E[2]). Since Q(ζ3) ⊆ Q(E[2]) = K, we need to have Q(
√

∆) = Q(ζ3) =

Q(
√
−3). From this equality it follows that

√
∆ = α +β

√
−3, for some rational α,β . It

follows that ∆ = α2− 3β 2 + 2αβ
√
−3. Since ∆−α2− 3β 2 = 2αβ

√
−3 ∈ Q, we must

have αβ = 0. If β = 0, then ∆ would be a square, a contradiction with the assumption

that GE(2) = GL2(F2). Therefore we have α = 0 and ∆ =−3β 2. Since GE(3) = 3Cs.1.1,

by [55, Theorem 1.2.] we have that E is isomorphic to y2 = x3−3(t+1)(t+3)(t2+3)x−

2(t2− 3)(t4 + 6t3 + 18t2 + 18t + 9) = x3 + ax+ b, for some t ∈ Q or a quadratic twist

by −3 of such curve. Since twisting does not change 2-division field, we have that ∆ =

4a3 +27b2 = 4(−3(t +1)(t +3)(t2 +3))3 +27(2(t2−3)(t4 +6t3 +18t2 +18t +9))2 =

(t(t2 +3t +3))3 = −3β 2. Plugging in t = −3t1 and β = β1
35 in (t(t2 +3t +3))3 = −3β 2

we obtain (t1(t2
1 − 9t1 + 27))3 = β 2

1 . Therefore, t1(t2
1 − 9t1 + 27) must be a square, so

t1(t2
1 − 9t1 + 27) = β 2

2 , where β 6
2 = β 2

1 . Finally, put t2 = t1− 3 to obtain t3
2 + 27 = β 2

2 ,

which is an elliptic curve E ′ with LMFDB label 144.a4 and the only non trivial rational

point on E ′ is (−3,0). We have that β2 = 0 and so β = 0, but this is impossible, because

0 6= ∆ =−3β 2. �

Remark 4.6.2. Let us address the issue that occurs in the case GE(2) = 2B. Assume for

example that GE(2) = 3Cs.1.1. Using Magma [3], we search for possible mod 9 images

of E such that E has a point of order 9 defined over a sextic number field. For each

possibility for GE(9), we find that it is contained in one of the groups from [52, Table 1].

The modular curve induced by combining j-maps of one of these groups (also available

in [52, Table 1]), along with j-map of elliptic curve E with GE(2) = 2B, we get a few

genus 3 and 4 curves that are not hyperelliptic and which do not have a nice quotient curve

(code 7.9). At this time, we are unable to find all the rational points on such curves.

Proposition 4.6.3. Let E/Q be an elliptic curve without CM. If GE(2) = 2B, GE(3) ∈

{3B.1.1,3B.1.2} and E does not have a rational 9-isogeny, then E(K)tors cannot contain
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C3⊕C18.

Proof. If GE(2) = 2B, we have j(E) = 256(y+1)3

y . As in the previous theorem we see that

j(E)= (x+3)(x2−3x+9)(x3+3)3

x3 because E does not have a rational 9-isogeny and K⊂Q(3∞).

Therefore we must have

(x+3)(x2−3x+9)(x3 +3)3

x3 =
256(y+1)3

y
,

for some x,y ∈ Q×. After clearing the denominators we obtain the curve C, which is

birational to the curve C1 : y2 +(x3 + 1)y = −9x3. This a genus 2 hyperelliptic curve

and its Jacobian has rank 0 over Q. A computation in Magma [3] (code 7.8) shows that

rational points on C do not correspond to elliptic curves with C3⊕C18 torsion over sextic

fields. �
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5. TORSION OF ELLIPTIC CURVES WITH

RATIONAL j-INVARIANT

This chapter is based on the paper [23].

5.1. RESULTS

Definition 5.1.1. For a positive integer d, let Φ j∈Q(d) be the set of possible isomorphism

classes of groups E(K)tors, where K runs through all number fields K of degree d and E

runs through all elliptic curves over K with j(E) ∈Q.

We now state the main result of this chapter in which we classify the sets Φ j∈Q(p),

where p is a prime number.

Theorem 5.1.2. Let K be a number field of prime degree p, and let E/K be an elliptic

curve with j(E) ∈Q. Then:

1. If p≥ 7, then E(K)tors ∈ΦQ(p) = Φ(1).

2. If p = 3 or p = 5, then E(K)tors ∈ΦQ(p).

3. If p = 2, then E(K)tors ∈ΦQ(2) or E(K)tors ∼= Z/13Z.

Obviously we have ΦQ(d) ⊆ Φ j∈Q(d). If E/K is an elliptic curve such that j(E) ∈

Q \ {0,1728}, take E ′/Q to be any elliptic curve such that j(E ′) = j(E). Then E and

E ′ are either isomorphic over K or over some quadratic extension L of K. Assume that

Cm⊕Cn ⊆ E(K). This implies that Cm⊕Cn ⊆ E ′(L), so Cm⊕Cn is a subgroup of one of

the groups appearing in ΦQ(2d).
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Let us consider the case when d is odd. Assume that Cm⊕Cn, where m divides n is

contained in E(K). By Corollary 3.1.3 we have Q(ζm)⊆ K. If m≥ 3, [Q(ζm) : Q] is even

so Q(ζm) cannot be a subfield of K. Therefore, when trying to classify Φ j∈Q(p) we shall

consider only groups of the form Cn and C2⊕C2n.

We now describe the general strategy used to solve this problem. Let K be a number

field of degree p and E/K be an elliptic curve with j(E)∈Q\{0,1728} and let Pn ∈E(K)

be a point of order n. If E is a base change of an elliptic curve defined over Q, we are

done, because E(K)tors ∈ ΦQ(p). Otherwise, we take any elliptic curve E ′ defined over

Q such that j(E ′) = j(E). With L we shall denote (unless otherwise stated) a quadratic

extension of K such that E and E ′ are isomorphic over L, so they are quadratic twists of

each other. We will often make use of Corollary 1.0.11 which says that if n > 1 is odd,

then

E ′(L)[n]∼= E ′(K)[n]⊕E(K)[n].

On the one hand, if {Pn,Qn} is a basis for E[n], the image of ρE,n is conjugate to a

subgroup of B0, where

B0 :=
ß1 ∗

0 ∗

™≤ GL2(Z/nZ).

Since ρE,n ∼ χ ·ρE ′,n, where χ is a quadratic character, we can obtain some information

about the mod n Galois representation of E ′. On the other hand, since E and E ′ are

isomorphic over L, there exists a point P′n ∈ E ′(L) of order n. For each prime divisor q of

n, let P′q ∈ E ′(L) be a point of order q. Obviously [Q(P′q) : Q] is a divisor of [L : Q]. Using

the results of [19], we can check the possible values of [Q(P′q) : Q]. Often it turns out that

E ′ has a rational q-isogeny.

Note that Theorem 5.1.2 shows that if p ≥ 7 is prime, then Φ j∈Q(p) ⊆ Φ(1). The

following result shows that we have an equality.

Proposition 5.1.3. Let p be a prime. We have Φ(1)⊆Φ j∈Q(p).

Proof. For each group G∈Φ(1), we will show that there exists an elliptic curve E/Q and

a number field K of degree p such that E(K)tors ∼= G.

Assume that p≥ 11 is prime. Let G∈Φ(1), E/Q be an elliptic curve with E(Q)tors ∼=

G and K a number field such that [K : Q] = p. Then by [19, Theorem 7.2 (i)] we have
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E(K)tors = E(Q)tors. Therefore we conclude that G ∈Φ j∈Q(p).

Consider the case when p = 7. By [19, Proposition 7.1] we have Φ(1) = ΦQ(p).

Since ΦQ(p)⊆Φ j∈Q(p), our claim follows. �
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5.2. CLASSIFICATION OF Φ j∈Q(p)

Let RQ(d) be the set of all primes p such that there exists a number field K of degree d,

an elliptic curve E/Q such that there exists a point of order p on E(K). The set RQ(d)

has been partially determined by González-Jiménez and Najman in [19].

Throughout this chapter K will denote a number field of degree p and E/K an elliptic

curve with j(E) ∈ Q. With E ′ and L we will denote an elliptic curve defined over Q

such that j(E) = j(E ′) and quadratic extension of K over which E and E ′ are isomorphic,

respectively.

Lemma 5.2.1. Let p≥ 7 be a prime number. Then RQ(2p) = {2,3,5,7}. Furthermore,

we have RQ(10) = {2,3,5,7,11} and RQ(6) = {2,3,5,7,13}.

Proof. The claim will follow easily by [19, Corollary 6.1.]. We briefly sketch the proof.

Let p≥ 7 and q≥ 23, q 6= 37,43,67,163 be a prime numbers and assume that q∈RQ(2p).

We have that 2(q−1)|2p or q2−1
3 |2p. If 2(q−1)|2p, we have q ∈ {2, p+1}, which is im-

possible. If q2−1
3 |2p, it follows that (q−1)(q+1)|6p. Since q−1 and q+1 are even, it fol-

lows that 4|6p so we must have p = 2, a contradiction. It remains to check that the claim

holds for q∈ {11,13,17,19,37,43,67,163}which is easy to do. For q∈ {19,43,67,163}

we have that q ∈ RQ(2p) if and only if q−1
2 | 2p. But for q ∈ {19,43,67,163} we have

q−1
2 ∈ {9,21,33,81} and none of these values can divide 2p, because p is a prime num-

ber. If q ∈ {17,37} we see that 4 must divide 2p, a contradiction with out assumption

that p ≥ 7 is a prime number. Assume that q = 11 (resp. q = 13). By the same Corol-

lary we have that 2p = 10 (resp. 2p = 6). The claims RQ(10) = {2,3,5,7,11} and

RQ(6) = {2,3,5,7,13} follow from the previous discussion. �

Theorem 5.2.2. Let K be a number field of prime degree p and let E/K be a CM elliptic

curve. Then we have E(K)tors ∈ΦQ(p).

Proof. The claim follows easily by [4, Theorem 1.4]. �

Therefore, from now on we shall assume that elliptic curves we are dealing with do

not have CM.
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Assume that Cp ⊆ E(K). Since E and E ′ are isomorphic over L, it follows that Cp ⊆

E ′(L). Sometimes we will be able to conclude that the point P of order p on E ′(L) is

defined over a proper subfield F of L. If [F : Q] = 2, we can find E ′′/Q with j(E) = j(E ′′)

such that Cp ⊆ E ′′(Q). Therefore we also have Cp ⊆ E ′′(K) and we conclude that

Cp⊕Cp ⊆ E(K)[p]⊕E ′′(K)[p]∼= E ′′(L′)[p], (5.1)

where L′ denotes the quadratic extension of K such that E ′′ and E are isomorphic over

L′. By Corollary 3.1.3, we have Q(ζp)⊆ L′. The field satisfying (5.1) will be denoted by

L′ throughout this chapter. We now formally state and prove the result mentioned in the

previous discussion.

Lemma 5.2.3. Let E/Q be a non-CM elliptic curve and p≥ 3 a prime and [F : Q] = 2.

Assume that E(F)[p] ⊇ Cp, but E(Q)[p] = O. Then there there exists quadratic twist

E ′/Q of E/Q such that E ′(Q)[p] =Cp.

Proof. Since F = Q(
√

d), put E ′ := Ed , where Ed is the quadratic twist of E by d. The

curves E ′ and E are isomorphic over F but not over Q. Since Cp ⊆ E(F)[p]∼= E(Q)[p]⊕

E ′(Q)[p] and E(Q)[p] = O it follows that Cp ⊆ E ′(Q)[p]. Theorem 1.0.12 implies that

we have an equality. �

Lemma 5.2.4. Let K be a number field, m ≥ 2 an integer and E/K a non-CM elliptic

curve with j(E) ∈ Q such that Cm ⊆ E(K). If E ′/Q is an elliptic such that j(E) = j(E ′)

and Q(E ′[m])∩K =Q, then GE ′(m) is conjugate to a subgroup of B(m), where

B(m) :=
ß±1 ∗

0 ∗

™⊆ GL2(Z/mZ).

Proof. By [51, Corollary 5.25.] we see that Gal(KQ(E ′[m])/K) ≤ B(m) (up to conju-

gacy). Since Q(E ′[m])∩K = Q we have Gal(KQ(E ′[m])/K) ∼= Gal(Q(E[m])/Q) by a

basic Galois theory argument. Therefore, GE ′(m) is conjugate to a subgroup of B(m). �

Lemma 5.2.5. Let K be a number field such that [K : Q] ≥ 5 is prime and E/K be a

non-CM elliptic curve with rational j-invariant and assume that C2k·3l ⊆ E(K). Then E ′

has a rational 2k ·3l-isogeny.
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Proof. Assume that (k, l) 6= (1,0). By [24, Corollary 2.8.] we have |GL2(Z/2kZ)| =

24k−3 · 3 and |GL2(Z/3kZ)| = 34k−3 · 24. Let p ∈ {2,3} be a prime number. Since

GE ′(pk)≤GL2(Z/pkZ), we have that [Q(E ′[pk]) :Q] = |GE ′(pk)| divides |GL2(Z/pkZ)|.

But |GL2(Z/pkZ)| ∈ {24k−3 ·3,34k−3 ·24} so Q(E ′[pk]) has a trivial intersection with K,

i.e. Q(E ′[pk])∩K =Q. The claim now follows from Lemma 5.2.4.

Let us consider the case when (k, l) = (1,0). Since having 2-torsion is twist invariant

property, we have C2 ⊆ E ′(K)[2] = E(K)[2]. Since a point P2 of order 2 on E ′(K) satisfies

[Q(P2) : Q] ≤ 3 and it is defined over K, we have [Q(P2) : Q] = 1. Therefore, E ′ has a

rational point of order 2 and so it has a rational 2-isogeny. �

Lemma 5.2.6. Let K be a number field such that [K : Q] 6= 5 is an odd prime and let

E/K be a non-CM elliptic curve with rational j-invariant such that C5 ⊆ E(K)tors. Then

E is a base change of an elliptic curve defined over Q. If [K : Q] = 5 and C5 ⊆ E(K)tors,

then E ′ has a rational 5-isogeny.

Proof. Assume that [K : Q] 6= 5 is an odd prime and that E is not a base change of an

elliptic curve defined over Q. Since C5 ⊆ E(K), it follows that C5 ⊆ E ′(L). Let P5 be a

point of order 5 on E ′(L). We have that Q(P5)⊆ L and so [Q(P5) : Q] divides [L : Q] = 2p,

where p = [K : Q]. By Table 6.1, we see that the only possibilities for [Q(P5) : Q] are 1

and 2. Now we apply Lemma 5.2.3 to E ′ to obtain a quadratic twist E ′′/Q such that C5 ⊆

E ′′(Q). Since E and E ′′ are quadratic twists, they are isomorphic over some quadratic

extension L′ of K and we have C5⊕C5 ⊆ E(K)[5]⊕E ′′(K)[5] ∼= E ′′(L′)[5]. Corollary

3.1.3 implies that Q(ζ5) ⊆ L′ and so [Q(ζ5) : Q] = 4 divides [L′ : Q] = 2p, which is

impossible.

If [K : Q] = 5, by applying the same reasoning as in the previous paragraph it can be

easily seen that E ′ must have a rational 5-isogeny. �

Lemma 5.2.7. Let K be a number field such that [K : Q] 6= 3,7 is prime and E/K be a

non-CM elliptic curve with rational j-invariant such that C7 ⊆ E(K)tors. Then E is a base

change of elliptic curve defined over Q. If [K : Q] = 7 and C7 ⊆ E(K)tors, then E ′ has

a rational 7-isogeny. If [K : Q] = 3 and C7 ⊆ E(K)tors, then E ′ has a rational 7-isogeny

unless E ′ has LMFDB label 2450.y1 or 2450.z1 (or equivalently, if GE ′(7) is conjugate

to a group with label 7Ns.2.1.).
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Proof. The proof is the same as the proof of Lemma 5.2.6. The last claim follows from

[11, Lemma 5.]. �

We will classify torsion growth of elliptic curves with LMFDB label 2450.y1 or

2450.z1 separately.

Lemma 5.2.8. Let E ′/Q be a curve with LMFDB label 2450.y1 or 2450.z1 and let L be

a number field such that [L : Q] = 2p, where p is prime. Then

E ′(L)tors ∈ {C1,C2,C2⊕C2,C7}.

Proof. Let q 6= 7 be a prime and let E ′ be either of these two curves. Then GE ′(q) =

GL2(Z/qZ). By [34, Theorem 5.1.], a point Pq of order q on E ′ satisfies[Q(Pq) : Q] =

q2−1. If Pq ∈ E ′(L), then [Q(Pq) : Q] = q2−1 would divide [L : Q] = 2p. This implies

that q = 2 and p = 3.

Consider the case q = 7. If P7 ∈ E ′(L) is a point of order 7, by Table 6.1 we have

[Q(P7) : Q] ∈ {6,9,18}. Since [Q(P7) : Q] must also divide [L : Q] = 2p, we conclude

that [Q(P7) : Q] = 6. Using the algorithm from [18] we see that if C7 ⊆ E ′(L), where

[L : Q] = 6, then C7 ∼= E ′(L)tors. �

From now on, assume that E ′ is not one of these two curves. So if C7 ⊆ E(K), then E ′

will have a rational 7-isogeny by Lemma 5.2.7.

Lemma 5.2.9. Let K be a number field such that [K : Q] = p is an odd prime. Then there

does not exist a non-CM elliptic curve E/K with rational j-invariant such that C16 or C27

is contained in E(K). Additionally, if [K : Q] = p≥ 5, then there does not exist a non-CM

elliptic curve E/K with rational j-invariant such that C18 is contained in E(K).

Proof. C16 : Assume the contrary, that C16 ⊆ E(K). It follows that C16 ⊆ E ′(L) and let

P16 be a point of order 16 in E ′(L). Since [Q(P16) :Q] divides [L :Q] and 4 does not divide

[L : Q], we have that [Q(P16) : Q] is not divisible by 4. By the results of [39], we see that

GE ′(16) ∈ {H235l,H235m} and [Q(P16) : Q] = 2. In both cases we have |GE ′(16)| = 256.

By Lemma 5.2.4, up to conjugacy we have GE ′(16) ≤ B(m), where B(m) denotes the

group in the same Lemma. Since |B(m)|= 256, the equality holds. But−I /∈GE ′(16) and

−I ∈ B(m), a contradiction.
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C18 : Assume that C18 ⊆ E(K). Since having a 2-torsion is a twist invariant property,

we have C2 ⊆ E ′(K). Let P2 be a point of order 2 in E ′(K). Since [Q(P2) : Q] ∈ {1,2,3}

and [Q(P2) : Q] divides [K : Q] = p, we have [Q(P2) : Q] = 1. Let P9 ∈ E ′(L) be a point of

order 9. We have that [Q(P9) : Q] divides [L : Q] = 2p. On the other hand, by Proposition

2.1.8 we have that [Q(P9) : Q(3P9)] divides 18. The point 3P9 ∈ E ′(L) is of order 3 and

[Q(3P9) : Q] divides [L : Q] = 2p. By Table 6.1 we see that [Q(3P9) : Q]∈ {1,2,3,6}. We

conclude that [Q(P9) : Q(3P9)][Q(3P9) : Q] divides 18 · 6, and since gcd(18 · 6,2p) = 2,

we have [Q(P9) : Q] ∈ {1,2}. We conclude that P9 is defined over an at most quadratic

extension of Q and since P2 ∈ E ′(Q), the point P2 +P9 of order 18 on E ′ is defined over a

quadratic number field, which is impossible since C18 /∈ΦQ(2), by Theorem 2.1.3.

C27 : If p≥ 5, by Lemma 5.2.5, E ′ has a rational 27-isogeny, so it has CM by Theo-

rem 2.1.1 and so E has CM as well, which contradicts our assumption that we are work-

ing with non-CM curves. On the other hand, if p = 3 then E ′(L) would contain C27, so

C27 ∈ΦQ(6), which is not true by Theorem 4.0.1. �

Lemma 5.2.10. Let K be a number field such that [K : Q] is an odd prime and let E/K

be a non-CM elliptic curve with rational j-invariant. Then E(K) cannot contain C2⊕C12

or C2⊕C10.

Proof. C2⊕C12 : Assume that C2⊕C12 ⊆ E(K). This implies C2⊕C12 ⊆ E ′(L). Since

[K : Q] is odd we have that [L : Q] is not divisible by 4. By Table 6.1 we see that E ′

has a rational 3-isogeny and denote by 〈P3〉 the kernel of that isogeny. Obviously GE ′(4)

is not surjective, because otherwise a point P4 of order 4 on E ′ would be defined over

degree 12 extension of Q, so 12 would divide [L : Q]. By [39, Theorem A], we have that

GE ′(4) ⊆ Hi, where i ∈ {9,10,11,12,13}. Since |Hi| = 16 for i ∈ {9,10,11,12,13} it

follows that [Q(E ′[4]) : Q] = |GE ′(4)| is a power of 2. This implies that Q(E ′[4])∩K =

Q. Since having a 2-torsion is twist invariant property and E(K)[2] = C2⊕C2, we have

E ′(K)[2] = C2⊕C2. We now see that Q(E ′[2]) ⊆ Q(E ′[4])∩K = Q, so Q(E[2]) = Q.

Since C4 ⊆ E(K), by Lemma 5.2.4, E ′ has a rational 4-isogeny. Let 〈P4〉 be the kernel of

that isogeny and Q2 be such that {2P4,Q2} is a basis for E[2]. The subgroups 〈P3 +P4〉

and 〈Q2〉 are kernels of independent 12 and 2-isogenies, so E ′ is isogenous over Q to a

curve E ′′/Q with a rational 24-isogeny by Lemma 2.1.2, which is impossible by Theorem

2.1.1.
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C2⊕C10 : Assume that [K : Q] = p 6= 5 and that C2 ⊕C10 ⊆ E(K). By Lemma

5.2.6 we have that E is a base change of an elliptic curve defined over Q. Therefore,

C2⊕C10 = E(K)tors ∈ ΦQ(p). When p ≥ 7, this is impossible by [19, Proposition 7.1,

Corollary 7.3] and if p = 3 this is impossible by Theorem 2.1.4.

If [K : Q] = 5, then Lemma 5.2.6 implies that E ′ has a rational 5-isogeny. Let 〈P5〉

be the kernel of that isogeny. Since having 2-torsion is twist invariant property, we have

E ′(K)[2] = C2⊕C2. Since [K : Q] = 5 we conclude that GE ′(2) = 2Cs. Let {P2,Q2} be

a basis for E ′[2]. The groups 〈P2 +P5〉 and 〈Q2〉 are the kernels of rational 10 and 2-

isogenies. Obviously those isogenies are independent. By Lemma 2.1.2, E ′ is isogenous

to E ′′/Q with a rational 20-isogeny, which is impossible by Theorem 2.1.1. �
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5.3. PROOF OF THEOREM 5.1.2 (1)

If Pn ∈ E(K) is a point of order n, then Cn ⊆ E ′(L) (where E ′ denotes an elliptic curve

defined over Q such that j(E) = j(E ′) and L is the quadratic extension of K such that E

and E ′ are isomorphic over L). By Lemma 5.2.1 we only need to consider those integers

n whose prime factors are contained in RQ(2p) = {2,3,5,7}.

Theorem 5.3.1. Let K be a number field such that [K : Q] = p ≥ 11 is prime and let

E/K be a non-CM elliptic curve with rational j-invariant. If E(K) contains a point of

order n > 1, then Cn ∈Φ(1).

Proof. Assume that E(K) contains a point Pn of order n = 2a3b5c7d , where a,b,c,d ≥ 0.

If (c,d) 6= (0,0), then by Lemma 5.2.6 and Lemma 5.2.7 we have that E is a base change

of an elliptic curve defined over Q, so the claim holds by [19, Corollary 7.3.]. Consider

now the case when c = d = 0. By Lemma 5.2.5, E ′ has a rational 2a3b-isogeny. By

Theorem 2.1.1 we have

n = 2a3b ∈ {1,2,3,4,6,8,9,12,16,18,27}.

Among these values of n, we have Cn /∈Φ(1) only for n ∈ {16,18,27}. But each of these

cases is impossible by Lemma 5.2.9. �

Theorem 5.3.2. Let K be a number field such that [K : Q] = 7 and let E/K be a non-

CM elliptic curve with rational j-invariant. If E(K) contains a point of order n > 1, then

Cn ∈Φ(1).

Proof. Assume that E(K) contains a point Pn of order n. By Lemma 5.2.1, the prime

factors of n can only be 2,3,5,7. Therefore, write n = 2a3b5c7d , where a,b,c,d ≥ 0.

If c 6= 0, then by Lemma 5.2.6 E is a base change of elliptic curve defined over Q, so

Cn ∈ΦQ(7) = Φ(1) by [19, Proposition 7.1.]. Assume that c = 0 and that d ≥ 1. If a 6= 0,

then C14 ⊆ E(K). By Lemma 5.2.5 and Lemma 5.2.7 E ′ has a rational 2 and 7-isogenies,

so it has a rational 14-isogeny. It follows that E ′ has CM by Theorem 2.1.1 which implies

that E has CM as well, a contradiction. If b 6= 0, then we have C21 ⊆ E(K). By Lemma

5.2.5 and Lemma 5.2.7, E ′ has a rational 3 and 7-isogenies, so it has a rational 21-isogeny.
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By [34, Table 4], we have

j(E) ∈ {−32 ·56/23,33 ·53/2,33 ·53 ·1013/221,−33 ·53 ·3833/27}.

Using the division polynomial method in Magma [3] (code 7.3), we see that there does

not exist an elliptic curve E ′ that obtains a point of order 21 over a degree 14 number

field. Therefore, we cannot have d ≥ 1 and b 6= 0. If d ≥ 2, this is proven to be impossible

in Lemma 4.1.3. It remains to consider the case c = d = 0. By Lemma 5.2.5, E ′ has a

rational 2a3b-isogeny. By Theorem 2.1.1 we have

2a3b ∈ {1,2,3,4,6,8,9,12,16,18,27}.

Among these values of n, we have Cn /∈Φ(1) only for n ∈ {16,18,27}. But each of these

cases is impossible by Lemma 5.2.9. �

Proof of Theorem 5.1.2 (1). If E/K has CM, then the claim immediately follows from

Theorem 5.2.2. Assume that E is non-CM. In order to complete the classification of

Φ j∈Q(p), p ≥ 7 we only need to consider groups G of the form C2⊕C2n. Assume that

C2⊕C2n ⊆ E(K) where [K : Q] = p, E is non-CM and has a rational j-invariant. Then

we obviously have C2n ⊆ E(K). By Theorem 5.3.2 and Theorem 5.3.1 we have 2n ∈

{2,4,6,8,10,12}. If 2n ∈ {10,12}, we know that this is impossible by Lemma 5.2.10.

The remaining four cases are the groups contained in Φ(1). �
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5.4. PROOF OF THEOREM 5.1.2 (2), CASE p = 5

We remind the reader that if E/K is an elliptic curve with rational j-invariant that is not

isomorphic over K to a base change of elliptic curve defined over Q, then E ′/Q denotes

an elliptic curve such that j(E) = j(E ′) and L will denote the quadratic extension of K

such that E and E ′ are isomorphic over L.

Lemma 5.4.1. Let K be a number field such that [K : Q] = 5 and let E/K be a non-CM

elliptic curve with rational j-invariant. Then E(K) cannot contain C15, C50, C121 or C125.

Proof. C15 : By Lemma 5.2.5 and Lemma 5.2.6, E ′ has a rational 15-isogeny. By

[34, Table 4], we have j(E ′) ∈ {−52/2,−52 · 2413/23,−5 · 293/25,5 · 2113/215}. Let

E1,E2,E3,E4 be the elliptic curves with LMFDB labels 50.a3,450.g1,50.a2,450.g4, re-

spectively. The j-invariants of these four curves are precisely the four possibilities for

j(E ′). We have C3 ⊆ Ei(Q), for i ≤ 4. Since j(E) = j(Ei), for some i ≤ 4, they are iso-

morphic over quadratic extension L of K. Since C3⊕C3 ∼= E(K)[3]⊕Ei(K)[3]∼= Ei(L)[3],

Corollary 3.1.3 implies that Q(ζ3)⊆ L. Consider the primitive division polynomial fEi,15.

Since C15 ⊆ Ei(L)[15], fEi,15 has an irreducible factor f which has a root in L. A calcu-

lation in Magma [3] shows that every irreducible factor of fEi,15, i ≤ 4 whose degree

divides 10 has degree 2 or 10. Therefore deg( f ) ∈ {2,10}. Depending on the degree of f ,

f either splits over Q(ζ3) (when deg( f ) = 2) or f splits into at least 2 irreducible factors

over Q(ζ3) (when deg( f ) = 10). But a calculation in Magma [3] (code 7.10) shows that

all irreducible factors of each polynomial fEi,15, i ≤ 4 remain irreducible over Q(ζ3), a

contradiction.

C50 : By Lemma 5.2.5 and Lemma 5.2.6 we have that E ′ has rational 2 and 5-

isogenies. Suppose that GE ′(5) ⊆ Cs(5). It follows that E ′ has two independent ra-

tional 5-isogenies and let P2 ∈ E ′(Q) be a rational point of order 2. Denote by 〈P〉

and 〈Q〉 the kernels of these isogenies. We have that 〈P2 + P〉 and 〈Q〉 are kernels

of independent 10 and 5-isogenies, so E ′ is isogenous over Q to a curve E ′′/Q with

a rational 50-isogeny by Lemma 2.1.2, which is impossible by Theorem 2.1.1. There-

fore we conclude that GE ′(5) ∈ {5B.1.1,5B.1.2,5B.1.3,5B.1.4,5B.4.1,5B.4.2,5B}. Us-

ing Magma [3] (code 7.16) we first find all the possibilities for GE ′(25) that are not con-
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tained (up to conjugacy) in the Borel subgroup of GL2(Z/25Z). For each such possibility

G of GE ′(25), we check if G has a subgroup of index 5 or 10 that is a subgroup (up to

conjugacy) of

B0(25) :=
ß1 ∗

0 ∗

™≤ GL2(Z/25Z),

(or equivalently, if E ′ has a point of order 25 defined over a number field of degree 5 or

10). It turns out that there is no such groups G that satisfies these conditions. Therefore

there does not exist an elliptic curve E ′/Q with a rational 5-isogeny such that E ′ does not

have a rational 25-isogeny and has a point of order 25 defined over a degree 5 or a degree

10 extension of Q. This shows that if E ′ obtains a point P25 of order 25 over a degree 5

or 10 extension of Q, then it must have a rational 25-isogeny. But since it has a rational

2-isogeny as well, it must have a rational 50-isogeny, which is impossible by Theorem

2.1.1.

C121, C125 : Since C121 ⊆ E(K) (resp. C125 ⊆ E(K)) we have C121 ⊆ E ′(L) (resp.

C125 ⊆ E ′(L)). This is impossible by Lemma 4.1.3. �

Theorem 5.4.2. Let K be a number field such that [K : Q] = 5 and let E/K be a non-

CM elliptic curve with rational j-invariant. If E(K) contains a point of order n > 1, then

Cn ∈ΦQ(5).

Proof. Assume that E(K) contains a point Pn of order n. By Lemma 5.2.1, the prime fac-

tors of n can only be 2,3,5,7,11. Therefore, write n= 2a3b5c7d11e, where a,b,c,d,e≥ 0.

If d 6= 0, then by Lemma 5.2.7 E is a base change of an elliptic curve defined over Q, so

Cn ∈ ΦQ(5). Assume that d = 0. If e 6= 0, from [19, Table 2] we see that E ′ has a ra-

tional 11-isogeny. If one of a,b,c is not zero, E ′ would have a rational p-isogeny by

Lemma 5.2.5 and Lemma 5.2.6, where p ∈ {2,3,5} so it would have a rational 11p-

isogeny which is impossible by Theorem 2.1.1. Therefore we have a = b = c = 0. If

e ≥ 2, this is impossible by Lemma 5.4.1. We conclude that if e ≥ 1, then n = 11.

Consider now the case when d = e = 0. If c ≥ 1, by Lemma 5.2.5 and Lemma 5.2.6

E ′ has a rational 2a3b5-isogeny. By Theorem 2.1.1 we have 2a3b5 ∈ {5,10,15}, so

(a,b) ∈ {(0,0),(1,0),(0,1)} and n ∈ {5c,2 · 5c,3 · 5c}. We have that this is impossible

by Lemma 5.4.1 unless n ∈ {5,10,25}, but for those values of n we have Cn ∈ ΦQ(5).
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Finally let us consider the case when n = 2a3b. By Theorem 2.1.1 and Lemma 5.2.5 we

know that

n = 2a3b ∈ {1,2,3,4,6,8,9,12,16,18,27}.

Removing the n for which Cn ∈ΦQ(5) we only need to consider n ∈ {16,18,27}. These

three cases have been proven to be impossible in Lemma 5.2.9. �

Proof of Theorem 5.1.2 (2), case p = 5. If E/K has CM, then the claim immediately fol-

lows from Theorem 5.2.2. Assume that E is non-CM. In order to complete the classi-

fication of Φ j∈Q(5) we only need to consider groups G of the form C2⊕C2n. If C2⊕

C2n ⊆ E(K), then we obviously have C2n ⊆ E(K). By Theorem 5.4.2. we have 2n ∈

{2,4,6,8,10,12}. If 2n ∈ {10,12}, we know that this is impossible by Lemma 5.2.10.

The remaining four cases are the groups already contained in Φ(1). �
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5.5. PROOF OF THEOREM 5.1.2 (2), CASE p = 3

In this subsection, for an elliptic curve E/K with rational j-invariant that is not isomorphic

over K to a base change of elliptic curve defined over Q, let E ′/Q be an elliptic curve such

that j(E) = j(E ′) and let L be a sextic number field over which E and E ′ are isomorphic.

Theorem 5.5.1. Let K be a number field such that [K : Q] = 3 and let E/K be a non-

CM elliptic curve with rational j-invariant. If E(K) contains a point of order n > 1, then

Cn ∈ΦQ(3).

Proof. Let Cn ⊆ E(K). We have that Cn ⊆ E ′(L) where [L : Q] = 6. Therefore, by Theo-

rem 4.0.1 we have that Cn is equal to the one of the following groups:

Cm : m = 1, . . . ,10,12,13,14,15,16,18,21,30.

If Cn ∈ ΦQ(3), we are done. Assume that this is not the case. Then n ∈ {15,16,30}.

Obviously it is enough to show that n = 15 and n = 16 is impossible. If n = 15, by

Lemma 5.2.6 we have that E is a base change of an elliptic curve defined over Q. Since

C15 /∈ΦQ(3), we are done. The case when n = 16 has been proven in Lemma 5.2.9. �

Lemma 5.5.2. Let K be a number field such that [K : Q] = 3 and let E/K be a non-CM

elliptic curve with rational j-invariant. Then E(K) cannot contain C2⊕C18.

Proof. Assume that C2⊕C18 ⊆ E(K). Since having a 2-torsion is a twist invariant prop-

erty, we have E ′(K)[2] = C2⊕C2. Since [K : Q] = 3, we can conclude that GE ′(2) ∈

{2Cs,2Cn}. A point P3 of order 3 on E ′ is defined over an at most quadratic extension

of Q, by [18, Table 1]. Using Lemma 5.2.3 we can assume that E ′(Q)[3] = C3. Since

C3⊕C3 = E(K)[3]⊕E ′(K)[3]∼= E ′(L)[3], C9 ⊆ E ′(L) and E ′(L)[2] =C2⊕C2, it follows

that C6⊕C18 ⊆ E ′(L), which is impossible by Theorem 4.0.1. �

Proof of Theorem 5.1.2 (2), case p = 3. If E/K has CM, then the claim immediately fol-

lows from Theorem 5.2.2. Assume that E is non-CM. In order to complete the classifi-

cation of Φ j∈Q(3) we only need to consider groups G of the form C2⊕C2n, where n≥ 1

is an integer and G ∈ ΦQ(6) \ΦQ(3). There are only three possibilites for G, namely

C2⊕C10, C2⊕C12 and C2⊕C18. But all of these possibilites were already eliminated in

Lemma 5.2.10 and Lemma 5.5.2. �

48



Torsion of elliptic curves with rational j-invariant Proof of Theorem 5.1.2 (3)

5.6. PROOF OF THEOREM 5.1.2 (3)

Theorem 5.6.1. Let K be a number field such that [K : Q] = 2 and let E/K be a non-CM

elliptic curve with rational j-invariant. Then E(K)tors ∈ΦQ(2)∪{C13}.

Proof. Obviously we have ΦQ(2) ⊆ Φ j∈Q(2) ⊆ Φ(2). By the classification of the set

Φ(2) in [26], [31] and Theorem 2.1.3 we have Φ(2) \ΦQ(2) = {C11,C13,C14,C18}. Let

n be one of those values. Obviously E/K such that E(K) contains a point Pn of order n

cannot be a base change of an elliptic curve defined over Q, by Theorem 2.1.3. Therefore,

let E ′/Q be an elliptic curve such that j(E) = j(E ′) and let L be a quartic number field

over which E and E ′ are isomorphic. This implies that E ′(L) contains a point of order

n ∈ {11,14,18}, but this is impossible since Cn /∈ΦQ(4) by Theorem 2.1.5.

Let now E ′′/Q be an elliptic curve and L a quartic Galois extension of Q such that

P13 ∈ E ′′(L), where P13 is a point of order 13. Such an elliptic curve E ′′ and a field L exist

by [7, Theorem 1.2]. Denote by K an intermediate field Q ⊆ K ⊆ L. Since L = K(
√

d),

consider a twist Ed/K of E ′′/K by d. We have

C13 ∼= E ′′(L)[13]∼= Ed(K)[13]⊕E ′′(K)[13].

We conclude that C13 ⊆ Ed(K)[13] and so Ed/K is an elliptic curve with j(Ed) ∈ Q

defined over a quadratic extension of Q with a point of order 13. �

Proof of Theorem 5.1.2 (3). If E/K has CM, then the claim immediately follows from

Theorem 5.2.2. If E is non-CM, then the claim follows directly from the previous theo-

rem.

�

Remark 5.6.2. From [7, Proposition 5.3.] we see that there exists infinitely many elliptic

curves E/Q such that there exists a cyclic quartic field K such that C13 ⊆ E(K). Let E be

one of those curves, K a number field such that C13 ⊆ E(K) and F the unique quadratic

subfield contained in K. Then we have K = F(
√

d), where d is square-free in F . We have

Ed(F)[13]⊕E(F)[13]∼= E(K)[13].

Since E(F)[13] cannot contain C13 because of Theorem 2.1.3, we have C13 ⊆ Ed(F)[13].

Therefore we obtain an elliptic curve Ed/F with rational j-invariant defined over quadratic
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field F such that C13 ⊆ Ed(F). Since there are infinitely many possibilities for E, it fol-

lows that there are infinitely many elliptic curves E ′ with rational j-invariant defined over

some quadratic number field F such that C13 ⊆ E ′(F).

Remark 5.6.3. Consider the elliptic curve E/Q(
√

17) defined by

E : y2 + xy+ y = x3− x2 +(−131a−205)x+1758a+2745,

where a is one of the roots of x2− x−4. Short Weierstrass model of E is equal to

y2 = x3 +(−169776a−265275)x+(80493264a+125695638).

The j-invariant of this curve is equal to −60698457
40960 . We have E(Q(

√
17))tors ∼= Z/13Z.

This curve has LMFDB label 100.1-e2.

Remark 5.6.4. For a positive integer d, define Φnon−CM(d) to be the set of possible

isomorphism classes of groups E(K)tors, where K runs through all number fields K of

degree d and E runs through all elliptic curves over K without CM. We expect that

Φ j∈Q(d)∩Φnon−CM(d) will often properly contain ΦQ(d)∩Φnon−CM(d). To see that,

assume that the Serre’s uniformity conjecture holds (for example, see [19, Conjecture

3.3]) and take a prime p ≥ 37. Assume that E/Q is an elliptic curve without complex

multiplication. Then we have GE(p) = GL2(Z/pZ). By [19, Lemma 5.1.] we have that

[Q(P) :Q] = p2−1, where P∈E(Q) is a point of order p. The group Gal(Q(E[p])/Q(P))

is an index 2 subgroup of

B(p) :=
ß±1 ∗

0 ∗

™⊆ GL2(Z/pZ).

Let L be the fixed field of B. By Galois theory, we have [Q(P) : L] = 2. We conclude

that Q(P) = L(
√

d), for some square-free d ∈ L. Finally we have

Ed(L)[p]⊕E(L)[p]∼= E(Q(P))[p],

where Ed is a quadratic twist of E/L by d. Obviously E(L)[p] = {O}, so we must have

Z/pZ ⊆ Ed(L)[p]. Therefore we have found an elliptic curve Ed/L with a rational j-

invariant that has a point of order p defined over a field L of degree p2−1
2 . For this reason

we expect that Φ j∈Q(
p2−1

2 )∩Φnon−CM(d) properly contains ΦQ(
p2−1

2 )∩Φnon−CM(d).
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6. TORSION GROWTH OVER NUMBER

FIELDS OF DEGREE pq

The main result of this chapter is the following theorem:

Theorem 6.0.1. Let E/Q be an elliptic curve and let K be a number field such that

[K : Q] = pq, where p,q are prime numbers such that pq 6= 4,6. Then we have

ΦQ(pq) = ΦQ(p)∪ΦQ(q),

for all primes p,q with the exception of the following:

ΦQ(9) = ΦQ(3)∪{C19,C26,C27,C28,C36,C42,C2⊕C18},

ΦQ(15) = ΦQ(3)∪ΦQ(5)∪{C22}∪{C50},

ΦQ(21) = ΦQ(3)∪ΦQ(7)∪{C43},

ΦQ(25) = ΦQ(5)∪{C50},

ΦQ(33) = ΦQ(3)∪ΦQ(11)∪{C67},

ΦQ(49) = ΦQ(7)∪{C49}.

Let E/Q be an elliptic curve and let K be a number field such that [K : Q] = pq, where

p,q are prime numbers such that pq 6= 4,6. Assume that r > 13 is a prime number and

that Pr ∈ E(K) is a point of order r. We obviously must have that [Q(Pr) : Q] divides

[K : Q] = pq. Using Theorem 2.1.7, we look at the possible values of [Q(Pr) : Q]. We can

immediately see that [Q(Pr) : Q] is divisible by 4 except when r ∈ {19,43,67,163}. By

the same theorem, we see that if r ∈ {19,163} and Pr ∈ E(K) is a point of order r, then

[Q(Pr) : Q] divides a product of two prime numbers only if r = 19 and [Q(Pr) : Q] = 9.
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We also see that this happens only for CM elliptic curves. First we shall deal with elliptic

curves without CM.

Let F1 and F2 be number fields. We say that these two fields are different if they are

different as sets, i.e. if F1 6⊆ F2 or F2 6⊆ F1.

Lemma 6.0.2. Let K be a number field such that [K : Q] = pq, where p < q are prime

numbers. Then there exists at most one subextension Q⊆ F ⊆ K such that [F : Q] = p.

Proof. Assume that there are two different fields F1 and F2 such that [F1 : Q] = [F2 : Q] =

p. By the primitive element theorem, we can write F1 =Q(α1) and F2 =Q(α2) for some

algebraic numbers α1,α2. We obviously have 1 < k = [F1(α2) : F1] ≤ [Q(α2) : Q] = p.

Since the field F1F2 = F1(α2) is contained in K and has degree kp over Q it follows that

kp|pq. We conclude that k|q. Since k ≤ p < q, we have that k = 1. But this implies that

F2 ⊆ F1, a contradiction. �

From now on, when K is a number field such that [K : Q] = pq and p < q, by F we

shall denote a unique subfield of K such that [F : Q] = p (if such field exists). Otherwise,

we define F to be the field of rational numbers Q.

Given an elliptic curve E/Q and a positive integer n, we denote by Pn a point of order

n in E(Q).

Lemma 6.0.3. Let E/Q be an elliptic curve without complex multiplication and let K be

a number field such that [K : Q] = pq, where p,q are prime numbers such that pq /∈ {4,6}.

Assume that r ∈ {2,3,5,7,11,13} is a prime number and that Pr ∈ E(K), where Pr is a

point of order r. Then E has a rational r-isogeny with the following two exceptions:

1. 3|pq and r = 2.

2. p = q = 3, r = 7 and E has LMFDB label 2450.y1 or 2450.z1 (or equivalently, if

GE(7) is conjugate to a group with label 7Ns.2.1.).

Proof. The proof easily follows from the data available in Tables 6.1 and 6.2. �

Lemma 6.0.4. Let K be a number field such that [K : Q] = pq, where p,q≥ 3 are prime

numbers and let E/K be an elliptic curve without CM. For a prime r ∈ {2,3,5,7,11,13}
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and a positive integer k, we have the following possibilities for [Q(Prk) : Q], where Prk ∈

E(K) is a point of order rk.

[Q(P2k) : Q] [Q(P3k) : Q] [Q(P5k) : Q] [Q(P7k) : Q]

p,q≥ 11 1 1 1 1

p = 7,q≥ 11 1 1 1 1,7

p = 7,q = 7 1 1 1 1,7,49

p = 5,q≥ 11 1 1 1,5 1

p = 5,q = 7 1 1 1,5 1,7

p = 5,q = 5 1 1 1,5,25 1

p = 3,q≥ 11 1,3 1,3 1 1,3

p = 3,q = 7 1,3 1,3 1 1,3,7

p = 3,q = 5 1,3 1,3 1,5 1,3

p = 3,q = 3 1,3 1,3,9 1 1,3,9

p = 2,q≥ 11 1,2 1,2 1,2 1,2

p = 2,q = 7 1,2 1,2 1,2 1,2,7,14

p = 2,q = 5 1,2 1,2 1,2,5,10 1,2
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[Q(P11k) : Q] [Q(P13k) : Q]

p,q≥ 7 \ \

p = 5,q≥ 13 \ \

p = 5,q = 11 5,55 \

p = 5,q = 7 5 \

p = 5,q = 5 5 \

p = 3,q > 13 \ 3

p = 3,q = 13 \ 3,39

p = 3,q = 11 \ 3

p = 3,q = 7 \ 3

p = 3,q = 5 5 \

p = 3,q = 3 \ 3

p = 2,q≥ 11 \ \

p = 2,q = 7 \ \

p = 2,q = 5 5,10 \

The proof of this Lemma follows directly from the known results. We briefly describe

the method of calculating the possibilities for [Q(Prk) : Q].

Proof. Using Theorem 2.1.7, we can see what the possible values of [Q(Pr) : Q] are.

Since [Q(Pr) : Q] divides [K : Q], we can eliminate most of the possibilities for [Q(Pr) :

Q]. From Proposition 2.1.8 it follows that for k ≥ 2 we have that [Q(Prk) : Q(Prk−1)]

divides r2(r− 1). Since r ∈ {2,3,5,7,11,13} we see that the prime factors of [Q(Prk) :

Q(Prk−1) are contained in the set {2,3,5,7,11,13}. Inductively, we see that the prime

factors of [Q(Prk) : Q] are also contained in the set {2,3,5,7,11,13}. Assume that Prk ∈

E(K). We have that [Q(Prk) : Q] divides [K : Q] = pq. For example, if p < q and q >

13, then [Q(Prk) : Q] is relatively prime to q, so [Q(Prk) : Q] divides p. We conclude

that E(K)tors = E(F)tors. Depending on the actual values of p and q, we can apply the

reasoning analogous to this one. �

We now state a useful fact we will use throughout this chapter.
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Lemma 6.0.5. Let E/Q be an elliptic curve and P4 ∈ E(Q) a point of order 4. Assume

that [Q(P4) : Q] = 3. Then the 2-adic representation of E is has a label X20b. Additionally,

GE(2) = GL2(Z/2Z) and Q(E[2]) =Q(E[4]) is an S3-extension of Q.

Proof. This immediately follows by a search through the data of [47] (code 7.11). �

Lemma 6.0.6. Let E/Q be an elliptic curve without CM and let K be a number field such

that [K : Q] = pq, where p and q are prime numbers and pq 6∈ {4,6,9}. Let r ∈ {11,13}

be a prime number. If Cr ⊆ E(K)tors, then E(K)tors ∼= Cr or E(K)tors ∼= C2r. The latter

case occurs only when r = 11 and [K : Q] = 15,

Proof. Consider the case when r = 11. By Lemma 6.0.3 we see that E has a rational

11-isogeny. Additionally, if P11 ∈ E(K), then [Q(P11) : Q] ∈ {5,10,55}. Assume that

E(K) contains a point P̀ of order `, where ` 6= 2,11 is a prime number. Then by the same

lemma, E has a rational `-isogeny, so it has a rational 11`-isogeny, which contradicts

Theorem 2.1.1. If P121 ⊆ E(K), then by Lemma 6.0.4 we have that [Q(P121) : Q] ≤ 55,

which is impossible by Lemma 4.1.3. Finally, assume that ` = 2 and P2 ∈ E(K). If E

has a rational 2-isogeny, then it has a rational 22-isogeny, which contradicts Theorem

2.1.1. Assume that E does not have a rational 2-isogeny. It follows that [Q(P2) : Q] = 3.

Since Q=Q(P2)∩Q(P11), it follows that the field compositum Q(P2)Q(P11) has degree

divisible by 15, hence [K : Q] = 15. It remains to show that if [K : Q] = 15 and C22 ⊆

E(K)tors, then E(K)tors cannot contain a point P4 of order 4. Assume that this is the

case. By Lemma 6.0.4, we have [Q(P4) : Q] = 3. By Lemma 6.0.5, the 2-adic Galois

representation of E has a label X20b. This implies that j(E) = 32t−4
t4 , for some t ∈Q\{0}.

Since E has a rational 11-isogeny,

j(E) ∈ {−11 ·1313,−215,−112}

by [34, Table 4]. For a∈ {−11 ·1313,−215,−112} we see that the equation a = 32t−4
t4 has

no solutions in the set of rational numbers except when a =−215, in which case we have

t = −1
8 . To see this, for every possibility of a we factor the polynomial at4−32t +4. If

a 6= −215, this polynomial will be irreducible over Q so it has no rational solutions. If

a =−215 we have

at4−32t +4 =−4(8t +1)(1024t3−128t2 +16t−1).
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The polynomial 1024t3−128t2+16t−1 is irreducible over Q, so it has no rational roots.

Therefore the only rational solutions are (a, t) = (−215,−1
8). Using the division polyno-

mial method we directly check that if E/Q is an elliptic curve with j(E) =−215, then E

cannot contain a point of order 44 over a number field of degree 15.

Assume that r = 13. By Lemma 6.0.3 we see that E has a rational 13-isogeny. Addi-

tionally, if P13 ∈ E(K), then [Q(P13) : Q] ∈ {3,39} by Lemma 6.0.4. Assume that E(K)

contains a point P̀ of order `, where ` 6= 2,13 is a prime number. Then by the same

Lemma, E has a rational `-isogeny, so it has a rational 13`-isogeny, which contradicts

Theorem 2.1.1. If P169 ⊆ E(K), then by Lemma 6.0.4 we have that [Q(P169) : Q] ≤ 39,

which is impossible by Lemma 4.1.3. It remains to consider the case when `= 2. Assume

that P2 ∈ E(K). If E has a rational 2-isogeny, then it has a rational 26-isogeny, which con-

tradicts Theorem 2.1.1. Assume that E does not have a rational 2-isogeny. It follows that

[Q(P2) : Q] = 3. We conclude that Q(P2) = F . If [Q(P13) : Q] = 3, then Q(P13) = F ,

so we have C26 ∈ ΦQ(3), a contradiction by Theorem 2.1.4. Consider the case when

[Q(P13) : Q] = 39. From Table 6.2 we see that GE(13) = 13B.3.2. A computation in

Magma [3] (code 7.12) shows that Gal(Q(E[13])/Q(P13)) is contained in the group

H =
〈3 0

0 1

 ,
2 0

0 1

 ,
1 2

0 1

〉.
The group H is normal and of index 3 in GE(13). It follows that Q(P13) has a Galois

cubic subfield and that subfield is equal to F . We conclude that GE(2) = 2Cn, so j(E) =

t2 +1728, for some t ∈Q. Since E has a rational 13-isogeny, we have

j(E) =
(s2 +5s+13)(s4 +7s3 +20s2 +19s+1)3

s
.

It remains to find rational numbers s, t with s 6= 0 satisfying

(s2 +5s+13)(s4 +7s3 +20s2 +19s+1)3

s
= t2 +1728.

This is equivalent to

(s2 +6s+13)
s

(s6 +10s5 +46s4 +108s3 +122s2 +38s−1)2 = t2.

It follows that (s2+6s+13)
s = x2, for some x ∈ Q. Putting x := y

s we have x2 = y2

s2 =

(s2+6s+13)
s , so

y2 = s3 +6s2 +13s.
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A computation in Magma [3] (code 7.12) shows that the only rational solution to this

equation is (y,s) = (0,0), but this contradicts our assumption that s 6= 0. We conclude that

our original equation does not have rational solutions, so there does not exist an elliptic

curve E/Q with GE(2) = 2Cn and a rational 13-isogeny. �

Let r be a prime number and let E/Q be an elliptic curve. By E(K)[p′] we will denote

the largest subgroup of E(K)tors that does not contain an element of order p.

Lemma 6.0.7. Let E/Q be an elliptic curve without CM and let K be a number field

such that [K : Q] ∈ {15,21,25,33,35,39,49,55,65,77,91}. If p is the smallest prime

factor of [K : Q], then ΦQ([K : Q]) = ΦQ(p).

Proof. We will split the proof in two parts. In the first part we will consider only cyclic

groups, while in the second part we will consider the groups of the form Cm⊕Cmn, where

m≥ 2.

Cyclic cases

Assume that Pn ∈ E(K) is a point of order n. In the previous lemma we have found

all the possibilities for E(K)tors when C11 ⊆ E(K) or C13 ⊆ E(K). Therefore, we shall

assume that this is not the case. It follows that the prime factors of n are contained in the

set {2,3,5,7} and we write n = 2a3b5c7d .

[K : Q] = 15

By Lemma 6.0.4, we see that if r ∈ {2,3,7}, then E(K)[r∞] = E(F)[r∞]. Therefore

if c = 0, then E(K)tors ∈ ΦQ(3). The case when c ≥ 3 is impossible by Lemma 4.1.3.

Assume that c = 2. Then we have [Q(P25) : Q] = 5 by Lemma 6.0.4 and E has a rational

25-isogeny by [16, Lemma 10 (3)]. If E(K) contains a point of order r ∈ {3,7}, then by

Lemma 6.0.3, E has a rational r-isogeny so it has a rational 25r-isogeny. This contradicts

Theorem 2.1.1. Assume that a≥ 2. We show that E(K) cannot contain a point P4 of order

4. By Lemma 6.0.4 we see that [Q(P4) : Q] ∈ {1,3}. If [Q(P4) : Q] = 1, then E has a

rational 4-isogeny, so it has a rational 100-isogeny, which contradicts Theorem 2.1.1. If

[Q(P4) : Q] = 3, Lemma 6.0.5 shows that the 2-adic image of E has a label X20b. Since E

has a rational 5-isogeny, it remains to show that there does not exist an elliptic curve E/Q

with a rational 5-isogeny and a point P4 of order 4 such that [Q(P4) : Q] = 3. In order

to do that, we consider the fiber product X20×X0(5). In [11, Proposition 6. (k)] it has
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been proven that rational points on this curve are the 2 singular points [0,−1,1], [0,1,0]

and one cusp at infinity [1,0,0], which do not correspond to elliptic curves. Therefore if

C25 ⊆ E(K)tors, then E(K)tors ∼= C25 or E(K)tors ∼= C50. Finally, assume that c = 1. If

d 6= 0, then E has a rational 35-isogeny, a contradiction with Theorem 2.1.1. If b 6= 0,

then E has a rational 15-isogeny, so

j(E) ∈ {−52/2,−52 ·2413/23,−293 ·5/25,2113 ·5/215}

by [34, Table 4]. Using the division polynomial method (code 7.4) we show that this is

impossible.

[K : Q] = 21

As in the previous case we conclude that if r ∈ {2,3,5}, then

E(K)[r∞] = E(F)[r∞]. Assume that d 6= 0. If c 6= 0, then E has a rational 35-isogeny,

which is impossible by Theorem 2.1.1. If b 6= 0, then E has a rational 21-isogeny. Using

the division polynomial method (code 7.3) we show that if C21 ⊆ E(K), then E(K)tors ∼=

C21. Finally, assume that a 6= 0. If E has a rational 2-isogeny, then E has a rational 14-

isogeny so it has CM, a contradiction. It remains to consider the case when GE(2) =

GL2(F2). If a≥ 2, then as before we conclude that the 2-adic image of E has label X20b.

There exists a morphism X20b(Q)→ X7(Q) and we can find all the points on X20b(Q) by

finding all the points on X7(Q). We want to show that there does not exist an elliptic curve

E/Q with a rational 7-isogeny and such that its 2-adic representation is contained in the

group that is parameterized by X7(Q). For this purpose, we consider the fiber product

X7×X0(7) (code 7.14). It is birational to the hyperelliptic curve C of genus 2 and rank 1

over Q given by the equation

C : y2 = x6 +2x5−4x4 +4x3−4x2 +2x+1.

Using the Chabauty method in Magma [3] we see that C(Q) = {(0,±1)}. Pulling back

these points to the corresponding points on X7×X0(7) shows that the affine rational points

on X7×X0(7) are (16/479,−49/4) and (2/3,−4). These points correspond to elliptic

curves with j-invariants −38575685889/16384 and 351/4, respectively. Using the divi-

sion polynomial method we check that if j(E) is equal to one of these two values, then

E does not have a point of order 28 defined over a number field of degree 21. Using the
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division polynomial method we check that elliptic curve with j-invariant equal to one of

these two values does not have a point of order 28 defined over a number field of degree

21.

[K : Q] = 25 By Lemma 6.0.4, we see that if r∈{2,3,7}, then E(K)[r∞] =E(Q)[r∞].

Lemma 4.1.3 shows that we cannot have c ≥ 3. If c = 2, then P25 ∈ E(K). If [Q(P25) :

Q] = 5, then E(K)tors = E(Q(P25))tors ∈ ΦQ(5). It remains to consider the case when

[Q(P25) : Q] = 25. Since E has a rational 5-isogeny by Lemma 6.0.3, then as in the

previous case we conclude that d = 0. Additionally, if b 6= 0, we conclude that E has

a rational 15-isogeny. Using the division polynomial method (code 7.4) we show that

this is impossible. It remains to show that we cannot have a ≥ 2. Assume that this is

the case. It remains to check that it is not possible to have C100 ⊆ E(K)tors. By Lemma

6.0.4 we see that if P4 ∈ E(K) then [Q(P4) : Q] = 1. We conclude that E has a rational

4-isogeny. Since E has a rational 5-isogeny, it has a rational 20-isogeny. This contradicts

the Theorem 2.1.1.

An example of an elliptic curve E/Q such that E obtains a point of order 50 over a

degree 25 number field is

E : y2 + xy = x3−45x+81.

This can be checked using an algorithm from [18].

[K : Q] ∈ {33,39,55,65,77,91} By Lemma 6.0.4, we see that if r ∈ {2,3,5,7}, then

E(K)[r∞] = E(F)[r∞]. Therefore we have E(K)tors ∈ΦQ(p).

[K : Q] = 35 If cd 6= 0, then by Lemma 6.0.3, E has rational 5 and 7-isogenies, so it

has a rational 35-isogeny. This contradicts Theorem 2.1.1. If d 6= 0, we must therefore

have c = 0. By Lemma 6.0.4, we see that if r ∈ {2,3}, then E(K)[r∞] = E(Q)[r∞]. By the

same Lemma we have [Q(P7) : Q] ∈ {1,7}. We conclude that E(K)tors = E(Q(P7))tors ∈

ΦQ(7) = Φ(1). Assume that d = 0. By the same argument we conclude that E(K)tors =

E(F)tors ∈ΦQ(5).

[K : Q] = 49 By Lemma 6.0.4, we see that if r∈{2,3,5}, then E(K)[r∞] =E(Q)[r∞].

Assume that d = 1. Then [Q(P7) : Q] ∈ {1,7} by the same Lemma. We conclude that

E(K)tors = E(Q(P7))tors ∈ ΦQ(7) = Φ(1). By Theorem 1.0.12 we have E(K)tors ∼= C7.

It remains to show that if d ≥ 2 then a = b = c = 0 and d = 2. Assume that d ≥ 2. Then
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P49 ∈ E(K), where P49 denotes a point of order 49. Obviously we cannot have [Q(P49) :

Q] ∈ {1,7}, since C49 /∈ΦQ(7) = Φ(1) by Theorem 1.0.12. Therefore we have [Q(P49) :

Q] = 49. By Table 6.1 we see that GE(7) = 7B.1.3 or GE(7) = 7B.1.1. Assume that

GE(7) = 7B.1.3. Using Magma [3] (code 7.13), we search for all the possible subgroups

G of GL2(Z/49Z) that reduce modulo 7 to a subgroup of GE(7). It turns out that all such

groups are contained (up to conjugation) in Borel subgroup of GL2(Z/49Z). This means

that E has a rational 49-isogeny, a contradiction by Theorem 2.1.1. Now we consider the

remaining case when GE(7) = 7B.1.1. It follows that C7 ⊆ E(Q). As we have previously

noted, if r ∈ {2,3,5} and Pr ∈ E(K), then Pr ∈ E(Q). Therefore we have P7r ∈ E(Q), a

contradiction by Theorem 1.0.12. It remains to show that d = 2. It is enough to show

that we cannot have d = 3. Assume that this is the case, so E(K) contains a point P343

of order 73 = 343. Since E has a rational 7-isogeny, by [18, Lema 2.7] we have that

the 7-adic representation of E is as large as possible (meaning it is equal to the inverse

image of the reduction mod 7) or jE ∈ {−153,2553}. In the proof of the same Lemma it

has been shown that in the latter case we have [Q(P49) : Q] ≥ 147. Therefore, the 7-adic

representation of E is as large as possible. By the [18, Proposition 2.2] we see that if

P343 ∈ E(K) is a point of order 343, then [Q(P343) : Q(7P343)] = 49. Therefore a point

7P343 of order 49 is defined over Q, a contradiction with Theorem 1.0.12. Therefore we

cannot have d ≥ 3.

An example of an elliptic curve E/Q such that E attains a point of order 49 over a

number field of degree 49 is

E : y2 + xy+ y = x3− x2−3x+3.

This can be seen by using an algorithm from [18].

Non-cyclic cases

It remains to consider the groups of the form Cm⊕Cmn, m≥ 2. If Cm⊕Cmn ⊆ E(K),

then by 3.1.3 we have Q(ζm)⊆ K and φ(m) = [Q(ζm) : Q] is even for m ≥ 3. Therefore

we have m = 2.

Since C2⊕C2 ⊆ E(K), we have C2⊕C2 ∈ E(F), so GE(2) is the trivial group or

GE(2) = 2Cn. Note that in the latter case we have F =Q(E[2]). First we consider the case

when GE(2) is trivial. Then E has two independent rational 2-isogenies. Additionally, we
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have E(K)[2∞] = E(Q)[2∞] because of Proposition 2.1.8.

If r ≥ 5 is a prime number and Pr ∈ E(K), then by Lemma 6.0.3, E has a rational

r-isogeny. By Lemma 2.1.2, E is isogenous over Q to an elliptic curve E ′′/Q that has a

rational 4r-isogeny, which is impossible by Theorem 2.1.1.

Assume that r = 3, k ≥ 1 and that Prk ∈ E(K). By Lemma 6.0.4 we see that [Q(Prk) :

Q]∈{1,3}, so Crk ∈ΦQ(3). Theorem 2.1.3 implies that k≤ 2. If k = 2, then we have C2⊕

C18 ⊆ E(F), but this contradicts Theorem 2.1.4. Therefore k = 1 is the only possibility,

but C2⊕C6 is already contained in Φ(1).

Assume now that GE(2) = 2Cn. It follows that K contains a cubic Galois subextension

F and j(E) = s2+1728, for some s∈Q. If P5 ∈ E(K), then j(E) = 25(t2+10t+5)3

t5 for some

t ∈Q\{0}. It remains to find rational points s, t with t 6= 0 such that

25(t2 +10t +5)3

t5 = s2 +1728.

This is equivalent to

(t2−20t−25)2 (25t2 +22t +5)
t5 = s2.

It follows that (25t2+22t+5)
t5 must be a square, i.e. (25t2+22t+5)

t5 = x2, for some x∈Q. Putting

t := t1
25 and x := 252y

t3
1

we obtain an elliptic curve

E ′ : y2 = t3
1 +22t2

1 +125t1.

A computation in Magma [3] (code 7.15) shows that E ′(Q) = {O,(0,0)}. It follows that

t1 = 0 and therefore t = 0, a contradiction. We conclude that there does not exist an elliptic

curve E/Q with GE(2) = 2Cn and a rational 5-isogeny.

Finally, assume that P7 ∈ E(K). By a search through the data of [47] we see that if

C2⊕C4 ⊆ E(F), then C2⊕C4 ⊆ E(Q), so E has a rational 4-isogeny and therefore it has

a rational 28-isogeny, a contradiction with Theorem 2.1.1. It has already been proven in

this Lemma that if C49 ∈ΦQ([K :Q]), then [K :Q] = 49 which contradicts our assumption

that K contains F . If C2⊕C42 ⊆ E(K), then E has a rational 21-isogeny, so

j(E) ∈ {−32 ·56/23,33 ·53/2,33 ·53 ·1013/221,−33 ·53 ·3833/27}

by [34, Table 4]. Additionally, since GE(2) = 2Cn, we have j(E) = t2 +1728, for some

t ∈ Q. It is easily seen that if a is one of the four values mentioned then the equation
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t2 + 1728 = a does not have rational solution t. Therefore if C2 ⊕C14 ⊆ E(K), then

C2⊕C14 = E(K)tors. If P3k ∈ E(K), then as in the previous case we conclude that C3k ⊆

E(F), so C2⊕C2·3k ⊆E(F)tors ∈ΦQ(3), which implies that k = 1. It is impossible to have

C2⊕C12 ⊆ E(K) because (as we have previously noted) C2⊕C4 ⊆ E(Q) and P3 ∈ΦQ(3)

which implies that C2⊕C12 ∈ ΦQ(3). This contradicts the Theorem 2.1.4. It remains to

show that if C2⊕C2k ∈ E(K), then k≤ 3. For this it is enough to show that it is impossible

to have k = 4. This has already been proven in Theorem 4.3.1. �

Lemma 6.0.8. Let K be a number field such that [K : Q] = 2p, where p≥ 5 is prime and

let E/Q be an elliptic curve without CM. Then ΦQ(2p) = ΦQ(p)∪ΦQ(2).

Proof. Let us first consider the case when p ≥ 11. Lemma 6.0.4 shows that if r ∈

{2,3,5,7} then E(K)[r∞] = E(F)[r∞]. Therefore we conclude that E(K)tors = E(F)tors.

This follows from the fact that [Q(Prk) : Q] ∈ {1,2} and that F is unique. It follows

that ΦQ(2p) = ΦQ(2). Note that by [19, Proposition 7.1.] we have ΦQ(p) = Φ(1), so

ΦQ(2p) = ΦQ(p)∪ΦQ(2).

Assume that p = 7. Lemma 4.1.3 shows that E(K) cannot contain a point of order 49.

By the analogous reasoning as in the previous case, Lemma 6.0.4 shows that if r∈{2,3,5}

then E(K)[r∞] = E(F)[r∞]. If E(K) does not contain a point of order 7, then E(K)tors =

E(F)tors ∈ ΦQ(2). If E(K) contains a point of order 7, then E has a rational 7-isogeny,

by Lemma 6.0.3. By the same lemma, if E contains a point of order r ∈ {2,3,5}, then E

has a rational r-isogeny. For r = 2, E would have a rational 14-isogeny so it has CM by

Theorem 2.1.1. If r = 3, then E has a rational 21-isogeny so

j(E) ∈ {−32 ·56/23,33 ·53/2,33 ·53 ·1013/221,−33 ·53 ·3833/27}

by [34, Table 4]. The division polynomial method shows that this case is impossible (code

7.17). If r = 5, then E has a rational 35-isogeny, which is impossible by Theorem 2.1.1.

Finally, assume that p = 5. Let Pn ∈ E(K) be the point of order n = 2a3b5c7d11e.

Assume that e≥ 1. We have that E has a rational 11-isogeny. If r ∈ {2,3,5,7} and E(K)

contains a point of order r, then Lemma 6.0.3 implies that E has a rational r-isogeny. We

conclude that E has a rational 11r-isogeny, which is a contradiction by Theorem 2.1.1.

Therefore if C11 ⊆ E(K)tors, then E(K)tors ∼=C11.
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Assume that e = 0. If c ≥ 3, then E(K) contains a point of order 125, which is im-

possible by Lemma 4.1.3. Assume now that c = 2 and that P25 ∈ E(K) is a point of order

25 such that [Q(P25) : Q] = 10. Using Magma [3] (code 7.16) we find all the subgroups

G≤ GL2(Z/25Z) with G≡ GE(5) (mod 5), det(G) = (Z/25Z)× and a subgroup of in-

dex 10 that fixes a non-zero vector of order 25. All such groups are contained (up to

conjugation) in the Borel subgroup of GL2(Z/25Z). We conclude that E has a rational

25-isogeny. If r ∈ {2,3,7} and Pr ∈ E(K) is a point of order r, then by Lemma 6.0.3 E has

a rational 25r-isogeny, a contradiction by Theorem 2.1.1. Therefore if P25 ∈ E(K), then

E(K)tors∼=C25 ∈ΦQ(5). Assume that c = 0. By Lemma 6.0.4 we see that for r ∈ {2,3,7}

we have E(K)[r∞] = E(F)[r∞], so we conclude that E(K)[r∞] ∈ ΦQ(2). Consider the re-

maining case, when c = 1. If d ≥ 1, then by Lemma 6.0.3, E has a rational 7-isogeny so

it has a rational 35-isogeny, a contradiction by Theorem 2.1.1. If b ≥ 1, then by Lemma

6.0.3, E has a rational 3-isogeny so it has a rational 15-isogeny.

If we had a≥ 1, then E would have a rational point P2 of order 2 (since E has a rational

2-isogeny). If 〈P15〉 is the kernel of a rational 15-isogeny, where P15 ∈ E(Q) is a point of

order 15, then 〈P2 +P15〉 is the kernel of rational 30-isogeny, a contradiction by Theorem

2.1.1.

Now we show that E(K) cannot contain a point P45 of order 45. Assume the contrary,

that P45 ∈ E(K). If P9 ∈ E(K) is a point of order 9, then by Lemma 6.0.4 we have

[Q(P9) : Q] ∈ {1,2}. It follows that C9 ⊆ E(F)[9]. By Theorem 2.1.3 we see that we

have an equality. Since F/Q is Galois extension and E(F)[9] ∼= C9, E has a rational 9-

isogeny. Since E has a rational 5-isogeny, it has a rational 45-isogeny, which contradicts

the Theorem 2.1.1. We conclude that if b≥ 1, then a = 0 and b = 1.

It remains to consider the case when a≥ 2. Assume that E has full 2-torsion defined

over Q. Let {P2,Q2} be a basis for E[2] and P5 ∈ E(Q) a point of order 5 such that the

group 〈P5〉 is the kernel of a rational 5-isogeny. The groups 〈P2+P5〉 and 〈Q2〉 are kernels

of two independent rational 10 and 2-isogenies. By using Lemma 2.1.2 we conclude

that E is isogenous over Q to an elliptic curve E ′′/Q with a rational 20-isogeny, which

contradicts Theorem 2.1.1. Therefore we conclude that E has only one rational point of

order 2, since GE(2) must be equal to 2B. Assume that P4 ∈ E(K) is a point of order 4.

The previous discussion shows that we have P4 ∈ E(F). By the results of [47] we see that
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an elliptic curve with a point of order 4 defined over a quadratic extension of Q and with

only one rational point of order 2 has a rational 4-isogeny. It follows that E has a rational

20-isogeny, a contradiction with the Theorem 2.1.1. We conclude that if c = 1 and a≥ 1,

then we must have a = 1.

Now we will deal with the groups of the form Cm⊕Cmn. Assume that Cm⊕Cmn ⊆

E(K). Then E(K) contains a point Pm of order m. Previous discussion shows that m =

2a3b5c7d11e13 f . If r ∈ {5,13} is a prime divisor of m, then Cr⊕Cr ⊆E(K). By Corollary

3.1.3 it follows that Q(ζr) ⊆ K. We also have that φ(r) = [Q(ζr) : Q] is divisible by 4

and it divides [K : Q] = 2p, a contradiction. By the analogous reasoning we see that if

r = 7 then [K : Q] = 2p would have to be divisible by φ(7) = 6, which is also impossible.

Consider the case when r = 11. We have Q(ζ11)⊆ K. Therefore [Q(ζ11) : Q] = φ(11) =

10 divides 2p = [K : Q]. It follows that K = Q(ζ11) and Q(E[11]) ⊆ K. By the main

result of [38] we see that Q(E[11]) ) Q(ζ11), a contradiction. Finally, we look at the

remaining case when m = 2a3b. As before, we conclude that φ(m) divides 2p. It follows

that m ∈ {2,3,4,6}.

Assume that C2⊕C2n⊆E(K). Then we obviously have C2n⊆E(K). By what we have

just proven, we have C2n ∈ΦQ(2)∪ΦQ(p). It follows that 2n∈ {2,4,6,8,10,12,16}. We

need to show that it is not possible to have n = 8, since all the other possibilities already

occur in ΦQ(2). By [17, Corollary 3.5], we get that if T ∼=C2⊕C16 then [Q(T ) : Q] must

be divisible by 4, which is impossible since Q(T )⊆ K.

Assume that C3⊕C3n ⊆ E(K). As in the previous paragraph, we conclude that C3n ∈

ΦQ(2)∪ΦQ(p) and that 3n ∈ {3,6,9,12,15}. We need to eliminate the cases when n ∈

{3,4,5}. By Corollary 3.1.3 we see that Q(ζ3)⊆ K. Obviously |GE(3)|= [Q(E[3]) : Q]

has to divide [K : Q] = 2p. By Lemma 6.0.3 we have that GE(3)⊆ 3B. From Table 6.1 we

see that |GE(3)| ∈ {2,4,6,12}. The only possibility is |GE(3)|= 2, so we have GE(3) =

3Cs.1.1, which means that C3⊕C3 ∼= E(Q(ζ3))[3]. If n = 3, then by Proposition 2.1.8 we

see that E(Q(ζ3))[9]∼=C3⊕C9, which is impossible by Theorem 2.1.3. If n = 4, then by

Lemma 6.0.4 we see that C4 ⊆ E(Q(ζ3))[4] and we conclude that C3⊕C12 ⊆ E(Q(ζ3)),

which contradicts Theorem 2.1.3. Finally, assume that n = 5. By Lemma 6.0.3, E has a

rational 5-isogeny. Since E has two independent rational 3-isogenies, by using Lemma

2.1.2 we conclude that E is isogenous over Q to an elliptic curve E ′′/Q with a rational
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45-isogeny, which contradicts Theorem 2.1.1.

Assume that C4⊕C4n. By Corollary 3.1.3. we see that Q(i) ⊆ K. As before, we

conclude that 4n ∈ {4,8,12,16}. We need to show that we must have n = 1. If n = 4, this

is already shown to be impossible because E(K) cannot contain a subgroup isomorphic

to C2⊕C16. If n = 3, then by Lemma 6.0.4 we have C4⊕C4 ⊆ E(Q(i))[4] and C3 ⊆

E(Q(i))[3]. We conclude that C4⊕C12⊆ E(Q(i)), which is impossible by Theorem 2.1.3.

Finally, assume that n = 2. By [17, Corollary 3.5], we get that if T ∼= C4 ⊕C8 then

[Q(T ) : Q] must be divisible by 4, which is impossible since Q(T )⊆ K.

If C6⊕C6 ⊆ E(K), then by Corollary 3.1.3 we have Q(ζ3)⊆ K and GE(3) = 3Cs.1.1.

By Lemma 6.0.3 we see that E has a rational 2-isogeny. Therefore GE(2) ⊆ 2B. Since

|2B|= 2, we have |GE(2)|= [Q(E[2]) : Q]≤ 2. Since Q(ζ3) is a unique quadratic exten-

sion contained in K it follows that E(K)[2] = E(Q(ζ3))[2]. We conclude that C6⊕C6 ⊆

E(Q(ζ3)), which is impossible by Theorem 2.1.3. �

6.1. ELLIPTIC CURVES WITH CM

In this section we will consider elliptic curves with CM. The theory of Galois represen-

tations of CM elliptic curves is well understood, so the results we list here follow easily

from the previously known results.

Lemma 6.1.1. Let K be a number field such that [K : Q] = pq, where p and q are

prime numbers such that pq 6∈ {4,6} and let E/K be an elliptic curve with CM. If

r ∈ {5,13,163}, then E(K) cannot contain a point of order r.

For a prime r ∈ {2,3,7,11,19,43,67} and a positive integer k, we have the following

possibilities for [Q(Prk) : Q], where Prk ∈ E(K) is a point of order rk.

• [Q(P2k) : Q] ∈ {1,2,3}, [Q(P3k) : Q] ∈ {1,2,3}, [Q(P7k) : Q] ∈ {3,21},

• [Q(P11k) : Q] ∈ {5,10}, [Q(P19k) : Q] ∈ {9}, [Q(P43k) : Q] ∈ {21},

• [Q(P67k) : Q] ∈ {33}.

Additionally, we have the following:
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• If P7 ∈ E(K) and [K : Q] = 21, then E(K)tors ∼=C14,

• If P11 ∈ E(K) and [K : Q] = 10, then E(K)tors ∈ {C11,C22,C2⊕C22},

• If P19 ∈ E(K), then [K : Q] = 9 and E(K)tors ∼=C19,

• If P43 ∈ E(K), then [K : Q] = 21 and E(K)tors ∼=C43,

• If P67 ∈ E(K), then [K : Q] = 33 and E(K)tors ∼=C67.

Proof. The first statements follow from [19, Theorem 3.6., Theorem 5.6.] and Proposition

2.1.8. The approach is the same as the proof of Lemma 6.0.4. Since we know the possible

values for [Q(Pr) : Q], applying Proposition 2.1.8 and keeping in mind that [Q(Prk) : Q]

divides pq = [K : Q], the proof of our claims follows by an easy calculation. The last

statements follow directly from [5, Chapter 7] and [9, Chapter 4.]. Authors of the first

cited paper have classified possible values of ΦCM(d), for d ≤ 99 and d odd. The set

ΦCM(10) was determined in the second cited paper. �

In the previous lemma we have shown what the torsion group of E(K) looks like if

there exists a prime r ≥ 13 that divides |E(K)tors|. Therefore it remains to consider the

case when the prime divisors of |E(K)tors| are contained in {2,3,7,11}.

Lemma 6.1.2. Let K be a number field such that [K : Q] = pq, where p and q are

prime numbers such that pq 6∈ {4,6,9} and let E/K be an elliptic curve with CM. Then

E(K)tors ∈ΦQ(p)∪ΦQ(q) unless pq∈ {15,21,33}. If pq = 15, then E(K)tors ∈ΦQ(3)∪

ΦQ(5)∪{C22}. If pq = 21, then E(K)tors ∈ ΦQ(3)∪ΦQ(7)∪{C43}. If pq = 33, then

E(K)tors ∈ΦQ(3)∪ΦQ(11)∪{C67}.

Proof. Assume that E(K) contains a point Pr of order r ∈ {2,3,7,11}. By [19, Theorem

3.6] and [19, Theorem 5.6] we see that if r ∈ {3,7,11}, then [Q(Pr) : Q] is divisible

by 4 or E has a rational r-isogeny. Since [K : Q] is not divisible by 4, we conclude

that E has a rational r-isogeny. When r = 2 we have that E has a rational 2-isogeny or

GE(2) = GL2(Z/2Z).

Assume that P11 ∈ E(K) is a point of order 11. It follows that E has a rational 11-

isogeny and by [34, Table 4] we have j(E) = −215. If r ∈ {2,3,7} and Pr ∈ E(K) is a

point of order r, then E has a rational r-isogeny so it has a rational 11r-isogeny (which is
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impossible by Theorem 2.1.1) or r = 2 and GE(2) = GL2(Z/2Z) in which case we have

[Q(P2) : Q] = 3. Therefore 3 | [K : Q]. By the previous lemma we know that 5 | [Q(P11) :

Q]. We conclude that 15 | [K : Q] and so [K : Q] = 15. By [18, Table 1] we already know

that C22 ∈ ΦQ(15) and by [5, Chapter 7] we can see that if [K : Q] = 15 and E/K is an

elliptic curve with CM such that C11 ⊆ E(K), then E(K)tors ∼= C11,C22. It remains to

show that E(K) cannot contain a point of order 121. Assume that P121 ∈ E(K) is a point

of order 121. By the previous lemma, we have [Q(P121) : Q]≤ 10, but this is impossible

by Lemma 4.1.3.

By the previous lemma we see that if P49 ∈ E(K), then [Q(P49) : Q] ≤ 21 and this is

impossible by Lemma 4.1.3. Again by the previous lemma we see that if P7 ∈ E(K) is a

point of order 7 and [Q(P7) : Q] = 21, then E(K)tors ∼= C14. The group C14 is contained

in ΦQ(3)⊆ ΦQ(21) by Theorem 2.1.4. From now on, if P7 ∈ E(K) is a point of order 7,

then assume that [Q(P7) : Q] = 3 (by the previous lemma, this is the only possibility for

[Q(P7) : Q] except [Q(P7) : Q] = 21). Assume that n = 2a3b7c and Pn ∈ E(K) is a point

of order n. By the previous lemma, we see that we have [Q(Pn) : Q] = 2k3l , for some

nonnegative integers k, l. Since [Q(Pn) : Q] divides [K : Q] = pq and pq 6∈ {4,6,9} we get

[Q(Pn) : Q] ∈ {2,3}. By the results of [9], Theorem 2.1.3 and Theorem 2.1.4 we see that

ΦCM(d)⊆ΦQ(d) for d = 2,3.

It remains to show that for r ∈ {43,67} there exists an elliptic curve E/Q with CM

and a number field K of degree r−1
2 such that E(K)tors ∼=Cr. This is a direct consequence

of [4, Theorem 5.6.] �

This concludes the proof of the Theorem 6.0.1 when pq 6= 9. The case pq = 9 will be

sorted out in the next section.
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6.2. THE SET ΦQ(9)

Throughout this section K will denote a number field such that [K :Q] = 9. We remind the

reader that the set S of prime factors dividing E(K)tors satisfies S⊆ {2,3,5,7,11,13,19}.

The main result we prove in this section is the following theorem.

Theorem 6.2.1. Let E/Q be an elliptic curve. Then

E(K)tors ∼=

Cm, m = 1, ...,10,12,13,14,18,19,21,26,27,28,36,42

C2⊕C2m, m = 1, ...,4,7,9.

We note that the above theorem is equivalent to the following

ΦQ(9) = ΦQ(3)∪{C19,C26,C27,C28,C36,C42,C2⊕C18}.

We shall first address the CM case. This has been proven by Clark, Corn, Rice and

Stankewicz in [9].

Theorem 6.2.2 ( [9, Chapter 4]). Let E/K be an elliptic curve with CM. Then

E(K)tors ∼=

Cm, m = 1,2,3,4,6,9,14,18,19,27

C2⊕C2.

Lemma 6.2.3. Let E/Q be an elliptic curve such that C19 ⊆ E(K)tors. Then E has CM

and E(K)tors ∼=C19.

Proof. Since C19 ⊆ E(K)tors, by Theorem 2.1.7 we have that E has CM. The second

claim follows from the previous theorem. �

Since ΦCM(9)∩ΦQ(9) is contained in the set

ΦQ(3)∪{C19,C26,C27,C28,C36,C42,C2⊕C18},

we only need to consider elliptic curves without CM.

Lemma 6.2.4. Let E/Q be an elliptic curve without CM such that C13n ⊆ E(K). Then

n ∈ {1,2}.
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Proof. By Lemma 4.1.3, we have that E(K) cannot contain a point of order 169.

Assume that Pr ∈ E(K), where r ∈ {3,5,7}. Then E has a rational r-isogeny by

Lemma 6.0.3, so it has a rational 13r-isogeny , which is impossible by Theorem 2.1.1.

Assume that P4 ∈E(K). From Lemma 6.0.4 we see that we must have [Q(P13) :Q] = 3

and [Q(P4) : Q] ∈ {1,3}. If [Q(P4) : Q] = 1, then E attains a point of order 52 over a

cubic field which contradicts Theorem 2.1.4. Therefore we have [Q(P4) : Q] = 3. By

Lemma 6.0.5 we have GE(4) = X20b and Q(E[4]) is a S3-extension of Q. From Table 6.1

we see that GE(13) = 13B.3.1. We have that Q(P13) is a cubic Galois extension of Q

by [34, Theorem 9.3]. The intersection Q(E[4])∩Q(P13) is trivial because otherwise we

would have Q(P13)⊂Q(E[4]), but Q(E[4]) does not contain a Galois cubic subextension.

Therefore we have Gal(Q(E[4])Q(P13)/Q) ∼= S3×C3, making it of generalized S3-type.

We have C4⊕C52 ⊆ E(Q(E[4])Q(P13))tors, but this is impossible by [12, Theorem 1.8].

�

Lemma 6.2.5. Let E/Q be an elliptic curve without CM such that C7n ⊆ E(K). Then

n ∈ {1,2,3,4,6}.

Proof. By Lemma 4.1.3, we have that E(K) cannot contain a point of order 49. Addi-

tionally, by Lemma 6.0.3 we see that E has a rational 7-isogeny or the LMFDB label

of E is 2450.y1 or 2450.z1. If E has a label 2450.y1 or 2450.z1 and C7 ⊆ E(K), then

E(K)tors ∼=C7. This can be seen on the LMFDB pages of these curves.

Assume that r ∈ {3,5} and Pr ∈ E(K). Then E has a rational r-isogeny by Lemma

6.0.3. If r = 5, then E would have a rational 35-isogeny, which is impossible by Theorem

2.1.1. If r = 3, then E has a rational 21-isogeny so

j(E) ∈ {−32 ·56/23,33 ·53/2,33 ·53 ·1013/221,−33 ·53 ·3833/27}

by [34, Table 4]. We need to check that a point of order 7 · 32 or 7 · 4 · 3 cannot occur.

This is done by the division polynomial method (code 7.17). It remains to eliminate a

possibility for a point of order 56. By the results of [47] (code 7.11), we see that if

P2k ∈ E(K) is a point of order 2k and k ≥ 3 then [Q(P2k) : Q] = 1 so E has a rational

56-isogeny, which is impossible by Theorem 2.1.1.

�
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Lemma 6.2.6. Let E/Q be an elliptic curve without CM such that C5n ⊆ E(K). Then

n ∈ {1,2}.

Proof. By Lemma 6.0.4 we have P5 ∈ E(Q). If 5|n, then C25 ⊆ E(K). Using Lemma

6.0.4 we get that P25 ∈ E(Q) which is impossible since C25 /∈Φ(1).

If P3 ∈ E(K), then by Lemma 6.0.4 we have [Q(P3) : Q] ∈ {1,3}. Therefore, E at-

tains a point of order 15 over a subfield F of K such that [F : Q] ∈ {1,3}, which is a

contradiction with Theorem 2.1.4.

If P4 ∈ E(K), then [Q(P4) : Q] ≤ 3 by Lemma 6.0.4, so [Q(P4 +P5) : Q] ≤ 3, which

contradicts Theorem 2.1.4. �

Lemma 6.2.7. Let E/Q be an elliptic curve without CM. Then E(K) cannot contain

C16, C24, C54 or C81.

Proof. C16 : By Lemma 6.2.5 we see that if P16 ∈ E(K), then [Q(P16) : Q] = 1, but this

is impossible by Theorem 1.0.12.

C24 : It was demonstrated in the proof of Lemma 6.2.5 that if P8 ∈ E(K) is a point

of order 8 then [Q(P8) : Q] = 1, so E has a rational 8-isogeny. By Lemma 6.0.3 we see

that E has a rational 3-isogeny. We conclude that E has a rational 24-isogeny, which is

impossible by Theorem 2.1.1.

C54 : Let G be the 3-adic Galois representation of E. By Theorem 2.1.9, the modular

curve XG is of genus zero or G27 is contained in the 27Nn.

Assume that G27 is contained in 27Nn. Using Magma [3] (code 7.18), we first find

all the possibilities for GE(54) by searching for admissible subgroups H of GL2(Z/54Z)

such that H has a subgroup K of index 9 that fixes a non-zero vector of order 54 and such

that the group GE(27) ≡ GE(54) (mod 27) is a conjugate subgroup of 27Nn. There are

only four such groups H1,H2,H3,H4. For i∈{1,2,3}we have that Hi is cyclic of order 18.

The group H4 is isomorphic to C2⊕C18. Since K is contained in Q(E[54]) and Q(E[54])

is abelian over Q, it follows that K is abelian over Q. It follows that K ⊂Qab, where Qab

denotes the maximal abelian extension of Q. We conclude that if C54 ⊆ E(K)tors, then

C54 ⊆ E(Qab)tors, but this is impossible by [8, Theorem 1.2].

Now we deal with the case when XG is of genus 0. The list of all possibilities for G

such that −I ∈ G can be found in [52, Table 1]. For each such group G, every subgroup
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of index 2 that does not contain −I is also of genus 0. Therefore we from now on we

consider all the groups listed in [52, Table 1] along with their index 2 subgroups that do

not contain −I. Denote by S the set of all such groups of genus 0. For each group T in

S, we first lift T to a subgroup of GL2(Z/27Z) and compute the stabiliser subgroups of

index 9 that fix a non-zero vector of order 27. It turns out that such a subgroup exists only

when T is an index 2 subgroup of the group with label 9I0−9c (label is taken from [52]).

Furthermore we check that a curve with GE(27) ∼= T must have a rational point of order

9 (Magma [3] code 7.19).

Assume that C2 ⊆ E(K)tors. We want to prove that this leads to a contradiction. We

split the proof in three cases.

If GE(2)⊆ 2B, then C2⊕C18 ⊆ E(Q(E[2])), which contradicts the Theorem 2.1.3. If

GE(2)⊆ 2Cn, then C2⊕C18 ⊆ E(Q(E[2])), which contradicts the Theorem 2.1.4.

Finally, consider the case when GE(2) = GL2(Z/2Z). A Magma [3] search shows

that there is only 1 possible subgroup H1 of GL2(Z/54Z) such that H1 ∼= T (mod 9),

H1 ∼= GE(2) (mod 2), H1 has a stabiliser subgroup of index 9 that fixes a non-zero vector

of order 54, has surjective determinant and contains complex conjugation. Reducing H1

modulo 6 we obtain the group GE(6). The field Q(E[6]) contains quadratic extensions

Q(∆) and Q(ζ3). A computation in Magma [3] shows that the group GE(6) has a unique

subgroup of index 2. By the Galois theory, it follows that there is a unique quadratic field

contained in Q(E[6]). We conclude that Q(∆) =Q(ζ3). Assume that the affine model of

E is given by the equation

E : y2 = x3 +Ax+B,

where A,B∈Q. Since Q(∆) =Q(
√
−3), we have that

√
4A3 +27B2 = α +β

√
−3. As in

the proof of Theorem 4.6.1, we conclude that α = 0. It follows that 4A3 +27B2 =−3β 2.

Since

j(E) = 1728
4A3

4A3 +27B2 = 1728
−3β 2−27B2

−3β 2 = 1728(1+9(B/β )2).

If we put u = B/β and t = 3u, we get j(E) = 1728(t2 + 1). On the other hand, since

GE(9) is contained in the group with label 9I0−9c, by [52, Table 1] we have that j(E) =
s3−6s2+3s+1

s2−s , for some s ∈Q\{0,1}. The equation

1728(t2 +1) =
s3−6s2 +3s+1

s2− s
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induces a genus 2 hyperelliptic curve C. In Magma [3], we compute its Jacobian J(C) and

see that it has rank 0 over Q. Using the Chabauty method implemented in Magma [3] we

conclude that it does not have an affine rational point (code 7.20). Therefore there does

not exist an elliptic curve E/Q with a point of order 54 over K.

C81 : By Theorem 2.1.9 it follows that there are only finitely many possibilities for

GE(81). For each such possibility H, one can calculate if H contains a stabiliser subgroup

Hv such that [H : Hv] = 9, where v ∈ (Z/81Z)2 is of order 81. An existence of such a

subgroup Hv would imply that E obtains a point P81 of order 81 over some number field

of degree 9 over Q. It turns out that this does not occur for any possible H. Therefore,

E(K) cannot contain a point of order 81. �

Before considering the case of C2⊕C2n torsion, let us briefly address an important

fact. Assume that C2⊕C2n ⊆ E(K). Since C2⊕C2 ⊆ E(K), we have that |GE(2)| divides

[K : Q] = 9. Therefore we conclude that GE(2) ∈ {2Cs,2Cn}. We also note that by

the results of [47] we see that if C2⊕C4 ∈ E(K), then C2⊕C4 ∈ E(Q) and E has two

independent rational 2 and rational 4-isogenies.

Lemma 6.2.8. Let E/Q be an elliptic curve without CM. Then E(K) cannot contain

C2⊕C10, C2⊕C12, C2⊕C26, C2⊕C28 or C2⊕C42.

Proof. Assume that C2⊕C2 ⊆ E(K). We split the proof in two cases depending on what

GE(2) is.

Assume that GE(2) is trivial and r≥ 3 is a prime number such that Pr ∈ E(K). Then E

has a rational r-isogeny by Lemma 6.0.3. Applying Lemma 2.1.2, we obtain the elliptic

curve E ′′/Q with a rational 4r-isogeny, which is impossible by Theorem 2.1.1 unless

r = 3. By Lemma 2.1.8 we have that if P4 ∈ E(K), then P4 ∈ E(Q). If this is the case, then

E has a rational 4-isogeny. Assume that C2⊕C12 ∈ E(K). It follows that C2⊕C4 ∈ E(Q)

and E has a rational 3-isogeny. Applying Lemma 2.1.2, we obtain the elliptic curve E ′′/Q

with a rational 24-isogeny, which is impossible by Theorem 2.1.1.

Let us now consider the case when GE(2) = 2Cn. By Lemma 6.0.5 and Lemma 6.0.4

it follows that a point of order 4 on E(Q) cannot be defined over the cubic field Q(E[2])

or over K. Therefore E(K)[2∞] ∼= C2⊕C2. This eliminates the possibilities C2⊕C28

or C2⊕C12. By [55, Theorem 1.1] we have j(E) = t2 + 1728, for some t ∈ Q. For
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r ∈ {5,13}, it has already been demonstrated in the proofs of Lemma 6.0.7 and Lemma

6.0.6 that there does not exist an elliptic curve E/Q with GE(2) = 2Cn and rational r-

isogeny. Finally, consider the case when C2⊕C42 ∈ E(K). We know that E has a rational

3 and a rational 7-isogeny by Lemma 6.0.3, so E has a rational 21-isogeny and

j(E) ∈ {−32 ·56/23,33 ·53/2,33 ·53 ·1013/221,−33 ·53 ·3833/27}

by [34, Table 4]. It is easy to check that for each of the four possible values of j(E), the

equation j(E) = t2 + 1728 does not have rational solutions. Therefore, this case is also

impossible. �

All the groups appearing in Theorem 6.2.1 have been proven to occur for some number

field K of degree 9 and some elliptic curve E/Q. This has been proven in [18] and can be

seen from the Table 1 of the same paper. This concludes the proof of Theorem 6.2.1 and

consequently the proof of Theorem 6.0.1.
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6.2.1. Appendix: Images of Mod p Galois representations associated to

elliptic curves over Q

For each possible known subgroup GE(p) ( GL2(Fp) where E/Q is a non-CM elliptic

curve and p is a prime, Tables 6.1 and 6.2 list in the first and second column the corre-

sponding labels in Sutherland and Zywina notations, and the following data:

• dv = [GE(p) : GE(p)v] = |GE(p).v| for v ∈ F2
p, v 6= (0,0); equivalently, the degrees

of the extensions Q(P) over Q for points P ∈ E(Q) of order p.

• d = |GE(p)|; equivalently, the degree Q(E[p]) over Q.

Note that Tables 6.1 and 6.2 are partially extracted from Table 3 of [51]. The differ-

ence is that [51, Table 3] only lists the minimum of dv, which is denoted by d1 therein.

Sutherland Zywina dv d

2Cs G1 1 1

2B G2 1 , 2 2

2Cn G3 3 3

3Cs.1.1 H1,1 1 , 2 2

3Cs G1 2 , 4 4

3B.1.1 H3,1 1 , 6 6

3B.1.2 H3,2 2 , 3 6

3Ns G2 4 8

3B G3 2 , 6 12

3Nn G4 8 16

5Cs.1.1 H1,1 1 , 4 4

5Cs.1.3 H1,2 2 , 4 4

Sutherland Zywina dv d

5Cs.4.1 G1 2 , 4 , 8 8

5Ns.2.1 G3 8 , 16 16

5Cs G2 4 , 4 16

5B.1.1 H6,1 1 , 20 20

5B.1.2 H5,1 4 , 5 20

5B.1.4 H6,2 2 , 20 20

5B.1.3 H5,2 4 , 10 20

5Ns G4 8 , 16 32

5B.4.1 G6 2 , 20 40

5B.4.2 G5 4 , 10 40

5Nn G7 24 48

5B G8 4 , 20 80

5S4 G9 24 96
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Sutherland Zywina dv d

7Ns.2.1 H1,1 6 , 9 , 18 18

7Ns.3.1 G1 12 , 18 36

7B.1.1 H3,1 1 , 42 42

7B.1.3 H4,1 6 , 7 42

7B.1.2 H5,2 3 , 42 42

7B.1.5 H5,1 6 , 21 42

7B.1.6 H3,2 2 , 21 42

7B.1.4 H4,2 3 , 14 42

7Ns G2 12 , 36 72

7B.6.1 G3 2 , 42 84

7B.6.3 G4 6 , 14 84

7B.6.2 G5 6 , 42 84

Sutherland Zywina dv d

7Nn G6 48 96

7B.2.1 H7,2 3 , 42 126

7B.2.3 H7,1 6 , 21 126

7B G7 6 , 42 252

11B.1.4 H1,1 5 , 110 110

11B.1.5 H2,1 5 , 110 110

11B.1.6 H2,2 10 , 55 110

11B.1.7 H1,2 10 , 55 110

11B.10.4 G1 10 , 110 220

11B.10.5 G2 10 , 110 220

11Nn G3 120 240

Table 6.1: Possible images GE(p) 6= GL2(Fp), for p ≤ 11, for non-CM elliptic curves

E/Q.

Sutherland Zywina dv d

13S4 G7 72 , 96 288

13B.3.1 H5,1 3 , 156 468

13B.3.2 H4,1 12 , 39 468

13B.3.4 H5,2 6 , 156 468

13B.3.7 H4,2 12 , 78 468

13B.5.1 G2 4 , 156 624

13B.5.2 G1 12 , 52 624

13B.5.4 G3 12 , 156 624

Sutherland Zywina dv d

13B.4.1 G5 6 , 156 936

13B.4.2 G4 12 , 78 936

13B G6 12 , 156 1872

17B.4.2 G1 8 , 272 1088

17B.4.6 G2 16 , 136 1088

37B.8.1 G1 12 , 1332 15984

37B.8.2 G2 36 , 444 15984

Table 6.2: Known images GE(p) 6= GL2(Fp), for p = 13,17 or 37, for non-CM elliptic

curves E/Q.
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7. MAGMA CODE USED IN THE PAPER

Some Magma [3] codes were taken from E. González-Jiménez’s website.

Listing 7.1: Code used in Theorem 4.2.1

 Z25:=Integers(25);

 Z5:=Integers(5);

 Sub25:=[H‘subgroup: H in Subgroups(GL(2,Z25))];



 // Let G be a subgroup of GL(2,Z/nZ) acts on the left: M*v (M in G)

 // then we need to transpose to work in Magma

 // (since Magma the subgroups of GL(2,Z/nZ) acts on the right: v*M (M in G)



 G5B11:=sub<GL(2,Z5) | {[1,0,0,2],[1,0,1,1]}>; // Transpose the generators on Sutherland

 G5Cs11:=sub<GL(2,Z5) | {[1,0,0,2]}>;

 G5Cs13:=sub<GL(2,Z5)|{[3,0,0,4]}>;

 G5Cs41:=sub<GL(2,Z5)|{[4,0,0,4],[1,0,0,2]}>;

 G5B14:=sub<GL(2,Z5)|[[4,0,0,3],[1,0,1,1]]>;

 G5B41:=sub<GL(2,Z5)|[[4,0,0,4],[1,0,1,1],[1,0,0,2]]>;



 // Imm5B11 is the set of subgroups GG of GL(2,Z/25Z) (up to

 // conjugacy) such that GG = G (mod 5), where G=5B.1.1

 Im_rho:=G5B11;

 Imm5B11:=[H : H in Sub25 | IsConjugate(GL(2,Z5),sub<GL(2,Z5) |

 {GL(2,Z5)!m : m in Generators(H)}>,Im_rho)];



 // Imm5Cs11 is the set of subgroups GG of GL(2,Z/25Z) (up to

 //conjugacy) such that GG = G (mod 5), where G=5Cs.1.1

 Im_rho:=G5Cs11;

 Imm5Cs11:=[H : H in Sub25 | IsConjugate(GL(2,Z5),sub<GL(2,Z5) |

 {GL(2,Z5)!m : m in Generators(H)}>,Im_rho)];
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 // Imm5Cs13 is the set of subgroups GG of GL(2,Z/25Z) (up to

 //conjugacy) such that GG = G (mod 5), where G=5Cs.1.3

 Im_rho:=G5Cs13;

 Imm5Cs13:=[H : H in Sub25 | IsConjugate(GL(2,Z5),sub<GL(2,Z5) |

 {GL(2,Z5)!m : m in Generators(H)}>,Im_rho)];



 // Imm5Cs41 is the set of subgroups GG of GL(2,Z/25Z) (up to

 //conjugacy) such that GG = G (mod 5), where G=5Cs.4.1

 Im_rho:=G5Cs41;

 Imm5Cs41:=[H : H in Sub25 | IsConjugate(GL(2,Z5),sub<GL(2,Z5) |

 {GL(2,Z5)!m : m in Generators(H)}>,Im_rho)];



 // Imm5B14 is the set of subgroups GG of GL(2,Z/25Z) (up to

 //conjugacy) such that GG = G (mod 5), where G=5B.1.4

 Im_rho:=G5B14;

 Imm5B14:=[H : H in Sub25 | IsConjugate(GL(2,Z5),sub<GL(2,Z5) |

 {GL(2,Z5)!m : m in Generators(H)}>,Im_rho)];



 // Imm5B41 is the set of subgroups GG of GL(2,Z/25Z) (up to

 //conjugacy) such that GG = G (mod 5), where G=5B.4.1

 Im_rho:=G5B41;

 Imm5B41:=[H : H in Sub25 | IsConjugate(GL(2,Z5),sub<GL(2,Z5) |

 {GL(2,Z5)!m : m in Generators(H)}>,Im_rho)];



 Imm:=Imm5B11;



 G_25:={};

 for GG in Imm do

 V25:={ v : v in RSpace(GG) | not IsZero(v) and not

 &and[IsDivisibleBy(Eltseq(v)[1],5),IsDivisibleBy(Eltseq(v)[2],5)] };

 names:={GroupName(quo<GG | Core(GG,Stabiliser(GG,v))>) : v in

 V25 | Integers()!(Order(GG)/Order(Stabiliser(GG,v))) eq 6};

 G_25:=G_25 join names;

 end for;

 G_25;
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 Imm:=Imm5Cs11;



 G_25:={};

 for GG in Imm do

 V25:={ v : v in RSpace(GG) | not IsZero(v) and not

 &and[IsDivisibleBy(Eltseq(v)[1],5),IsDivisibleBy(Eltseq(v)[2],5)] };

 names:={GroupName(quo<GG | Core(GG,Stabiliser(GG,v))>) : v in

 V25 | Integers()!(Order(GG)/Order(Stabiliser(GG,v))) eq 6};

 G_25:=G_25 join names;

 end for;

 G_25;



 Imm:=Imm5B41;



 G_25:={};

 for GG in Imm do

 V25:={ v : v in RSpace(GG) | not IsZero(v) and not

 &and[IsDivisibleBy(Eltseq(v)[1],5),IsDivisibleBy(Eltseq(v)[2],5)] };

 names:={GroupName(quo<GG | Core(GG,Stabiliser(GG,v))>) : v in

 V25 | Integers()!(Order(GG)/Order(Stabiliser(GG,v))) eq 6};

 G_25:=G_25 join names;

 end for;

 G_25;



 Imm:=Imm5B14;



 G_25:={};

 for GG in Imm do

 V25:={ v : v in RSpace(GG) | not IsZero(v) and not

 &and[IsDivisibleBy(Eltseq(v)[1],5),IsDivisibleBy(Eltseq(v)[2],5)] };

 names:={GroupName(quo<GG | Core(GG,Stabiliser(GG,v))>) : v in

 V25 | Integers()!(Order(GG)/Order(Stabiliser(GG,v))) eq 6};

 G_25:=G_25 join names;

 end for;

 G_25;



 Imm:=Imm5Cs41;
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 G_25:={};

 for GG in Imm do

 V25:={ v : v in RSpace(GG) | not IsZero(v) and not

 &and[IsDivisibleBy(Eltseq(v)[1],5),IsDivisibleBy(Eltseq(v)[2],5)] };

 names:={GroupName(quo<GG | Core(GG,Stabiliser(GG,v))>) : v in

 V25 | Integers()!(Order(GG)/Order(Stabiliser(GG,v))) eq 6};

 G_25:=G_25 join names;

 end for;

 G_25;



 Imm:=Imm5Cs13;



 G_25:={};

 for GG in Imm do

 V25:={ v : v in RSpace(GG) | not IsZero(v) and not

 &and[IsDivisibleBy(Eltseq(v)[1],5),IsDivisibleBy(Eltseq(v)[2],5)] };

 names:={GroupName(quo<GG | Core(GG,Stabiliser(GG,v))>) : v in

 V25 | Integers()!(Order(GG)/Order(Stabiliser(GG,v))) eq 6};

 G_25:=G_25 join names;

 end for;

 G_25;

Listing 7.2: Code used in Theorem 4.2.1

 Z9:=Integers(9);

 Z3:=Integers(3);

 Sub9:=[H‘subgroup: H in Subgroups(GL(2,Z9))];



 B311:=sub<GL(2,Z3)|[1,0,0,2],[1,0,1,1]>;

 B312:=sub<GL(2,Z3)|[2,0,0,1],[1,0,1,1]>;

 Cs311:=sub<GL(2,Z3)|[1,0,0,2]>;

 Cs3:=sub<GL(2,Z3)|[1,0,0,2],[2,0,0,2]>;

 B3:=sub<GL(2,Z3)|[1,0,0,2],[2,0,0,2],[1,0,1,1]>;



 ImmB311:=[H: H in Sub9 | IsConjugate(GL(2,Z3),sub<GL(2,Z3) |

 {GL(2,Z3)!m : m in Generators(H)}>,B311)];

 ImmB311:=[H: H in ImmB311 | #{Determinant(g): g in
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 sub<GL(2,Z9)|H,[8,0,0,8]>} eq 6];

 #ImmB311; //No group is of order 6



 ImmB312:=[H: H in Sub9 | IsConjugate(GL(2,Z3),sub<GL(2,Z3) |

 {GL(2,Z3)!m : m in Generators(H)}>,B312)];

 ImmB312:=[H: H in ImmB312 | #{Determinant(g): g in

 sub<GL(2,Z9)|H,[8,0,0,8]>} eq 6];

 #ImmB312; //No group is of order 6



 ImmCs311:=[H: H in Sub9 | IsConjugate(GL(2,Z3),sub<GL(2,Z3) |

 {GL(2,Z3)!m : m in Generators(H)}>,Cs311)];

 ImmCs311:=[H: H in ImmCs311 | #{Determinant(g): g in

 sub<GL(2,Z9)|H,[8,0,0,8]>} eq 6];

 #ImmCs311; //No group is of order 6



 ImmCs3:=[H: H in Sub9 | IsConjugate(GL(2,Z3),sub<GL(2,Z3) |

 {GL(2,Z3)!m : m in Generators(H)}>,Cs3)];

 ImmCs3:=[H: H in ImmCs3 | #{Determinant(g): g in

 sub<GL(2,Z9)|H,[8,0,0,8]>} eq 6];

 #ImmCs3;



 ImmB3:=[H: H in Sub9 | IsConjugate(GL(2,Z3),sub<GL(2,Z3) |

 {GL(2,Z3)!m : m in Generators(H)}>,B3)];

 ImmB3:=[H: H in ImmB3 | #{Determinant(g): g in

 sub<GL(2,Z9)|H,[8,0,0,8]>} eq 6];

 #ImmB3;



 G_9:={};

 for GG in ImmB311 do

 V25:={ v : v in RSpace(GG) | not IsZero(v) and not

 &and[IsDivisibleBy(Eltseq(v)[1],3),IsDivisibleBy(Eltseq(v)[2],3)] };

 names:={GroupName(quo<GG | Core(GG,Stabiliser(GG,v))>) : v in

 V25 | Integers()!(Order(GG)/Order(Stabiliser(GG,v))) eq 6};

 G_9:=G_9 join names;

 end for;

 G_9;
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 G_9:={};

 for GG in ImmB312 do

 V9:={ v : v in RSpace(GG) | not IsZero(v) and not

 &and[IsDivisibleBy(Eltseq(v)[1],3),IsDivisibleBy(Eltseq(v)[2],3)] };

 names:={GroupName(quo<GG | Core(GG,Stabiliser(GG,v))>) : v in

 V25 | Integers()!(Order(GG)/Order(Stabiliser(GG,v))) eq 6};

 G_9:=G_9 join names;

 end for;

 G_9;





 G_9:={};

 for GG in ImmCs311 do

 V9:={ v : v in RSpace(GG) | not IsZero(v) and not

 &and[IsDivisibleBy(Eltseq(v)[1],3),IsDivisibleBy(Eltseq(v)[2],3)] };

 names:={GroupName(quo<GG | Core(GG,Stabiliser(GG,v))>) : v in

 V9 | Integers()!(Order(GG)/Order(Stabiliser(GG,v))) eq 6};

 G_9:=G_9 join names;

 end for;

 G_9;





 G_9:={};

 for GG in ImmCs3 do

 V9:={ v : v in RSpace(GG) | not IsZero(v) and not

 &and[IsDivisibleBy(Eltseq(v)[1],3),IsDivisibleBy(Eltseq(v)[2],3)] };

 names:={GroupName(quo<GG | Core(GG,Stabiliser(GG,v))>) : v in

 V9 | Integers()!(Order(GG)/Order(Stabiliser(GG,v))) eq 6};

 G_9:=G_9 join names;

 end for;

 G_9;





 G_9:={};

 for GG in ImmB3 do

 V9:={ v : v in RSpace(GG) | not IsZero(v) and not

 &and[IsDivisibleBy(Eltseq(v)[1],3),IsDivisibleBy(Eltseq(v)[2],3)] };
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 names:={GroupName(quo<GG | Core(GG,Stabiliser(GG,v))>) : v in

 V9 | Integers()!(Order(GG)/Order(Stabiliser(GG,v))) eq 6};

 G_9:=G_9 join names;

 end for;

 G_9;



 //All the groups are of generalized S3-type. It follows that Q(P_9)<=Q(3^inf).





 for rzb in RZB do

 T:=rzb[3];

 if T[1][2] eq 6 then

 rzb[1];

 end if;

 end for;



 //Output: X20,X20a. Hence, Q(P_4) is S3 extension of Q, so Q(P_4)<=Q(3^inf).

Listing 7.3: Code used in Lemma 4.2.1 and Theorem 5.3.2

 //C63

 //If E/Q has a rational 21-isogeny, then j(E)=a_i, for i<=4.

 a1:=-3^2*5^6/2^3;

 a2:=3^3*5^3/2^1;

 a3:=3^3*5^3*101^3/2^(21);

 a4:=-3^3*5^3*383^3/2^7;



 list:=<a1,a2,a3,a4>;



 //take a random elliptic curve with j(E)=a

 for a in list do

 E:=EllipticCurveWithjInvariant(a);



 //computing primitive division polynomial g63.

 g3:=DivisionPolynomial(E,3);

 g7:=DivisionPolynomial(E,7);

 f9:=DivisionPolynomial(E,9);

 f21:=DivisionPolynomial(E,21);
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 Factorisation(f21: DegreeLimit:=14);

 //This is needed for Theorem 5.3.2

 //Irreducible factors that appear are of degrees 3, 6 or 9. Let n be any of these

 //3 values. This means that there exista point P=(x,y) on E’ of order 21 such

 // that [Q(P):Q] is either n or 2n.

 //But we also need to have that P is defined over L, a degree 14 number field.

 //This implies that [Q(P):Q]<=2, which is impossible



 g9:=f9 div g3; //this is the 9th primitive division polynomial



 g21:=f21 div g7;

 g21:=g21 div g3; //this is the 21st primitive division polynomial



 f63:=DivisionPolynomial(E,63);



 g63:=f63 div g21;

 g63:=g63 div g9;

 g63:=g63 div g7;

 g63:=g63 div g3; //this is the 63rd primitive division polynomial



 //g63 is a polynomial whose roots are x-coordinates of point of exact order 63 on E.

 Factorisation(g63: DegreeLimit:=21);

 end for;



 //C42

 //We do exactly the same as in the C63 case.



 a1:=-3^2*5^6/2^3;

 a2:=3^3*5^3/2^1;

 a3:=3^3*5^3*101^3/2^(21);

 a4:=-3^3*5^3*383^3/2^7;



 list:=<a1,a2,a3,a4>;



 for a in list do

 E:=EllipticCurveWithjInvariant(a);
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 g2:=DivisionPolynomial(E,2);

 g3:=DivisionPolynomial(E,3);

 g7:=DivisionPolynomial(E,7);

 f6:=DivisionPolynomial(E,6);

 f21:=DivisionPolynomial(E,21);



 g6:=f6 div g2;

 g6:=g6 div g3;



 g14:=f14 div g2;

 g14:=g14 div g7;



 g21:=f21 div g7;

 g21:=g21 div g3;



 f42:=DivisionPolynomial(E,42);



 g42:=f42 div g21;

 g42:=g42 div g14;

 g42:=g42 div g7;

 g42:=g42 div g6;

 g42:=g42 div g3;

 g42:=g42 div g2;



 //Now g42 is a polynomial whose roots are x-coordinates of point of exact order 42 on E.

 Factorisation(g42: DegreeLimit:=6);

 end for;

Listing 7.4: Code used in Lemma 4.2.1 and Lemma 6.0.7

 // If E/Q has a rational 15-isogeny, then j(E)=a_i, for i<=4.



 a1:=-5^2/2;

 a2:=-5^2*241^3/2^3;

 a3:=-29^3*5/2^(5);

 a4:=211^3*5/2^(15);
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 list:=<a1,a2,a3,a4>;



 for a in list do

 E:=EllipticCurveWithjInvariant(a);



 g2:=DivisionPolynomial(E,2);

 g3:=DivisionPolynomial(E,3);

 g5:=DivisionPolynomial(E,5);



 g6:=DivisionPolynomial(E,6);

 g6:=g6 div g2;

 g6:=g6 div g3;



 g10:=DivisionPolynomial(E,10);

 g10:=g10 div g2;

 g10:=g10 div g5;



 f9:=DivisionPolynomial(E,9);

 f15:=DivisionPolynomial(E,15);



 g9:=f9 div g3;



 g15:=f15 div g5;

 g15:=g15 div g3;



 f45:=DivisionPolynomial(E,45);



 g45:=f45 div g15;

 g45:=f45 div g9;

 g45:=f45 div g5;

 g45:=f45 div g3;



 //Now g45 is a polynomial whose roots are x-coordinates of point of exact order 45 on E.



 Factorisation(g45: DegreeLimit:=6);



 //The following line of code is used in Lemma 6.0.7., case [K:Q]=15.
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 Factorisation(g15: DegreeLimit:=15);



 //Output shows that all irreducible factors of g15 of degree less then $15$ have

 //even degrees. Hence E cannot have a point P_15 of order 15 defined over a number

 //field of degree 15.



 //The following line of code is used in Lemma 6.0.7., case [K:Q]=25.



 Factorisation(g15: DegreeLimit:=25);



 //Output shows that all irreducible factors of g15 of degree less then $25$ have

 //even degrees. Hence E cannot have a point P_15 of order 15 defined over a number

 //field of degree 25.

 end for;

Listing 7.5: Code used in Theorem 4.3.1

 P< x >:=PolynomialAlgebra(Rationals());



 E:=EllipticCurve([1,1,1,-3,1]); //j-Invariant equals -121945/32



 f2:=DivisionPolynomial(E,2);

 f3:=DivisionPolynomial(E,3);

 f5:=DivisionPolynomial(E,5);

 f6:=DivisionPolynomial(E,6);

 f10:=DivisionPolynomial(E,10);

 f15:=DivisionPolynomial(E,15);

 f30:=DivisionPolynomial(E,30);



 g6:=f6 div f2;

 g6:=g6 div f3;



 g10:=f10 div f2;

 g10:=g10 div f5;



 g15:=f15 div f3;

 g15:=g15 div f5;
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 g30:=f30 div f2;

 g30:=g30 div f3;

 g30:=g30 div f5;

 g30:=g30 div g6;

 g30:=g30 div g10;

 g30:=g30 div g15; //g30 is now a primitive 30th division polynomial attached to E.



 Factorisation(g30: DegreeLimit:=6);



 //This outputs polynomials f and g defined below.



 f:=x^6-40*x^5+45*x^4-120*x^3+75*x^2-25;

 g:=x^6+10*x^5+25*x^4-20*x^3-25*x^2+50*x-25;



 Order(GaloisGroup(f));

 Order(GaloisGroup(g));

 //Splitting fields of f and g are fields K1,K2 such that [K_1:Q]=[K_2:Q]=12.



 E:=EllipticCurve([1,1,1,549,-2202]);

 f2:=DivisionPolynomial(E,2);

 f3:=DivisionPolynomial(E,3);

 f5:=DivisionPolynomial(E,5);

 f6:=DivisionPolynomial(E,6);

 f10:=DivisionPolynomial(E,10);

 f15:=DivisionPolynomial(E,15);

 f30:=DivisionPolynomial(E,30);



 g6:=f6 div f2;

 g6:=g6 div f3;

 g10:=f10 div f2;

 g10:=g10 div f5;



 g15:=f15 div f3;

 g15:=g15 div f5;



 g30:=f30 div f2;
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 g30:=g30 div f3;

 g30:=g30 div f5;

 g30:=g30 div g6;

 g30:=g30 div g10;

 g30:=g30 div g15;



 Factorisation(g30: DegreeLimit:=6);

 //Output: []

 //In this case g_30 does not have any irreducible factors of degree less then or equal to 6.

Listing 7.6: Code used in Theorem 4.5.2

 //X_(3B)xX_20

 _<t>:=RationalFunctionField(Rationals());

 f1:=27*(t+1)*(t+9)^3/t^3; //3B.1.1 or 3B.1.2

 f2:=(t^2-3)^3*(-4*t^2+32*t+44)/(t+1)^4; //X_20

 R<x,y>:=PolynomialRing(Rationals(),2);

 C:=ProjectiveClosure(Curve(AffineSpace(R),Numerator(Evaluate(f1,x)-Evaluate(f2,y))));



 bound:=10^3;

 Pts := PointSearch(C,bound);

 Pts:=[p : p in Pts | Multiplicity(p) eq 1];

 assert #Pts ne 0;

 Pt:=Pts[1];

 E,mp1 := EllipticCurve(C,Pt);

 CremonaReference(E);

 EE,mm := MinimalModel(E);

 mm:=mm^-1;

 MW:=AbelianInvariants(MordellWeilGroup(EE));

 //printf "Abelian Invariants of MW %o\n", MW;

 DescentInformation(E);





 T,mp2 := TorsionSubgroup(EE);

 PtsC := { };

 for p in T do

 PtsC := PtsC join RationalPoints(mm(mp2(p)) @@ mp1);

 end for;
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 PtsC;

 j:=f1;

 {Evaluate(j,P[1]/P[3]) : P in PtsC | Evaluate(Denominator(j),P[1]) ne 0 and P[3] ne 0};



 //Output: {-35937/4, 109503/64}





 //But Q(E[2]) is contained in Q(E[3])), so j(E)=2^10*3^3*t^3*(1-4*t^3) for

 // some rational number t and

 // none of the two invariants listed above is of that form, which we now check.



 P<t>:=PolynomialRing(Rationals());

 f:=2^10*3^3*t^3*(1-4*t^3)-35937/4;

 g:=2^10*3^3*t^3*(1-4*t^3)-109503/64;

 Roots(f), Roots(g);

 //Output gives us that no rational roots of these equation exist.





 /////// X_(3Ns) x X_(20)

 A<x,t>:=AffineSpace(Rationals(),2);

 C:=Curve(A,x^3*(t+1)^4-(-4*t^2+32*t+44)*(t^2-3)^3);

 D:=ProjectiveClosure(C);

 R<x,y>:=PolynomialRing(Rationals(),2);

 tr,x:=IsHyperelliptic(D);

 x1,f:=SimplifiedModel(x);

 f2:=Inverse(f);

 x1;

 J:=Jacobian(x1);

 RankBound(J);



 tr,g:=IsIsomorphic(D, x);

 tr,g2:=IsInvertible(g);

 g2:=Inverse(g);



 pts:=Chabauty0(J);

 for i:=1 to #pts do

 g2(f2(pts[i]));
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 end for;

 //////





 //3Cs1.1 i 2Cn

 _<t>:=RationalFunctionField(Rationals());

 f1:=t^3; //3Cs.1.1

 f2:=t^2+1728; //2Cn

 R<x,y>:=PolynomialRing(Rationals(),2);

 C:=ProjectiveClosure(Curve(AffineSpace(R),Numerator(Evaluate(f1,x)-Evaluate(f2,y))));



 bound:=10^3;

 Pts := PointSearch(C,bound);

 Pts;

 Pts:=[p : p in Pts | Multiplicity(p) eq 1];

 assert #Pts ne 0;

 Pt:=Pts[1];

 E,mp1 := EllipticCurve(C,Pt);

 CremonaReference(E);

 EE,mm := MinimalModel(E);

 mm:=mm^-1;

 MW:=AbelianInvariants(MordellWeilGroup(EE));

 //printf "Abelian Invariants of MW %o\n", MW;

 DescentInformation(E);





 T,mp2 := TorsionSubgroup(EE);

 PtsC := { };

 for p in T do

 PtsC := PtsC join RationalPoints(mm(mp2(p)) @@ mp1);

 end for;

 j:=f1;

 {Evaluate(j,P[1]/P[3]) : P in PtsC | Evaluate(Denominator(j),P[1]) ne 0 and P[3] ne 0};

 //Output: {1728}

Listing 7.7: Code used in Theorem 4.5.4

 Z9:=Integers(9);
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 Z3:=Integers(3);

 Sub9:=[H‘subgroup: H in Subgroups(GL(2,Z9))];

 Borel9:=sub<GL(2,Z9)|[1,1,0,1],[1,0,0,2],[8,0,0,8],[2,0,0,1]>;





 B311:=sub<GL(2,Z3)|[1,0,0,2],[1,0,1,1]>;

 B312:=sub<GL(2,Z3)|[2,0,0,1],[1,0,1,1]>;

 Cs311:=sub<GL(2,Z3)|[1,0,0,2]>;



 ImmB311:=[H: H in Sub9 | IsConjugate(GL(2,Z3),sub<GL(2,Z3) |

 {GL(2,Z3)!m : m in Generators(H)}>,B311)];

 ImmB311:=[H: H in ImmB311 | #{Determinant(g): g in sub<GL(2,Z9)|H,[8,0,0,8]>} eq 6];

 ImmB311:=[H: H in ImmB311 | Order(H) le 6];

 ImmB311;

 //Output: []



 ImmB312:=[H: H in Sub9 | IsConjugate(GL(2,Z3),sub<GL(2,Z3) |

 {GL(2,Z3)!m : m in Generators(H)}>,B312)];

 ImmB312:=[H: H in ImmB312 | #{Determinant(g): g in sub<GL(2,Z9)|H,[8,0,0,8]>} eq 6];

 ImmB312:=[H: H in ImmB312 | Order(H) le 6];

 ImmB312;

 //Output: []



 ImmCs311:=[H: H in Sub9 | IsConjugate(GL(2,Z3),sub<GL(2,Z3) |

 {GL(2,Z3)!m : m in Generators(H)}>,Cs311)];

 ImmCs311:=[H: H in ImmCs311 | #{Determinant(g): g in sub<GL(2,Z9)|H,[8,0,0,8]>} eq 6];

 ImmCs311:=[H: H in ImmCs311| Order(H) le 6];

 ImmCs311;

 //Output: Three groups are given in the output,

 //but they’re all conjugate subgroups of Borel subgroup of

 //GL(2,9). We check this.



 for h in ImmCs311 do

 if IsConjugateSubgroup(GL(2,Z9),Borel9,h) eq false then

 h;

 end if;

 end for;
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 //Previous loop outputs nothing, as expected.

Listing 7.8: Code used in Theorem 4.6.1 and Proposition 4.6.3

 //E has a rational 9 isogeny and mod 2 Galois representation is surjective



 E:=EllipticCurve([0,-27]);

 E;

 Q<x>:=PolynomialRing(Rationals());

 K<w>:=NumberField(x^2+3);

 E0:=BaseChange(E,K);

 DescentInformation(E0);

 //Torsion subgroup of E0 contains 12 points.

 Points(E0:Bound:=30);

 //This outputs 12 points on E0, so we’ve found them all.



 //For each point (x,y) on E(K<w>), we have that if x is rational, then x is one

 // of the values 0,3 or -6, which is impossible.





 //E does not have a rational 9-isogeny and

 //has a rational 3-isogeny and G_E(2)=2B



 A<x,y>:=AffineSpace(Rationals(),2);

 C:=Curve(A,(x+3)*(x^2-3*x+9)*(x^3+3)^3*y-256*(y+1)^3*x^3);

 D:=ProjectiveClosure(C);

 R<x,y>:=PolynomialRing(Rationals(),2);

 tr,x:=IsHyperelliptic(D);

 x1,f:=SimplifiedModel(x);

 f2:=Inverse(f);

 x1;

 J:=Jacobian(x1);

 RankBound(J);



 tr,g:=IsIsomorphic(D, x);

 tr,g2:=IsInvertible(g);

 g2:=Inverse(g);
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 pts:=Chabauty0(J);

 for i:=1 to #pts do

 g2(f2(pts[i]));

 end for;



 //The only points on D for which xy=/=0 are (3,-16,1) and (-3,-1,1).

 //Plugging in y=-16 and y=-1 in j(E)=256(y+1)^3/y we get that

 // j(E)=54000 or j(E)=0. In both of these cases, E has CM.





 _<t>:=RationalFunctionField(Rationals());

 f1:=2^(10)*3^(3)*t^3*(1-4*t^3); //Q(E[2])<=Q(E[3])

 f2:=(t+3)*(t^2-3*t+9)*(t^3+3)^3/t^3;

 //E does not have a rational 9-isogeny, has a rational 3-isogeny

 R<x,y>:=PolynomialRing(Rationals(),2);

 C:=ProjectiveClosure(Curve(AffineSpace(R),Numerator(Evaluate(f1,x)-Evaluate(f2,y))));

 Genus(C);

 bound:=10^3;

 Pts := PointSearch(C,bound);

 Pts:=[p : p in Pts | Multiplicity(p) eq 1];

 assert #Pts ne 0;

 Pt:=Pts[1];

 E,mp1 := EllipticCurve(C,Pt);

 CremonaReference(E);

 EE,mm := MinimalModel(E);

 mm:=mm^-1;

 MW:=AbelianInvariants(MordellWeilGroup(EE));

 //printf "Abelian Invariants of MW %o\n", MW;

 DescentInformation(E);





 T,mp2 := TorsionSubgroup(EE);

 PtsC := { };

 for p in T do

 PtsC := PtsC join RationalPoints(mm(mp2(p)) @@ mp1);

 end for;
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 PtsC;

 j:=f1;

 {Evaluate(j,P[1]/P[3]) : P in PtsC | Evaluate(Denominator(j),P[1]) ne 0 and P[3] ne 0};



 //Output: {0}. But since j(E)=0 implies that E has CM, we are done.

Listing 7.9: Code used in Remark 4.6.2

 //A standard computation analogous to the one used in Lemma 6.2.7 (case C_54) shows

 //that the following five j-maps correspond to elliptic curves E that

 //obtain a point of order 9 over a sextic number field.



 F<t> := FunctionField(Rationals());



 //Level 9 maps

 ja1 := 3*(t^3+9)/t^3;

 ja2 := 3*t/(2*t^2-3*t+6);

 jb1 := 3*(t^3+9*t^2-9*t-9)/(t^3-9*t^2-9*t+9);

 jc1 := -6*(t^3-9*t)/(t^3+9*t^2-9*t-9);

 jc2 := -(t^2+3)/(t^2+8*t+3);



 J1 := [ja1,ja2,jb1,jc1,jc2];



 //Level 2 map

 j2 := t^3/(t+16);



 A<x,y> := AffineSpace(Rationals(),2);

 Curves := [ ProjectiveClosure( Curve(A, Numerator( Evaluate(js,x) - Evaluate(j2,y)

 ))) : js in J1 ];

Listing 7.10: Code used in Lemma 5.4.1

 Q<x>:=PolynomialRing(Rationals());

 K:=CyclotomicField(3);



 E1:=EllipticCurve("50a1"); // j(E1)=-25/2

 E2:=EllipticCurve("450b2"); // j(E2)=-5^2*241^3/2^3

 E3:=EllipticCurve("50a3"); // j(E3)=-29^3*5/2^(5)

 E4:=EllipticCurve("450b4"); // j(E4)=211^3*5/2^(15)
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 list:=<E1,E2,E3,E4>;



 for E in list do

 f3:=DivisionPolynomial(E,3);

 f5:=DivisionPolynomial(E,5);

 f15:=DivisionPolynomial(E,15);



 f15:=f15 div f3;

 f15:=f15 div f5; //f15 is primitive 15th division polynomial associated to E.



 Factorization(f15: DegreeLimit:=10);

 Factorization(f15,K);

 end for;



 //All irreducible factors of f15 remain irreducible over cyclotomic field K.

Listing 7.11: Code used in Lemma 6.0.5 and Lemma 6.2.5

 load "2primary_Ss.txt";

 //This is the 2adic data available at

 //https://verso.mat.uam.es/~enrique.gonzalez.jimenez/research/tables/tors6/2primary_Ss.txt



 for rzb in RZB do

 T:=rzb[3];

 if T[1][2] eq 3 then

 rzb[1];

 end if;

 end for;



 //The following code is used in Lemma 6.2.5. and shows that if a point of order 2^k defined

 //over K must be defined over Q.



 for rzb in RZB do

 T:=rzb[3];

 if T[1][3] eq 3 or T[1][3] eq 9 then

 rzb[1];

 end if;
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 end for;

Listing 7.12: Code used in Lemma 6.0.6

 //Magma code used in Lemma 6.0.6.

 //This magma code shows that the field Q(P_13) of degree 39 over Q

 //contains a Galois subextension that is of degree 3 over Q.



 G:=sub<GL(2,13)|[1,1,0,1],[3,0,0,9],[2,0,0,1]>; //G_{E}(13)=13B.3.2.

 Borel1:=sub<GL(2,13)|[1,1,0,1],[1,0,0,2],[1,0,0,3],[1,0,0,5]>;

 M:=[K‘subgroup: K in Subgroups(G: IndexEqual:=39)];



 N:=[H‘subgroup: H in Subgroups(G: IndexEqual:=3)];

 N:=[H: H in N | IsConjugateSubgroup(GL(2,13),H,M[2]) eq true];

 #N;

 //The output shows that there exists such a subfield.

 //M[2] is the only group in M that fixes a non-zero vector of order 13.

 //Therefore, M[2] is the group Gal(Q(E[13])/Q(P_13)), where

 //P_13 is a point of order 13 on E defined over a number field of degree 39.





 //Using division polynomial method, we take a random elliptic curve with

 //j-invariant equal to -2^{15} and we compute its 44th primitive division polynomial

 //f44. It does not have a factor of degree <= 15.



 E:=EllipticCurveWithjInvariant(-2^15);



 f11:=DivisionPolynomial(E,11);



 f2:=DivisionPolynomial(E,2);

 f4:=DivisionPolynomial(E,4) div f2; //Primitive 4th division polynomial of E



 f22:=DivisionPolynomial(E,22) div f11;

 f22:= f22 div f2; //Primitive 22nd division polynomial of E



 f44:=DivisionPolynomial(E,44) div f22;

 f44:=f44 div f11;

 f44:= f44 div f4;
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 f44:= f44 div f2; //Primitive 44th division polynomial of E



 Factorisation(f44: DegreeLimit:=15);



 //Output: []



 //We check what the rational points on the elliptic curve y^2=s^3+6s^2+13s are.



 E:=EllipticCurve([0,6,0,13,0]);

 DescentInformation(E);

Listing 7.13: Code used in Lemma 6.0.7

 //We search for subgroups of GL(2,Z49) that reduce mod 7 to 7B.1.3 and

 //are not subgroups (up to conjugation) of Borel subgroup of GL(2,Z49), have

 //surjective determinant and a stabiliser subgroup of index 49.



 Z49:=Integers(49);

 Z7:=Integers(7);



 Borel49:=sub<GL(2,Z49)|[1,1,0,1],[1,0,0,2],[1,0,0,3],[5,0,0,1]>;

 Borel1:=sub<GL(2,Z49)|[1,1,0,1],[1,0,0,2],[1,0,0,3],[1,0,0,5]>;

 G7B13:=sub<GL(2,Z7)|[3,0,0,1],[1,1,0,1]>;



 Sub49:=[H‘subgroup: H in Subgroups(GL(2,Z49)) | IsConjugate(GL(2,Z7), G7B13,

 sub<GL(2,Z7)|{GL(2,Z7)!m: m in Generators(H‘subgroup)}>) eq true and

 IsConjugateSubgroup(GL(2,Z49),Borel49,H‘subgroup) eq false and #{Determinant(h): h

 in H‘subgroup} eq 42];



 //#Sub49 is equal to 1.



 Subs:=[H‘subgroup: H in Subgroups(Sub49[1]: IndexEqual:=49)];

 for H in Subs do

 if IsConjugateSubgroup(GL(2,Z49),Borel1,H) eq true then

 H;

 end if;

 end for;



97



Magma code used in the paper

 //This shows that Sub49[1] does not have a stabiliser subgroup of index 49.

 //Therefore the group Sub49[1] cannot correspond to an elliptic curve E/Q with

 //a point of order 49 defined over a number field of degree 49.

Listing 7.14: Code used in Lemma 6.0.7

 //We find all the rational points genus 2 curve with rank 1 over Q using Chabauty method

 //implemented in Magma

 //j-invariant of elliptic curve E/Q with 2-adic representation contained in the group

 //parameterised by X_7 is of the form (32t-4)/t^4, for some non-zero rational number t.



 A<x,y>:=AffineSpace(Rationals(),2);

 C:=Curve(A,(32*x-4)*(y)-x^4*(y^2+13*y+49)*(y^2+5*y+1)^3);



 tr,x, map:=IsHyperelliptic(ProjectiveClosure(C));

 J:=Jacobian(x);

 pts:=Points(J: Bound:=100);

 gen:=pts[2];

 pts:=Chabauty(gen);



 for p in pts do

 RationalPoints(p @@ map);

 end for;



 //We plug in the values t_1=16/479 and t_2=2/3 in (32t-4)/t^4 to obtain the following

 //two values a1,a2.



 a1:=-38575685889/16384;

 a2:=351/4;



 list:=<a1,a2>;



 //take a random elliptic curve with j(E)=a

 for a in list do

 E:=EllipticCurveWithjInvariant(a);



 g2:=DivisionPolynomial(E,2);

 g4:=DivisionPolynomial(E,4) div g2;
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 g7:=DivisionPolynomial(E,7);

 g14:=DivisionPolynomial(E,14) div g7;

 g14:=g14 div g2;



 g28:=DivisionPolynomial(E,28) div g14;

 g28:=g28 div g7;

 g28:=g28 div g4;

 g28:=g28 div g2;



 Factorisation(g28: DegreeLimit:=21);

 end for;



 //Output: All irreducible factors of g28 of degree less then or equal to 21 have degree

 //divisible by 9. Therefore, elliptic curve E/Q with j(E)=a1 or j(E)=a2

 // does not have a point of order 28 defined over a number field of degree 21.

Listing 7.15: Code used in Lemma 6.0.7

 E:=EllipticCurve([0,22,0,125,0]);

 DescentInformation(E);

Listing 7.16: Code used in Lemma 6.0.8

 //We will show that E’ has a rational 25-isogeny.



 Z25:=Integers(25);

 Z5:=Integers(5);

 Sub25:=[H‘subgroup: H in Subgroups(GL(2,Z25))];



 Borel25:=sub<GL(2,Z25)|[1,1,0,1],[1,0,0,2],[24,0,0,24],[1,0,0,3],[7,0,0,1],[19,0,0,1]>;

 //group of upper triang.matrices.

 B0:=sub<GL(2,Z25)|[1,1,0,1],[1,0,0,2],[1,0,0,3]>;

 //Subgroup of Borel25 such that each matrix in B0 has first column vector equal to [1,0]^T.



 G5B11:=sub<GL(2,Z5) | {[1,0,0,2],[1,1,0,1]}>;

 G5B12:=sub<GL(2,Z5) | {[2,0,0,1],[1,1,0,1]}>;

 G5B14:=sub<GL(2,Z5) | {[4,0,0,3],[1,1,0,1]}>;

 G5B13:=sub<GL(2,Z5) | {[3,0,0,4],[1,1,0,1]}>;
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 G5B41:=sub<GL(2,Z5) | {[4,0,0,4],[1,1,0,1],[1,0,0,2]}>;

 G5B42:=sub<GL(2,Z5) | {[4,0,0,4],[2,0,0,1],[1,1,0,1]}>;

 G5B:=sub<GL(2,Z5) | {[2,0,0,3],[1,0,0,2],[1,1,0,1]}>;



 //We first find all possibilities for G_E(25) such that E does not have a rational

 //25-isogeny. Equivalently, G_E(25)

 //is not conjugate subgroup to Borel25, a group of upper triangular matrices in GL(2,Z25).



 // Imm5B11 is the set of subgroups GG of GL(2,Z/25Z)

 //(up to conjugacy) such that GG = G (mod 5), where G=5B.1.1

 Im_rho:=G5B11;

 Imm5B11:=[H : H in Sub25 | IsConjugate(GL(2,Z5),sub<GL(2,Z5) |

 {GL(2,Z5)!m : m in Generators(H)}>,Im_rho)];

 Imm5B11:=[H : H in Imm5B11 | IsConjugateSubgroup(GL(2,Z25),Borel25,H) eq false];



 // Imm5B12 is the set of subgroups GG of GL(2,Z/25Z) (up to

 //conjugacy) such that GG = G (mod 5), where G=5B.1.2

 Im_rho:=G5B12;

 Imm5B12:=[H : H in Sub25 | IsConjugate(GL(2,Z5),sub<GL(2,Z5) |

 {GL(2,Z5)!m : m in Generators(H)}>,Im_rho)];

 Imm5B12:=[H : H in Imm5B12 | IsConjugateSubgroup(GL(2,Z25),Borel25,H) eq false];





 // Imm5B14 is the set of subgroups GG of GL(2,Z/25Z) (up to

 //conjugacy) such that GG = G (mod 5), where G=5B.1.4

 Im_rho:=G5B14;

 Imm5B14:=[H : H in Sub25 | IsConjugate(GL(2,Z5),sub<GL(2,Z5) |

 {GL(2,Z5)!m : m in Generators(H)}>,Im_rho)];

 Imm5B14:=[H : H in Imm5B14 | IsConjugateSubgroup(GL(2,Z25),Borel25,H) eq false];



 // Imm5B13 is the set of subgroups GG of GL(2,Z/25Z) (up to

 //conjugacy) such that GG = G (mod 5), where G=5B.1.3

 Im_rho:=G5B13;

 Imm5B13:=[H : H in Sub25 | IsConjugate(GL(2,Z5),sub<GL(2,Z5) |

 {GL(2,Z5)!m : m in Generators(H)}>,Im_rho)];

 Imm5B13:=[H : H in Imm5B13 | IsConjugateSubgroup(GL(2,Z25),Borel25,H) eq false];
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 // Imm5B41 is the set of subgroups GG of GL(2,Z/25Z) (up to

 //conjugacy) such that GG = G (mod 5), where G=5B.4.1

 Im_rho:=G5B41;

 Imm5B41:=[H : H in Sub25 | IsConjugate(GL(2,Z5),sub<GL(2,Z5) |

 {GL(2,Z5)!m : m in Generators(H)}>,Im_rho)];

 Imm5B41:=[H : H in Imm5B41 | IsConjugateSubgroup(GL(2,Z25),Borel25,H) eq false];



 // Imm5B42 is the set of subgroups GG of GL(2,Z/25Z) (up to

 //conjugacy) such that GG = G (mod 5), where G=5B.4.2

 Im_rho:=G5B42;

 Imm5B42:=[H : H in Sub25 | IsConjugate(GL(2,Z5),sub<GL(2,Z5) |

 {GL(2,Z5)!m : m in Generators(H)}>,Im_rho)];

 Imm5B42:=[H : H in Imm5B42 | IsConjugateSubgroup(GL(2,Z25),Borel25,H) eq false];



 // Imm5B is the set of subgroups GG of GL(2,Z/25Z) (up to

 //conjugacy) such that GG = G (mod 5), where G=5B

 Im_rho:=G5B;

 Imm5B:=[H : H in Sub25 | IsConjugate(GL(2,Z5),sub<GL(2,Z5) |

 {GL(2,Z5)!m : m in Generators(H)}>,Im_rho)];

 Imm5B:=[H : H in Imm5B | IsConjugateSubgroup(GL(2,Z25),Borel25,H) eq false];





 list:=<Imm5B11, Imm5B12, Imm5B14, Imm5B13, Imm5B41, Imm5B42, Imm5B>;



 //for each possibility G of G_E’(25), we check if G has a

 //subgroup of index 10 that is conjugate

 //subgroup of B0. Equivalently, if E’ has a point of order 25

 //defined over degree 10 extension of Q.





 for GG in list do

 for G in GG do

 M:=[s‘subgroup: s in Subgroups(G: IndexEqual:=10)];

 for m in M do

 if IsConjugateSubgroup(GL(2,Z25),B0,m) eq true then

 m;
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 end if;

 end for;

 end for;

 end for;



 //The code outputs nothing, which means that there does not exist an elliptic curve E’/Q

 //with a rational 5-isogeny such that

 //E’ does not have a rational 25-isogeny and a point of order 25 defined over

 //a degree 10 extension of Q.

Listing 7.17: Code used in Lemma 6.0.8 and Lemma 6.2.5

 // If E/Q has a rational 21-isogeny, then j(E)=a_i, for i<=4.

 a1:=-3^2*5^6/2^3;

 a2:=3^3*5^3/2^1;

 a3:=3^3*5^3*101^3/2^(21);

 a4:=-3^3*5^3*383^3/2^7;



 list:=<a1,a2,a3,a4>;



 //take a random elliptic curve with j(E)=a

 for a in list do

 E:=EllipticCurveWithjInvariant(a);



 g2:=DivisionPolynomial(E,2);



 g3:=DivisionPolynomial(E,3);



 f4:=DivisionPolynomial(E,4);

 g4:=f4 div g2; //4th primitive division polynomial



 g6:=DivisionPolynomial(E,6) div g3;

 g6:=g6 div g2; //6th primitive division polynomial



 g7:=DivisionPolynomial(E,7);



 f9:=DivisionPolynomial(E,9);

 g9:=f9 div g3; //this is the 9th primitive division polynomial
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 f12:=DivisionPolynomial(E,12);

 g12:=f12 div g6;

 g12:=g12 div g4;

 g12:=g12 div g3;

 g12:=g12 div g2; //12th primitive division polynomial



 f13:=DivisionPolynomial(E,13);



 g14:=DivisionPolynomial(E,14) div g7;

 g14:=g14 div g2; //14th primitive division polynomial



 f21:=DivisionPolynomial(E,21);

 g21:=f21 div g7;

 g21:=g21 div g3; //21st primitive division polynomial



 g28:=DivisionPolynomial(E,28);

 g28:=g28 div g2;

 g28:=g28 div g4;

 g28:=g28 div g7;

 g28:=g28 div g14; //28th primitive division polynomial



 g42:=DivisionPolynomial(E,42);

 g42:=g42 div g2;

 g42:=g42 div g3;

 g42:=g42 div g6;

 g42:=g42 div g7;

 g42:=g42 div g14;

 g42:=g42 div g21; //42nd primitive division polynomial





 f63:=DivisionPolynomial(E,63);

 g63:=f63 div g21;

 g63:=g63 div g9;

 g63:=g63 div g7;

 g63:=g63 div g3; //63rd primitive division polynomial
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 f84:=DivisionPolynomial(E,84);

 g84:=f84 div g2;

 g84:=g84 div g4;

 g84:=g84 div g3;

 g84:=g84 div g6;

 g84:=g84 div g7;

 g84:=g84 div g12;

 g84:=g84 div g14;

 g84:=g84 div g21;

 g84:=g84 div g28;

 g84:=g84 div g42; //84th primitive division polynomial



 Factorisation(g21: DegreeLimit:=14);

 Factorisation(g63: DegreeLimit:=9);

 Factorisation(g84: DegreeLimit:=9);



 end for;



 //Output: The only irreducible factors of g21 of degree less then or equal to 14 have

 //degree divisible by 3. Therefore such a curve E cannot have a point of order 21

 //defined over a number field of degree 14.

 //g63 and g84 do not have irreducible factors of degree less then or equal to 9.

Listing 7.18: Code used in Lemma 6.2.7

 //We show that if G_{E}(27) is contained (up to conjugation) in 27Nn then G_{E}(27)

 //has order 18 or 36 and is abelian.



 load "gl2data3.txt";



 Nn27 := newsublist[60][3];



 function FixModule(H)

 V := Eigenspace(Identity(H),1);

 for h in Generators(H) do V:= V meet Eigenspace(Transpose(h),1); end for;

 // take transpose to work with right eigenspaces

 return ModuleInvariants(V);

 end function;
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 function FullDeterminantMap(H)

 M,pi:=MultiplicativeGroup(BaseRing(H));

 return sub<M|[Inverse(pi)(Determinant(h)):h in Generators(H)]> eq M;

 end function;



 function ContainsComplexConjugation(H)

 return #[h:h in H|Determinant(h) eq -1 and Trace(h) eq 0 and

 ModuleContains(FixModule(sub<H|h>),[#BaseRing(H)])] gt 0;

 end function;



 Subgroups54:= [g‘subgroup : g in Subgroups(GL(2,Integers(54))) |

 ContainsComplexConjugation(g‘subgroup) and FullDeterminantMap(g‘subgroup) and

 IsConjugateSubgroup(GL(2,Integers(27)),Nn27,sub<GL(2,Integers(27))|{GL(2,Integers(27))!m: m

 in Generators(g‘subgroup)}>) eq true];





 for G in Subgroups54 do

 GT:=sub<GL(2,Integers(54))|{Transpose(m): m in Generators(G)}>;

 V54:={ v : v in RSpace(GT) | not IsZero(v) and not

 &and[IsDivisibleBy(Eltseq(v)[1],3),IsDivisibleBy(Eltseq(v)[2],3)] and not

 &and[IsDivisibleBy(Eltseq(v)[1],2),IsDivisibleBy(Eltseq(v)[2],2)]};



 names:={Integers()!(Order(GT)/Order(Stabiliser(GT,v))) : v in V54 |

 Integers()!(Order(GT)/Order(Stabiliser(GT,v))) eq 9 };

 if #names ne 0 then

 IsAbelian(G);

 end if;

 end for;



 //This shows that all possible groups G_{E}(54) are abelian.

Listing 7.19: Code used in Lemma 6.2.7

 //This code is used when we consider X_G of genus 0.

 GL54 := GL(2,Integers(54));

 GL27 := GL(2,Integers(27));

 GL9 := GL(2,Integers(9));
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 GL2 := GL(2,Integers(2));



 //Compute the invariant factors of a finite Z/nZ-module of rank at most 2

 function ModuleInvariants(V)

 if Dimension(V) eq 0 then return []; end if;

 if Dimension(V) eq 1 then return [#V]; end if;

 assert Dimension(V) le 2;

 r1:=#sub<V|V.1>; r2:=#sub<V|V.2>;

 return [GCD(r1,r2),LCM(r1,r2)];

 end function;



 //Given a subgroup of GL(2,Z/nZ), computes the invariants of the sub-module of Z/nZ x Z/nZ

 //fixed by G (returns a list [], [a], or [a,b] with a|b|n)

 function FixModule(H)

 V := Eigenspace(Identity(H),1);

 for h in Generators(H) do V:= V meet Eigenspace(Transpose(h),1); end for;

 return ModuleInvariants(V);

 end function;



 //Returns if the Z/nZ-module A contains a submodule isomorphic to B



 function ModuleContains(A,B)

 i:=#A-#B;

 if i lt 0 then return false; end if;

 for j in [1..#B] do if not IsDivisibleBy(A[i+j],B[j]) then return false; end if; end for;

 return true;

 end function;



 //Returns true of a matrix group over a ring R contains elements of every possible

 //determinant

 function FullDeterminantMap(H)

 M,pi:=MultiplicativeGroup(BaseRing(H));

 return sub<M|[Inverse(pi)(Determinant(h)):h in Generators(H)]> eq M;

 end function;



 //Returns true if a give subgroup of GL(2,Z/nZ) contains an element corresponding to

 //complex conjugation
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Magma code used in the paper

 function ContainsComplexConjugation(H)

 return #[h:h in H|Determinant(h) eq -1 and Trace(h) eq 0 and

 ModuleContains(FixModule(sub<H|h>),[#BaseRing(H)])] gt 0;

 end function;



 function ChangeLevel(G,n)

 I := BaseRing(G);

 if #I ge n then

 H := ChangeRing(G,Integers(n));

 end if;

 if not #I ge n then

 GL2n := GL(2,Integers(n));

 _,pi := ChangeRing(GL(2,Integers(n)),I);

 H := sub<GL2n | Inverse(pi)(G),Kernel(pi) >;

 end if;

 return H;

 end function;



 //We transpose each group of genus 0 in order to find the Stabilisers



 A3:=sub<GL(2,Integers(3))|[0,2,1,0],[1,1,1,2],[1,0,0,2]>;

 B3:=sub<GL(2,Integers(3))|[0,2,1,1],[1,0,2,2]>;

 C3:=sub<GL(2,Integers(3))|[0,2,1,0],[1,0,0,2]>;

 D3:=sub<GL(2,Integers(3))|[2,0,0,2],[1,0,0,2]>;





 A9:=sub<GL(2,Integers(9))|[0,4,2,0], [1,4,1,5],[1,0,0,2]>;

 B9:=sub<GL(2,Integers(9))|[1,0,1,1],[2,0,0,5],[1,0,0,2]>;

 C9:=sub<GL(2,Integers(9))|[2,0,0,5],[4,3,2,4],[1,0,0,2]>;

 D9:=sub<GL(2,Integers(9))|[2,0,0,5],[1,3,3,1],[0,4,2,0],[1,0,0,2]>;



 E9:=sub<GL(2,Integers(9))|[1,0,3,1],[2,1,1,1],[4,0,2,5]>;

 F9:=sub<GL(2,Integers(9))|[0,4,2,1],[4,5,3,4],[4,0,5,5]>;

 G9:=sub<GL(2,Integers(9))|[0,2,4,3],[5,1,1,4],[5,0,3,4]>;

 H9:=sub<GL(2,Integers(9))|[1,0,3,1],[5,3,0,2],[1,2,0,2]>;



 H9b:=sub<GL(2,Integers(9))|[1,0,3,1],[5,3,0,2],[2,0,1,1]>;
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Magma code used in the paper

 H9c:=sub<GL(2,Integers(9))|[1,0,3,1],[5,3,0,2],[4,0,2,5]>;



 I9:=sub<GL(2,Integers(9))|[2,0,1,5],[1,3,2,2]>;

 I9b:=sub<GL(2,Integers(9))|[2,0,1,5],[4,3,0,5]>;

 I9c:=sub<GL(2,Integers(9))|[2,0,2,5],[2,3,2,1]>;



 J9:=sub<GL(2,Integers(9))|[1,0,3,1],[2,3,2,8],[1,0,2,2]>;

 J9b:=sub<GL(2,Integers(9))|[1,0,3,1],[2,3,2,8],[2,0,1,1]>;

 J9c:=sub<GL(2,Integers(9))|[1,0,3,1],[5,3,2,5],[4,0,0,5]>;



 A27:=sub<GL(2,Integers(27))|[1,0,1,1],[2,9,1,5],[1,3,2,2]>;



 list:=<A3,B3,C3,D3,A9,B9,C9,D9,E9,F9,G9,H9,H9b,H9c,I9,I9b,I9c,J9,J9b,J9c,A27>;



 //adding the index 2 subgroups of in the list

 for H in list do

 Indeks2 := [g‘subgroup : g in Subgroups(H: IndexEqual:=2)];

 for K in Indeks2 do

 Append(~list,K);

 end for;

 end for;

 liftlista:=<>;



 //lifting each group in list to a subgroup of GL(2,Integers(27))

 for i in [1..#list] do

 Append(~liftlista,ChangeLevel(list[i],27));

 end for;





 JedinaGrupa:=<>;



 //Checking which groups have a point of order 27 defined over a number field of degree 9

 for i in [1..#liftlista] do

 V27:={ v : v in RSpace(liftlista[i]) | not IsZero(v) and not

 &and[IsDivisibleBy(Eltseq(v)[1],3),IsDivisibleBy(Eltseq(v)[2],3)] };

 names:={Integers()!(Order(liftlista[i])/Order(Stabiliser(liftlista[i],v))) : v in V27

 | Integers()!(Order(liftlista[i])/Order(Stabiliser(liftlista[i],v))) eq 9 };
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Magma code used in the paper

 if #names ne 0 then

 Append(~JedinaGrupa,sub<GL9|{GL9!m: m in Generators(liftlista[i])}>);

 end if;

 end for;





 //Function that determines if an elliptic curve E/Q with G_{E}(54)=GG has a point of order 54

 //defined over degree 9 number field

 function ImaTockuReda54(GG)

 t:=0;

 V54:={ v : v in RSpace(GG) | not IsZero(v) and not

 &and[IsDivisibleBy(Eltseq(v)[1],3),IsDivisibleBy(Eltseq(v)[2],3)] and not

 &and[IsDivisibleBy(Eltseq(v)[1],2),IsDivisibleBy(Eltseq(v)[2],2)] };



 names:={Stabiliser(GG,v) : v in V54 | Integers()!(Order(GG)/Order(Stabiliser(GG,v))) eq 9

 };

 if #names ne 0 then

 t:=1;

 end if;

 return t;

 end function;



 //Searching through all possible subgroups of GL(2,Integers(54)) and finding the groups

 //satisfying various conditions

 AdmisIms := [g‘subgroup : g in Subgroups(GL54) | ContainsComplexConjugation(g‘subgroup) and

 FullDeterminantMap(g‘subgroup) and Order(sub<GL2|{GL2!m: m in Generators(g‘subgroup)}>) eq 6

 and IsConjugate(GL9,sub<GL9|{GL9!m: m in Generators(g‘subgroup)}>,sub<GL9|{GL9!m: m in

 Generators(JedinaGrupa[1])}>) eq true and ImaTockuReda54(g‘subgroup) eq 1 and

 IsConjugate(GL27,sub<GL27|{GL27!m: m in Generators(g‘subgroup)}>,sub<GL27|{GL27!m: m in

 Generators(JedinaGrupa[1])}>) eq true];



 //This shows that G_{E}(6) is of order 18 and has a unique subgroup of index 2.

 for G in AdmisIms do

 Order(sub<GL(2,Integers(6))|{GL(2,Integers(6))!m: m in Generators(G)}>);

 Subgroups(sub<GL(2,Integers(6))|{GL(2,Integers(6))!m: m in Generators(G)}>: IndexEqual:=2);

 end for;
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Magma code used in the paper

Listing 7.20: Code used in Lemma 6.2.7

 //We classify all the rational points on the corresponding genus

 //2 curve



 A<x,y>:=AffineSpace(Rationals(),2);

 C:=Curve(A,(y^2-y)*1728*(x^2+1)-(y^3-6*y^2+3*y+1));

 tr,x, map:=IsHyperelliptic(ProjectiveClosure(C));

 x1,f:=SimplifiedModel(x);

 f2:=Inverse(f);

 J:=Jacobian(x1);

 RankBound(J);

 pts:=Chabauty0(J);

 for i:=1 to #pts do RationalPoints(pts[i] @@ map); end for;
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CONCLUSION

In this paper we gave a complete classification of the set Φ j∈Q(p), where p is a prime

number. More precisely, let K be a number field of prime degree p, and let E/K be an

elliptic curve with j(E) ∈Q. Then:

1. If p≥ 7, then E(K)tors ∈Φ(1).

2. If p = 3 or p = 5, then E(K)tors ∈ΦQ(p).

3. If p = 2, then E(K)tors ∈ΦQ(2) or E(K)tors ∼= Z/13Z.

Let p and q be prime numbers. We succeeded in giving a complete classification of

the sets ΦQ(pq), except in the case when pq = 6. The author was unable to eliminate the

group C3⊕C18 from the set ΦQ(6), but has given a partial result for that case.

If K is a sextic number field and E/K is an elliptic curve, then E(K)tors is one of the

following groups:

1. Cm, m = 1, ...,16,18,21,30, m 6= 11

2. C2⊕C2m, m = 1, ...,7,9

3. C3⊕C3m, m = 1, ...,4

4. C4⊕C4m, m = 1,3

5. C6⊕C6

6. C3⊕C18

Additionally, if GE(2) 6= 2B, then E(K)tors is not isomorphic to C3⊕C18.
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