Leonard R. Rubin University of Oklahoma, Norman, USA lrubin@ou.edu

Simplified Proofs of the \mathbb{Z}/p - and \mathbb{Q} -resolution Theorems

Abstract. The \mathbb{Z}/p -resolution and \mathbb{Q} -resolution theorems were proved respectively by A. Dranishnikov and M. Levin. For example, the \mathbb{Z}/p -resolution theorem of Dranishnikov states that if X is a metrizable compactum with $\dim_{\mathbb{Z}/p} X \leq n$, then there exists a compact metrizable space Z with $\dim Z \leq n$ and a surjective \mathbb{Z}/p -acyclic map $\pi : Z \to X$. For Levin's theorem, just replace \mathbb{Z}/p by \mathbb{Q} . We will explain the unfamiliar terms in our presentation.

In both proofs, an inverse sequence of compact polyhedra was used to represent the given space X. On each of the polyhedra a certain extension, depending on the group, was built in a complicated manner. We are going to discuss a technique for proving both theorems that can obviate these complicated extensions, replacing them with simple extensions in exchange for a minor step-by-step "point-set" adjustment of the inverse sequence.