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Now
(15) |9l < (1felloee + 1D Fllz) fg E /mn 3(y, s) dyds < eC,

by the lemma. Integrating by parts, we also find

¢ 0
L= [ [ (5= 8089w —v,t - s) dyds

+ f (y,e)f(z -yt — ) dy

(16) Re

—f @(y,t)f(z ~y,0)dy
Bn

:f @(y,E)f(E“y,t—E)dy"K,
Rn
since @ golves the heat equation. Combining (14)-(16), we ascertain
ut(z, 1) — Au(z,t) = limf By, e)f(z—y,t—e)dy
e—0 fpn
= f(z,t) (z eR" ¢t>0),

the limit as € — 0 being computed as in the proof of Theorem 1. Finally
note [[u(-, )|z < t|[f]lzee — 0. O

Remark. We can of course combine Theorems 1 and 2 to discover that
¢
17) u(z,t) = fiRﬂ &(z —y,t)g(y) dy + fo /]Rﬂ D(z —y,t — s)f{y, s) dyds

is, under the hypotheses on g and f as above, a solution of

{ut——Au=f in R™ x (0, 00)

(18) u=g onR"x {t=0}

2.3.2. Mean-value formula.

First we recall some useful notation from §A.2. Assume U C R”™ is open

and bounded, and fix a time T > 0.

DEFINITIONS.
(i) We define the parabolic cylinder

Ur:=U x (O,T].
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l’D /K i

g P )

(i) The parabolic boundary of Ur is  “TResboitden GRAMICA
PT = ﬁT — UT.

We interpret Ur as being the parabolic interior of U x [0, T|: note care-
fully that Uy includes the top U x {¢ = T}. The parabolic boundary Iy
comprises the bottom and vertical sides of U x [0, T}, but not the top.

We want next to derive a kind of analogue to the mean-value property for
harmonic functions, as discussed in §2.2.2. There is no such simple formula.
However let us observe that for fixed = the spheres 6B(z, r) are level sets of
the fundamental solution ®(z~y) for Laplace’s equation. This suggests that
perhaps for fixed (z,?) the level sets of fundamental solution ®(z — y, ¢ — s)
for the heat equation may be relevant.

DEFINITION. For fized z € R*, t € R, r > 0, we define

T

E(z tir) = {(y,s) ER™! [s<t, Blz—y,t—s) > i}

This is a region in space-time, the boundary of which is a level set of
®(z —y,t—s). Note that the point (z,t) is at the center of the top. E(z,t;r)
is sometimes called a “heat ball”,

THEOREM 3 (A mean-value property for' the heat equation). Let u €
CE(Ur) solve the heat equation. Then

1 |z ~ 'ylz
19 um,t——// wy, s) ——— dyds
( ) ( ) 47‘” E(m,t;r) (y )(t 3)2 y
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{x,t)

Efx,E;x)

A “heat ball”
for each E(z,t;r) C Ur.

Formula (19) is a sort of analogue for the heat equation of the mean-
value formulas for Laplace’s equation. Observe that the right hand side
involves only u(y, s) for times s < . This is reasonable, as the value u(z, t)
should not dependipon Tuture times.

Proof. We may as well assume upon translating the space and time coor-
dinates that z = 0 and { = 0. Write E(r) = E(O 0;r) and set

(M) —o (Vt,‘w1s)
o= [ wwoewe T

(20) B — T
2 Yl L
= 'U,(Ty, T 3)_‘“ dyds FreyE e v YR \
E(1}) s? 3‘”—'~\rw”‘
We compute
k11
Jyl? lyl?
¢"T:/_/ Uy, Yi—5 + 2rus —— dyds
( ) B) 1231: i Wi o2 s Y
L S P
= T‘n+1 /.[E(r) ;uyiyi“‘;? + ZUST d‘yds
=: A+ B.
Also, let us introduce the useful function L re .
'?:42 2.ov L

(21) r{(s,»\) == —--g: log(—4ns) + =— is +nlogr

and observe 1 = 0 on §F(r), since ®(y,—s) = ™ on JE(r). We utilize
(21) to write

7 pntl / ./E(r 4, Z Yithy, dyds

i=1
e 4 s . """i 1 DO Hee BBV
s, f-[E('r) nugY +4;usylyﬂb dyds; )
e e 1, O
= ___,\__.(,_‘.-—-k-- = ‘2\1 ,(}L = i\'ﬂ

£(’S t 7(.‘ 2 S
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there is no boundary term since ¥ = 0 on OE(r). Integrating by parts with
respect to s, we discover

1 n _
) ff —dnugy + 42 ﬂy,-yﬂ.bs dyds PL. qos

E vl
- f/E( anp +4Zuy,y1 (m-; 452) dyds

= e, // —4dnugy — -;“ Z Uy, yi dyds — A.
E(r) i=1 r‘\gw e

Consequently, since u solves the heat equation,

HoreogEn v ‘,
p(r)=A+ B

1 27
= —4dnAuyy — — i d
i M() nAuy s Zuy;% yds
_._§ :,,.n+1 /] th'a'zinyii,byz umy% dyds

i=1
=0, according to (21). g}(

A
25

Thus ¢ is constant, and therefore

&(r) = llm @(t) = u(0,0) (hm /] Iyl “-dyds) = 4u(0,0),

2 2
}5// Iyzl,ddswff 'yldds_
S Se@ s E(1) 57

We omit the details of this last computation. O

2.3.3. Properties of solutions.
a. Strong maximum principle, uniqueness.

First we employ the mean-value property to give a quick proof of the
strong maximum principle.

THEOREM 4 (Strong maximum principle for the heat equation). Assume
u € CZ(Ur) NC(Ur) solves the heat equation in Up.
(i) Then

max t = max u. TRAHUT  frpagsimute.
UT PT
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R

Strong maximum principle for the heat equation

(ii) Purthermore, if U is connected and there exists a point (To,to) € Ur
such that

u(zo, to) = ng_raxu, Ibeet  TRAHOAT
T

then ﬁpﬂg—g\nuﬂm—

u ts constant in Uy,.

Assertion (i) is the mazimum principle for the heat equation and (ii)
is the strong mazimum principle. Similar assertions are valid with “min”
replacing “max”.  _ ¢!

Remark. So if u attains its mazimum (or minimum) at an interior point,
then u is constant at all earlier times. This accords with our strong intuitive
interpretation of the variable £ as denoting time: the solution will be constant
on the time interval [0, #g] provided the initial and boundary conditions are
constant. However, the solution may change at times ¢ > ¢, provided the
boundary conditions alter after tg. The solution will however not respond
to changes in boundary conditions until these changes happen.

Take note that whereas all this is obvious on intuitive, physical grounds,
such insights do not constitute a proof. The task is to deduce such behavior
from the PDE. O

Proof. 1. Suppose there exists a point (zo, %) € Ur with u(zg,t0) = M =

maxp,, u. Then for all sufficiently small r > 0, E(zg,%p;7) C Ur; and we
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employ the mean-value property to deduce

M = u(zg, ty) = /f s)“’“y'zd ds < M,
’ 4rm E(zg,to,r) v ( )2

]2
f / |20 = yl* dyds.
E(zotor) (o — 8)%

Equality holds only if u is identically equal to M within E(zg,2g;7). Con-

sequently
u(y,s) =M for all (y,s) E‘M

Draw any line segment L in Ur connecting (zg, tp) with some other point#
(yo, so) € Uy, with sg < tg. Consider ‘i

since

o := min{s > sg | u(z,t) = M for all points (z,t) € L, s < £ < #p}.
T Vo =5 pov,
Since u is continuous, the minimum is attained. Assume rg > sg. Then
u(zo, rg) = M for some point (20,79) on LNUr and so v = M on E(zg, 0;7)
for all sufficiently small » > 0. Since E(zp,rp;7) contains LN{rg— o <t < oosi@ltt %
rg} for some small & > 0, we have a contradiction. Thus rg = sg, and hence ~J%

u=>Mon L. =g
. . . . Vo HEYHPEN
2. Now fix any point € U and any time 0 < ¢ < #;. There exist points

{_IO_ 1By T = z} such theft the line s-egments in R® cc:nnec.:ting i1 to x; i, eOBe)
liein U for ¢ = 1,...,m. (This follows since the set of points in I which can
be so connected to zg by a polygonal path is nonempty, open and relatively
closed in U.) Select times ¢p > t; > -+ > t,, = ¢t. Then the line segments in
R™*! connecting (z;_1,%4-1) to (z3,%) (i = 1,...,m) lie in Ur. According
to Step 1, u = M on each such segment and so u(z,t) = M. |

1 "P’?-o'ﬂ’l]

Remark. The strong maximuimn principle implies that if U is connected and
u € C¥(Ur) N C(Ur) satisfies

—Au=0 inUp
u=0 ondlU x[0,T]
u=g onUx {t=0}

where g > 0, then u is positive everywhere within Uy if g is positive some-
where on U, This is another illustration of infinite propagation speed for
disturbances. a

An important application of the maximum principle is the following
uniqueness assertion.
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THEOREM 5 (Uniqueness on bounded domains). Let g € C(I'7), f €
C(Ur). Then there ezists at most one solution v € C¥{(Ur) N C(Ur) of the
inttial/boundary-value problem

{ut—Au:f in Up

(22) u=g onlrp.

Proof. If u and %@ are two solutions of (22), apply Theorem 4 to w :=
+(u — ). O

We next extend our uniqueness assertion to the Cauchy problem, that
is, the initial value problem for U = R™. As we are no longer on a bounded
region, we must introduce some control on the behavior of sclutions for large

|-

THEOREM 6 (Maximum principle for the Cauchy problem). Suppose
u € CEHR™ x (0,T)) NC(R™ x [0,T)) solves

w—Au=0 inR"x(0,T)
u=g onR"x{t=0}

(23)
and satisfies the growth estimate

(24) u(z, t) < e’ (zeR*, 0<t<T)
for constants A,a > 0. Then

sup u=supg.
Rn < [0,T) Rn

Proof. 1. First assume
(25) 40T < 1;

in which case

4

LY

for some € > 0. Fix y € R*, > 0, and define

2
v(z,t) == u{z,t) — T 5”-- e eTTTeD (x eR", t>0).

<
~
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A direct calculation (cf. §2.3.1) shows
vw—Av=0 inR" x (0,7)].

Fix r > 0 and set U := B%(y,r), Ur = B%(y,r) x (0,T]. Then according to
Theorem 4,

(27) max v = maxv.
- Up Dy
JELm PopsTepeT Vo= & Hec p‘L

[]

2. Now if z € R",
R
o(z,0) = u(z,0) — —E s

(28) (T + ey )
< u(z,0) = g(z); f/‘x

and if |z —y| =7, 0 <t < T, then Y

— - r ey

v(z,t) = u(z, t) (T+E—t)n/284 T

< Aetlel® — £ eETT b (24)

- (T +e— )2 y

< peelyl+r? _ B g

- (T +e)™/? '

Now according to (26), ;ﬂﬁ = @~y for some « > 0. Thus we may continue

the calculation above to find

(20)  o(z,t) < AP — p(a(a +4)) 7S < supg,
BegTERIE

for r selected sufficiently large. Thus (27)—(29) imply
v(y,t) <supg
Jite

n)<t< . . . -
for all y e R™, 0 < ¢ < T, provided (25) is valid M

3. In the general case that (25) fails, we repeatedly apply the result

above on the time intervals [0, 73], [T1, 271, ], ete., for T} = ElE' O
S HOVNYR QocTTHIH VYIEToR ‘.

THEOREM 7 (Uniqueness for Cauchy problem). Let g € C(R™), f &
C(R™ x [0,T]). Then there exists at most one solution u € CT(R™ x (0,T])N
C(R™ x [0,T)) of the initial-value problem

u~Au=f inR"x(0,T)
(30) { u=g onR"*x {t=0}

satisfying the growth estimate
(31) lu(z, )| < Ae?2 (zeR™, 0<t<T)

for constanis A, a > 0.
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Proof. If u and % both satisfy (30), (31), we apply Theorem 6 to w :=
*(u — @). O

Remark. There are in fact infinitely many solutions of

(32) {ut-—Auz——O in R™ x (0,7)

u=0 onR"x {t=0}

see for instance John [J, Chapter 7]. Each of the solutions besides u = 0
grows very rapidly as |z| — 0.

There is an interesting point here: although u = 0 is certainly the “physi-
cally correct” solution of (32), this initial-value problem in fact admits other,
‘nonphysical” solutions. Theorem 7 provides a criterion which excludes the
“wrong” solutions. We will encounter somewhat analogous situations in our
study of Hamilton—Jacobi equations and conservation laws, in Chapters 3,
10 and 11. O

b. Regularity.

We next demonstrate that solutions of the heat equation are automati-
cally smooth.

THEOREM 8 (Smoothness). Suppose u € C2(Ur) solves the heat equa-

tion in Up. Then
u e C™(Ur).

This regularity assertion is valid even if u attains nonsmooth boundary
values on I'p.

Proof. 1. Recall from §A.2 that we write
Clz, tir):={(y:8) | le—yl < t—r? <s <t} S e

to denote the closed circular cylinder of radius r, height 72, and top center
point (z,t).

Fix (zg, tg) € Ur and choose » > 0 so small that C := C(zp,to;7) C Ur.
Define also the smaller cylinders ¢/ = C(Ig,to;%?‘), C" = C(zqg, to; %‘r),
which have the same top center point (zg, ¢g).

Choose a smooth cutoff function ¢ = ((z,t) such that

{05(51, (=1onC,
¢ = 0 near the parabolic boundary of C.

Extend ¢ =0 in (R % [0,5]) — C.
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/_-——————(xwta) e
\_\____f‘-"'"m::j/

| — —]
R —

cl

| —r—— ]
e ———— i’

< =

2. Assume temporarily that u € C°(Ur) and set

v(z,t) = {(z, hulz,t) (z € R”, 0 <t <tp).

Then
v = Cup + G, Av = (Au+ 2D(¢ - Du + uA(.
Consequently
(33) v=0 onR"x {t=0},
and
(34) v — Av = (u — 2D( - Du—uAl =: f

in R™ x (0,%p). Now set

t
oz, 1) == /(; /Rﬂ ®(z — y, t — 8)f(y, s) dyds.

According to Theorem 2

B — A= inR" % (0,4)
=0

(33) on R™ x {¢t =0}.

Since |v|, |#] < A for some constant A, Theorem 7 implies v = 7; that is,

t
(36) vat)= [ [ @@=v,e- 97w, dyds.
0 JR
Now suppose (z,t) € C”. As ( = 0 off the cylinder C, (34) and (36) imply

uz9 = [ /C Oz — y,t - )[(Go(v: ) — ALy, 9))u(y, 5)
—2D((y, s) - Du{y, s)] dyds.

?.T-
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Note in this expression that the expression in the square brackets vanishes
in some region near the singularity of ®. Integrate the last term by parts:

et = [ /G [ — vt — 8)(Gal5 5) + A1) 5))
+2Dy®(z —y,t — s} - D¢(y, 8)|u(y, s) dyds.

(37)

ypotheses of the theorem, we derive (37) with v° = 7. * u replacing u, 7.

\ We have proved this formula assuming u € C*. If u satisfies only the
h;
i\being the standard mollifier in the variables z and £, and let ¢ — 0.

3. Formula (37) has the form

(38)  u(zb)= ]/C K(zt,y, s)uly,s)dyds (1) € C"),

where
K(z,t,y,8) =0 for all points (y,s) € C,

since ¢ =1 on C’. Note also K is smooth on C — C’. In view of expression
(38), we see u is C* within C" = C(zo, to; 27). O

c. Local estimates for solutions of the heat equation.

Next we record some estimates on the derivatives of solutions to the
heat equation, paying attention to the differences between derivatives with
respect to z; (¢ = 1,...,n) and with respect to ¢.

THEOREM 9 (Estimates on derivatives). There erists for each pair of
integers k,l = 0,1,..., a constant Cy; such that

k Cu
C'(E,}:t; 7/2) | Dz Diu| < rk+2l4n+2 l[ull 2y (c(a,my)

for all eylinders C{z,t;7/2) C C(z,t;r) C Up, and all solutions u of the
heat equation in Up.

ﬁl:oof/l Fix some point in Up. Upon shifting the coordinates, we may
as well assume the point is (0,0). Suppose first that the cylinder C(1) :=
C(0,0;1) kies in Up. Let C(3) := C(0,0;1). Then, as in the proof of
Theorem 8,

mnxr = T Sy 8 r '];
(z,1) ffch( ty,shuly, s)dyds  ((z,8) € C(3))
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for some smooth function K. Consequently

| DX Dlu(z, £)] < / f IDLDEK (2, 4,9, )|y, o)) dyds
(39) c()

< CulluliLicay

for some constant Cjy.
2. Now suppose the cylinder C(r) := C(0,0;r) lies in Up. Let C(r/2) =

C(0,0;r/2). We rescale by defining
vz, t) = ulrz, r?t).
Then v; — Av = 0 in the cylinder C(1). According to (39),
\DEDu(z, 8] < Cullvllony (@ 1) € OR).

But DEDlv(z,t) = 25 DEDlu(re, r?t) and |lvllpcqay) = sz lielioiee)-
Therefore

C,
k 1l kL
max |D; Dl < rrsllullny e

O

Remark. If u solves the heat equation within U, then for each fixed time
0 < ¢t < T, the mapping z — u{z,t) is analytic. (See Mikhailov [M].)
However the mapping ¢ — u{z,£) is not in general analytic. a

2.3.4. Energy methods.
a. Unigueness.

Let us investigate again the initial/boundary-value problem

(20) {ut——Auzf in Ur

w=g onl7T.

We earlier invoked the maximum principle to show uniqueness, and
now—by analogy with §2.2.5—provide an alternative argument based upon
integration by parts. We assume as usual that U C R" is open, bounded
and that OU is C'. The terminal time T > 0 is given.

THEOREM 10 (Uniqueness). There erists at most one solution u
e C3(Ur) of (40).
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Proof. 1. If @ is another solution, w := u — % solves

w;—Aw=0 inUp
(41) { w=0 onlT.
2. Set
e(t) = / w(z,t)dz (0<t<T).
U
Then
d
é(t) = Q/C.fwwtdm (': E)
= 2f wAwdz
o
= —2f [Dw|*dz <0,
U
and so
e(t)<e(0)=0 (0<t<T).
Consequently w = u — 4 = 0 in Up. i

Observe that the foregoing is a time-dependent variant of the proof of
Theorem 16 in §2.2.5.

b. Backwards uniqueness.

A rather more subtle question concerns uniqueness backwards in time
for the heat equation. For this, suppose u and % are both smooth solutions
of the heat equation in Ur, with the same boundary conditions on 6U:

(42) {ut—Au=0 in Up
U=4g on oU x [B,T], e, Secpuo RUdM) U

(43)

I

U —-Ai=0 in Ur
ii=g ondU x[0,T],

for some function g. Note carefully that we are not supposing u = @ at time
t=0.
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THEOREM 11 (Backwards uniqueness). Suppose u,%i € C*{Uy) solve
(42), (43). If
u(e,T) =z, T) (z€U),

then
u =4 within Ur.

In other words, if two temperature distributions on U agree at some time
T > 0, and have had the same boundary values for times 0 < ¢t < T, then
these temperatures must have been identically equal within U at all earlier
times. This is not at all obvious.

Proof. 1. Write w = u — 4@ and, as in the proof of Theorem 10, set

e(t) := ./[;wz(:r,t) dz (0<t<T).

As before
. o d

(44) é(t)=-2 | |Dw|*dz =—.

U dt
Furthermore

é(t) = ——-4/ Dw - Dwy dx
U

(45) =4f Aww; dz

U

= wzﬂ: .
_4fU(A Vdz by (41)

Now since w = 0 on 8U,

f|Dw|2d$=—fwAwdm
u U
1/2 1/2
< (f 'wzd:c) (/ (Aw)zdm) :
U u
Thus (44) and (45) imply

(6(£))? = 4 ( fU ]lezdm)g

([ ) (oo

= e(t)&(t).
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Hence

(46) e(t)e(t) > (e(t))? (0<t<T).

2. Now if e(t) = 0 for all 0 <t < T, we are done. Otherwise there exists
an interval [t,%2] C [0,7], with

(47) e(t) >0 fort; <t <ty e(tz)=0.

3. Now write
(48) f(t) :=1loge(t) (1 <t <ta).
Then

. g a()?
)= S - S 20 by (do)

and so f is convex on the interval (¢1,%2). Consequently if 0 < 7 < 1,
t1 < t < tz, we have

FQ =)t +718) < (L= 7)f(t1) + 7/ (2)-
Recalling (48), we deduce

e((l— 1)ty + 1) < e(t1) " e(t)",

and so
0<e((l—7)t; +7ta) <e(t1)Te)™ (0<7<1).

But in view of (47) this inequality implies e(t) = 0 for all times #; < { < to,
a contradiction. O

2.4, WAVE EQUATION

In this section we investigate the wave equation
(1) uy — Au =0
and the nonhomogeneous wave equation

(2) ut — A = f,

subject to appropriate initial and boundary conditions. Here { > 0 and
z € U, where U C R" is open. The unknown is u : U x [0,00) — R,
u = u(z,t), and the Laplacian A is taken with respect to the spatial variables



