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INTRODUCTION

S(g*)8S(g) > S(g*)

deformation

|
U(9)t5(g*) » U(g)
1. INTRODUCTION
Weyl algebra S(g*)4S(g)
Deformation of Weyl algebra
Problems with Weyl algebra deformations

Yetter-Drinfeld module algebra and Hopf algebroid
Idea for the solution — the thesis
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Weyl algebra S(g*)£S(g)

Weyl algebra
=~ (Xy,..., Xny 01,y - . a,,>// where the ideal / is generated
by OuXs — X300 — dap, o, B €{1,...,n}

12

ring Diff(R") {Z, o PiI(Xx)0; | K € N§, p; polynomials}
smash product S(g*)#S(g), for g = ToV = V vector space
S(g*) =~ k[V*] = Kk[X1,...,Xn], S(g) = U(g) = k[0, ..., 0n]
Smash product S(g*)#S(g) is S(g*) ® S(g) with multiplication

» ftD - giE = > (D) » 9)4D(2) E, where D » f = Df

» coproduct A(D) = >} D1y ® D2y, D € U(g), is defined with

AD)(f®g) = D(f-g) = >, Di1)f - Di2)g (Leibniz rule)

Dual Hopf algebras S(g*) ~ k[V*] and S(g) = U(g)

» product dual to coproduct, unit to counit, etc.

12
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Deformation of Weyl algebra

Deformation v~ noncommutative coordinates

> first Diff(R")P = (S(g*)#S(g))P = S(g):5(g")

(geometry: algebra of diff. operators that act to the left «)
> now S(g) = K[&1,..., %], S(g*) = k[01,...,0n]

» deformation: g becomes a noncommutative Lie algebra,
generated by X4, ..., X,, mod the ideal J generated by
[Xa, X5] — 25 Copkos o, Be{1,...,n}

» S(g) deforms as algebra to U(g), S(g*) deforms as
coalgebra to a Hopf algebra dual to U(g)

Meljanac, Skoda, Stoji¢, Lie algebra type noncommutative

phase spaces are Hopf algebroids, Lett. Math. Phys. 107:3,
475-503 (2017)

» U(g)tS(g*) Why is it OK? Comparison with t-deformations.
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Problems with Weyl algebra deformations
Problem with infinite dimensionality of S(g) and U(g):
» coproduct A: S(g*) — S(g*) ® S(g*) deforms to coproduct
S(g*) — S(g*) ®S(g*) with completion
One possible solution:
» coproduct A: §(g*) — 5(g*) & 5(g*) and smash product
U(g)4S(g*) defined out of the action S(g*) <« U(g)
Problem: combining ® and &

» we need to work withAthe "action’ of the deformed
differential operators S(g*) » U(g) there are no axioms for

» there is no definition of a ’completed’ Hopf algebroid
Solution ad hoc in the LMP article:

» ’action’ without axioms... infinite sums... coordinates...
» unstable definition of a 'completed’ Hopf algebroid...
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Yetter-Drinfeld module algebra and Hopf algebroid
Algebra of formal diff. operators around the unit of a Lie group:
Diff*(G, e) = J*(G, e)fU(g") = U(g")*$U(g")
Diff*(G, e) = J*(G, e)*°$U(g") = U(g")*1U(g")
Noncommutative phase space is the opposite algebra:
U(gh)15(a*) = (S(g*)°4U(g"))°P = Diff*(G, e)°P
S(g*) = J*(G, e) = U(gh)*
‘Completed’ Heisenberg double U(g)*tU(g)?

Corrolary. (Lu)
» If Ais a finite-dimensional Hopf algebra, then the Heisenberg
double A*#A is a Hopf algebroid over A.

Theorem. (Brzezinski, Militaru) Scalar extension.
» If Ais a braided-commutative Yetter-Drinfeld module algebra
over H, then the smash product HtA is a Hopf algebroid over A.

/39
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Idea for the solution — the thesis

1. Category
» new category which has vector spaces with filtrations and
vector spaces with cofiltrations, and U(g)*£U(g)
» it has to have a monoidal product & which is equal to ®
when vector spaces are filtered and & when cofiltered
» it has to admit coequalizers and they have to commute with
the monoidal product for the definition of &4 to be possible
2. Definition of an internal Hopf algebroid
» based on the definition of internal bialgebroid of Gabi B6hm
3. The scalar extension theorem
» simetrical definition, antipod antiisomorphism, geometry

4. Proof that U(g) is an internal braided-commutative
YD-module algebra over U(g)*

5. What can be more generally known about A*{A and HiA
for dual infinite-dimensional H and A?

10/39
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THE CATEGORY indproVect
(indVect, ®, k

\

(indproVect, ®, k)

/
\/

(proVect, ®, k

(Vect, ®, k

2. THE CATEGORY indproVect
Requirements, intuition and strategy
Categories indVect and proVect
Dual subcategories of Grothendieck’s categories
The category indproVect
Tensor products, formal sums and formal basis

Commutation of the tensor product and coequalizers
11/39
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Requirements, intuition and strategy

Vector spaces with structure and tensor products

1. A, B filtered’ vector spaces = AR B = cglliwm An® Bn
H, K 'cofiltered’ vector spaces = HR K = Ier/] Hk ® K

2. Filtering components A, — A are subspaces, duality =
cofiltering components H —» Hy are quotients

3. A fin-dim-filtered, H fin-dim-cofiltered = A H=A® H
= let's try with AQ H = coILim Iilr(n An® H, = coll7im A H
= filtered-cofiltered’ vector space V = coILim Iilr(n 7

4. Hopefully this is a symmetric monoidal category.

5. Hopefully it admits coequalizers and the monoidal product
® commutes with them.

Let’'s name these categories: indVect, proVect and indproVect.

12/39
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Requirements, intuition and strategy

Morphisms that respect this structure

6. Multiplication A® A — A, comultiplication H - H& H and
action »: H® A — A should be morphisms in this category.

7. Axiom of action:
HOYH ®A->HRA—-AI HO(HRA) - HRA— A
become HOHRA > HRA — A.
8. When cofiltered algebra H ’acts on’ filtered vector space A,
(Saengaa 051052 857) » 871552 547
the result is always a finite sum
Seng A (81257 - 80 » S5 1)
even though each summand of the infinite sum acts.
= Infinitness is controlled by interaction of filtrations and
cofiltrations. Formalization: morphisms in indproVect.

13/39
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Objects of categories indVect and proVect

Definition. A functor V: | — V is an Xg-filtration if | is a small
directed category of cofinality of at most Xy and all connecting
morphisms are monomorphisms.

Definition. A functor V: 15 Vis an No-cofiltration if Iis a small
directed category of cofinality of at most Xy and all connecting
morphisms are epimorphisms.

» natural generalizations of standard notions of filtration and
decreasing filtration (equivalently, cofiltration)
» objects of categories Ind§0V and Pro§OV respectively
» Why Xy? Why monomorphisms and epimorphisms?
Definition. Filtered (resp. cofiltered) vector space is a vector

space V together with an Xq-filtration (resp. Rp-cofiltration) V in
Vect such that V =~ colim V (resp. V =~ lim V) in Vect.

14/39
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Morphisms of categories indVect and proVect

Definition. Morphism of filtered vector spaces, or a filtered map,
from V = colim V to W ~colimW isalinearmap f: V- W
such that

(vie )@ e )@ Vi W(for) =) o fy).

Definition. Morphism of cofiltered vector spaces, or a cofiltered
map, from V ~limVto Wx~IlimWisalinearmap f: V- W
such that

(Vje J)Fie @t Vi > W))(fiom! =x/V of).

15/39
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Dual subcategories of Grothendieck categories

Theorems.
» The category indVect is equivalent to the category of strict
ind-objects of cofinality of at most Xg in the category Vect,

indVect = Indy Vect.

» The category proVect is equivalent to the category of strict
pro-objects of cofinality of at most N in the category Vect,

proVect = Prog Vect.

» The categories indVect and proVect are dual to each other.

«~~ These theorems are not theorems if:
» we don’t have monomorphisms A, — A in filtrations and
epimorphisms H — Hj in cofiltrations.
» the cofinality is not at most Xy. But maybe it still works
without Rp-assumption if we take VectFin instead of Vect.

16/39
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The category indproVect

Definition. Filtered-cofiltered vector space is a vector space V
together with an Ry-filtration V in proVect such that V =~ colim V
in Vect.

«~ Well def.: Proposition. mono in proVect = mono in Vect.

Definition. Morphism of filtered-cofiltered vector spaces, or a
filtered-cofiltered map, is a linear map f: V — W such that

(Vie (3] € J)(3fi: Vi - Wjin proVect)(forf =1V ofy).

Theorem. (Subcategory of Grothendieck’s category.)
» The category indproVect is equivalent to the category of strict
ind-pro-objects of cofinality of at most Xy in the category Vect,

indproVect = Indy Prof Vect.

<~~~ Later, deeper reasons: Theorem. proVect has colimits and
Theorem. Filtered colimit in proVect is colimit in Vect.

17/39
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Tensor products, formal sums and formal basis

Tensor product is easily defined by lifting it
» to indVect from filtrations: V@ W = colm V& W
» to proVect from cofiltrations: V& W = limV & W
» to indproVect from filtrations of cofiltrations:
VOW =colmV&W.
Advantage over abstract ind-pro-objects: concrete categories.
M Formal sums in proVect. 3 Formal basis in proVect.

Propositions.

» Categories (indVectFin, ®, k) and (proVectFin, ®, k) are dual.
» Morphisms in proVect = ones that distribute over formal sums.
» If {D,} is a filtered basis of V in indVectFin ~~ dual
functionals {e,}, comprise a formal basis of V* in proVectFin.

Examples. U(g)*fU(g), Heisenberg doubles of Hopf algebras
filtered by finite-dimensional components, ...

18/39
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Commutation of the tensor product and coequalizers

Proposition 1. (Coequalizers in proVect.)
» The category proVect admits coequalizers. The coequalizers
in (proVect, ®, k) commute with the monoidal product.

Proposition 2. (Complete subspaces and quotients in proVect.)
» Vector subspace is complete if and only if it contains values of
all formal sums. Quotient by a complete subspace is a
cofiltered vector space and the quotient map is a cofiltered map.

Proposition 3. (Coproduct in proVect.)

» The category proVect has coproducts. Description of
coproduct in proVect.

Sketch of the proof. Existence: use equivalence with the
category Prog ,Vect. Description: use the notion of formal sum,
Proposition 2. about formal sums and completions, and
Proposition 3. for description of cofiltration on quotients.

19/39



INTRODUCTION THE CATEGORY indproVect HOPF ALGEBROID AND SCALAR EXTENSION HEISENBERG DOUBLES EXAMPLES

00000 0O0000000e 00000 00000 00000
!

Theorem 4. (Filtered colimit in proVect.)
» The category proVect has colimits. Description of filtered
colimit in proVect.

Sketch of the proof. Complex proof. ...
Theorem 5. (Existence of coequalizers in indproVect.)
» The category indproVect admits coequalizers.

Sketch of the proof. Use: existence of colimit in proVect,
quotient maps by complete subspaces in proVect,
completeness of kernels of maps in proVect, ...

Theorem 6. (Coequalizers commute with & in indproVect.)
» Coequalizers in (indproVect, ®, k) commute with the
monoidal product.

Sketch of the proof. Complex proof. ... Uses: properties of
formal sums, description of filtered colimit in proVect, ...

This makes the definition of &4, for internal monoid A, possible.

20/39
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INTERNAL HOPF ALGEBROID AND
SCALAR EXTENSION

0
GxmG 3 > G <
N ;

M

VN

Fun(G xy G) = Fun(G) ®punmy Fun(g) = H @4 H

. _n
HRQaH < H

> A

VN
AN

T

3. INTERNAL HOPF ALGEBROID AND SCALAR EXTENSION
Hopf algebroids, motivation and definition
Internal bialgebroid of Gabriella B6hm
Definition of internal Hopf algebroid
Scalar extensions of Lu, Brzezinski and Militaru
Internal scalar extension theorem

21/39
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Hopf algebroids, motivation and definition

Functions on a group G = (commutative) Hopf algebra H,
functions on a groupoid G = (commutative) Hopf algebroid .
General Hopf algebras and Hopf algebroids = functions on
spaces with noncommutative coordinates (with the structure of
a’group’ or a ‘groupoid’) = quantum group, quantum groupoid.
It is more complicated:
» Coproduct A: H — H® H becomes coproduct

A:H — HR4H. If Ais noncommutative, H ®4 H is not an

algebra — hence there is a problem with the definition of

multiplicativity of coproduct... Takeuchi product.

» Unit n: k — H becomes left unit «: A — H and right unit
8:A—H.

» Much more complexity in axioms: left bialgebroid, right
bialgebroid and antipode. Lu, Day & Street, ... , B6hm.

22/39
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Internal bialgebroid of Gabriella Bohm
Modern definition of a Hopf algebroid: Gabriella B6hm,

Handbook of Algebra.
bialgebra H over k (left) bialgebroid H over A
w:HOH—>H pwHOH—-H
n:k—H a:A—>H, : AP > H
A:H—->H®H A:H->HROH
e: H— Kk e:H—-A
Hopf algebra over k Hopf algebroid H over A
(HHUJ%A,E) ,HL = (HauvabBLaALaeL)
together with Hr = (H, i1, aR, BRr, AR, €R)
S: H®? - H S:HP > H

In a symmetric monoidal categoy with coequalizers that
commute with the monoidal product Gabriella B6hm defines an
internal bialgebroid. Complication: Takeuchi product — she
replaces it with actions p and A. No elements — only diagrams.

23/39
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Definition of internal Hopf algebroid
First work out Gabi’s definition of internal left bialgebroid and
internal right bialgebroid, with actions p and .

(HRH)® (H® H) -~ (H®, H)

He(H®H) —9"  He (H®, H)

|
I
lA@id : A
+

(HLH)® (H® H) —2— (H®, H)

Definition. Internal Hopf algebroid (H,,Hg,S) in a symmetric
monoidal category which admits coequalizers that commute
with the monoidal product.

These properties of coproducts A; and Ag were needed for it
to be well defined.

Proposition. A, is an R-bimodule map, with gHg. Ag too, [ H;.
24/39
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Scalar extensions of Lu, Brzezinski and Militaru

Theorem. (Lu) Quantum transformation groupoid.

» If Ais a braided-commutative module algebra over Drinfeld
double D(H) of a finite-dimensional Hopf algebra H, then H{A
is a Hopf algebroid over A.

About the proof. Lu’s definition of Hopf algebroid. Finite
dimensionality. Uses canonical elements: {as} basis of A, {xs}
dual basis of A*, 3(a) = >, xtS~(xs) ® asaa.

Theorem. (Brzezinski, Militaru) Scalar extension.
» If Ais a braided-commutative YD-module algebra over Hopf
algebra H, then H4A is a Hopf algebroid over A.

About the proof. Lu’s definition of Hopf algebroid. Omission in

the proof: it is not proved antipode is an antihomomorphism. It
is not clear to me whether the proof can be completed without

the additional assumption of bijectivity of antipode S: A% — A.

25/39
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Internal scalar extension theorem

Theorem. (Internal scalar extension in indproVect.)

» If Ais a braided-commutative YD-module algebra over Hopf
algebra H with bijective antipode, then HfA is a Hopf algebroid
over A.

Sketch of the proof. Geometry: for U(gf)* = J*(G, e)© =: H,
H{U(g") = U(ghH)tH = Diff“(G, e).

» M, = L{H is a pretty left bialgebroid over L, U(gh)H,
Hpr = HYR is a pretty right bialgebroid over R, H{U(g"),

» isomorphism of algebras ¢: H; — Hpg, formula is
extracted from the geometrical example,

» antipode S: ‘H — H is an antihomomorphism (complete
the proof of B-M: hard, use isomorphism &: easy).

Abstract Sweedler notation. The proof works for any symmetric
monoidal category with the needed coequalizers property.

26/39
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HEISENBERG DOUBLES OF FILTERED
HOPF ALGEBRAS AND GENERALIZATIONS

Here we study pairings A& H — k which are non-degenerate in
variable in H, hence by which H — A*. The question is:

When is A over H a braided-commutative YD-module algebra in
indproVect, and hence H3A a Hopf algebroid over A?

Is U(g) over U(g)* a braided-commutative YD-module algebra
in indproVect?

4. HEISENBERG DOUBLES OF FILTERED HOPF ALGEBRAS AND
GENERALIZATIONS
Canonical elements and representations
Theorem about Yetter-Drinfeld module algebra
Theorem with canonical elements for A in indVectFin
Theorem with anihilators for A in indVect and H in proVect

27/39
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Canonical elements and representations

M Action of H® A on A (from the right).
Si: H®A — Hom(A, A)
Si(yh®ay): b >\(b, hyay
Canonical element K is such that $; o K = idHom(A,4)-
K: Hom(AA) - A*® A
,C(Qb) = Za eaf@(xa)
43 Action H4A on A (from the right).
Ti: HO A — Hom(A, A)
T ®@an): b— 3, (b« hy)ay
Canonical element £ is such that 77 o £ = idHom(4,A)-
L: Hom(A A) - A*® A
L(¢) = Yo 5655 (€a)tXad(X5)
For L(¢), Hopf algebra A has to have a bijective antipode S.

28/39
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Theorem about Yetter-Drinfeld module algebra

Theorem 1. (About Yetter-Drinfeld module algebra.)
» Let A and H be in Hopf pairing in indproVect which is
non-degenerated in variable in H. Assume 7> is injective,

To: HOH® A — Hom(AQ A, A)
TS\ M@ M @a): bOb = X,\(b« h)(b « H)ay
Then Ais over H a braided-commutative YD-module algebra

(with action defined from pairing) if and only if there exists a
morphism p: A — H&® A such that x « p(a) = ax.

Sketch of the proof. Then 7y is also injective. By acting with the
left and the right side of axiom equation on an element of AR A,
or A, we prove the equation. To prove that p is a coaction, we
use 7>, and to prove the YD-condition and that A is an algebra,
we use 7;. For example, YD-condition is in H& A,

2 hey(@< hay)—1 @ (a« hay)o) = 2 a-11hq) @ (ap) « hez))-

29/39
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K(¢) = X €a ® (Xa)
L(¢) = Y5 €55 " (€a) ® Xad(X5)
For ¢4: x — ax, we know x 3 L(¢5) = ax. Put Lu(a) := L(¢a)-
Is 72 injective and when is Lu(A) < A*$A?

Theorem 2. (Heisenberg double of A from indVectFin.)

» Let Hopf algebra A in indVectFin have a bijective antipode.
Then A is over A* a braided-commutative YD-module algebra
(with action defined from pairing) if and only if the adjoint orbits
of A are finite-dimensional.

Sketch of the proof. S; o K = id and 77 o £ = id. Propositions.
» Sp injective = Sy, S, injective. Similarly, Sy, S, are injective.
» Sy oL g adg1(), for ¢a: X — ax. It follows: S; bijective.
L, M bijective, hence 71, 75 injective. From ad, adjoint orbits.

Theorem with canonical elements for A in indVectFin

30/39



INTRODUCTION THE CATEGORY indproVect HOPF ALGEBROID AND SCALAR EXTENSION HEISENBERG DOUBLES EXAMPLES
00000 000000000 00000 00000 00000

Theorem with canonical elements for A in indVectFin

Theorem 3. (For A in indVectFin and H in proVect.)
» Let A with a bijective antipode in indVectFin and H in proVect
be in Hopf pairing in indproVect which is non-degenerate in
variable in H. Then A is over H a braided-commutative
YD-module algebra (with action defined from pairing) if and
only if Lu(A) < HtA.
Consequence. If Lu(A) < A*$A, then there exists the smallest
Hopf subalgebra A™" = A* which has all functionals needed for
Lu(A) € A™M$A. The theorem is then true for all H such that
AMIN C H.
» For U(g), we found this minimal subalgebra explicitly.
Examples U(g)™"1U(g), U(g)"1U(g), U(g)*2U(g).
» For Ug(sl2), we didn’t, but maybe it is possible with better
knowledge of g-binomial coefficients. Ugy(slz)*1Uq(sl2)
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Theorem with anihilators for A in indVect, H in proVect

Theorem 4. (For Ain indVect and H in proVect.)

» Let Ain indVect and H in proVect be in Hopf pairing in
indproVect which is non-degenerate in variable in H. Assume
that A, satisfies Aj(a) —a® 1€ A, 1 ®Aforae A, and

Ay = k. Then Alis over H a braided-commutative YD-module
algebra (with action induced by pairing) if and only if there
exists a morphism p: A — HtA such that x < p(a) = ax.

Sketch of the proof. Prove T3 is injective, but without canonical
elements. Forte HO H® A, t # 0, let (k, /) be minimal such
that there exists d € A, & A, for which S,(¢)(d) # 0.

n n n n T>
ARQAROHRHR A, 72 > Am
I
|
¥
n n . A ) n (T2~S2)
Ac®A & H/Anih(A) & H/ Anih(A) @ Ay, 27224 A,
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EXAMPLES

U(g)™"4U(g) — U(9)°#U(g) — U(g)"tU(9)

P
~
~
-
-
-
-
-
-~
k-

N

O™MM(G)£U(g) U()t5(g%) Uq(sl2)*§Uq(sl2)

5. EXAMPLES
Heisenberg double U(g)*$U(g)
Noncommutative phase space U(g)5(g*)
Minimal scalar extension U(g)™"#U(g)
Reduced Heisenberg double U(g)°tU(g)
Minimal algebra O™"(G)#U(g) of differential operators
Algebra O(Aut(g))fU(g)
Heisenberg double Ug(slo)*1Uq(sl2) when g is a root of unity
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Heisenberg double U(g)*1U(g)
Proposition. Adjoint orbits are finite-dimensional.

By Theorem 2 & The Internal Scalar Extension Theorem:
U(g)*#U(g) is a Hopf algebroid over U(g) in indproVect.

It is the algebra of formal differential operators around the unit
of a Lie group G:

U(g")*1U(s") = J*(G, e)*°tU(g") = Diff*(G, e)
HtU(gP) ~ U(gh)tH =~ Diff* (G, e)

Let Xi,..., X, be a basis of g, let Y5,..., Y, in g be such that
(Ya)e = (Xa)e. Then, for L = U(gh) and R = U(g"), we have

aL(Xa) = Xu aFr’(Ya) = Yau
BLXa) = Yo +35Cl5  Br(Ya) = Xa = X500t Vs
S(X,) = Yo, S(f) = Sf
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Noncommutative phase space U(g)#S(g*)
It is the algebra opposite to algebra Diff* (G, e):
U(g)15(s*) = (S(g%)4U(s"))P = Diff*(G, e)°®
U(gH)5(s*) = S(g*)4U(a")

et %¢,...,%, be abasis of g, let j4, ..., §, be in g7 such that
(Vo)e = (Xa)e. These are noncommutative coordinates, and

S(g*) = K[[?1,- -, n]]
has a coproduct dual to product on U(gt) = L. With U(g”) = R,
ar(Xa) = Xa ar(Ya) = Yo
BL(%e) = Jo = Lo %6108 BaJa) = %a — X5 Cly
S(f’@) = Xa S(éa) = _éa
Oa > X5 = 0ops Ja» X5 =X5%  Oayas = Oay - - Oug + def.
Matrix O = expC, where C§ = >, C5, 0°.

—
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Examples U(g)™":U(g) and U(g)°tU(g)
Proposition. Minimal Hopf subalgebra U(g)™" < U(g)* for

which Lu(U(g)) < U(g)™"§U(g) is generated with 24§, U,
a,f € {1,...,n}, which satisfy:

S UG = 65 = 3, USUG

AUG) = Y, Us@UE, AUg) = X, U5 QUS
eUg) = 65 = e(tiy)
SUg) =Ug, SUg)=Ug
X.us) = G
Doy CoUSUT = 2, Uy Cg'y’ 2ir Cor L_lg Z’_q =2 L_{g Cg'y
Generators were found by computing Lu(Xj), ..., Lu(Xp):
Lu(X,) = Zﬁb_lgjjxﬁ .. U=expCp---expCy, (C,)4 = C§,6x,.

It follows: U(g)™™4U(g) — U(g)°4U(g) — U(g)*#U(g) are HA.
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Algebras O™"(G)4U(g) and O(Aut(g))tU(g)

All formulas for components of matrices i, U are true for
components of matrices © = Ad, O = O~ 1.

G —24 GL(g) 0(G) +—=2L 0(GL(g))
\\\ 1(\\
] .
Aut(g) O(Aut(g))
Proposition. Algebras O™"(G)$U(g) and O(Aut(g))fU(g) are
Hopf algebroids over U(g).
Sketch of the proof. Algebraicly using generators and relations.
U(g)*tU(g) ¢------- O(G)iU(g) Lu(X,) = 335 OatXs

AN T~
~
~
~
~
~
~
~
~
~
~
~
~
~

J
U(g)™"U(g) «—— O™"(G)§U(g) «—— O(Aut(g))#U(g)
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Example Uy(sl2)*1Uq4(sl2) when q is a root of unity

Proposition. Adjoint orbits are finite-dimensional.
Sketch of the proof. We compute

ad(E"FMK") =
adg(E"FMK")

adp(E"K")

q72n+2m ENFmMKT

q—2—2n+2m(q2r _ 1)En+1 FmKr—14

+E (@R — DENFTTK
+ q_(1q__2;t21")’;’2’ (2™ — 1)ENFm-1Kr-2
q—2—2n(q2r o 1)En+1 Kr—1

By playing combinatorially with exponents, and using g9 = 1,
we get adzypuyr(E"FMK™) = 0 when M > (n+ 1)eor

N > me + (n+ 1)e?. Here e is minimal such that g°¢ = 1.
Remark. If g is not a root of unity, this is not true. Maybe it is
true more generally, for Ug(sl).
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