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1 Introduction

The Ingram Conjecture states that if Ts and Tt are two different tent maps,

then lim
←−
{[0, 1], Ts} is not homeomorphic to lim

←−
{[0, 1], Tt}. There are many

papers written on this topic, and, perhaps not surprisingly, the focus is usu-

ally on the structure of the postcritical orbit. If the critical point is peri-

odic then the Ingram Conjecture is true, [K1], [K2], [S1] (for a particularly

reader-friendly version of this proof see [Bl-J-K-Ke]) and recently the second

author proved the Ingram Conjecture in the case that the critical point is pre-

periodic, [S3] (see also [Bru] for a result in this direction). Thus in order to

continue towards a proof of the Ingram Conjecture we must focus on the case

when the critical point has an infinite (non-periodic and non-pre-periodic)

orbit.

A natural subdivision of the family of tent maps with an infinite post-

critical orbit is into the collection of tent maps with a recurrent critical point

and the collection of tent maps without a recurrent critical point. The fo-

cus of this paper is the case that the critical point is nonrecurrent, but we

should say something about the recurrent case. It is well-known that the set

of parameters, t ∈ [
√

2, 2], that correspond to tent maps Tt with a recurrent

critical point is a set of full Lebesgue measure. Many of these tent maps

generate horrendously complicated continua as inverse limit spaces. They

frequently display the property of being locally universal in the sense that

every open set contains a homeomorphic copy of every other tent map inverse

limit, [Ba-B-D].

In this paper, though, we focus on the case that the critical point is

nonrecurrent. We adopt the viewpoint of the second author in her recent

work on the preperiodic case and consider the inverse limit as a quotient

space of a certain set of bi-infinite sequences of 0’s and 1’s. We hope to make

this viewpoint well-known and well-understood by demonstrating its utility

towards proving the Ingram Conjecture.

Perhaps the most striking difference between the case we are considering
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and the previously solved cases (finite critical orbit) is that in the previous

cases the inverse limits had only finitely many inhomogeneities, i.e. neigh-

borhoods at which the continuum is not homeomorphic to the product of a

Cantor set and an open arc. In the case under consideration there are always

infinitely many such inhomogeneities (see [R] and [G-Kn-R] for a detailed dis-

cussion of these inhomogeneities), but we show in this paper that the amount

of variation in the composant structure is still finite. In a forthcoming paper

we will use the fact that there are only finitely many structures in a given

composant to prove the Ingram Conjecture in the case that the critical point

orbit is dense in a countable set.

It is natural in thinking about Ingram’s Conjecture to attempt to de-

scribe the structure of the composants of these inverse limit spaces. All

of these spaces are indecomposable metric continua, and as such they have

uncountably many composants. Every homeomorphism will preserve the

composants, and it will send a composant containing an inhomogeneity to

another composant containing an inhomogeneity. In this paper we describe

many properties of the composants of lim
←−
{[0, 1], Ts} with an aim towards

using these properties in a proof of the Ingram Conjecture.

We begin the paper with a detailed description of the symbolic repre-

sentation of the inverse limit space. We state some of the properties of that

description paying particular attention to composant properties. We then

list many of the lemmas and theorems from [S2] which, even though they

were originally proved in the case of a finite critical orbit, are true in this

more general setting. We occasionally give some indication as to how the

proofs would need to be altered to fit this case. We end the paper with our

main theorem which states that even though the critical point has an infinite

orbit, if the critical point is nonrecurrent then there are only finitely many

different “types” of structures in the composants of the inverse limit space.
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2 Preliminaries

Let s ∈ (
√

2, 2] be such that the tent map Ts : [0, 1] → [0, 1] has critical point

which is not recurrent. Let fs : [0, 1] → [0, 1] be the rescaled core of the tent

map Ts, i.e.

fs(ξ) =

{
sξ + 2− s, if 0 ≤ ξ ≤ cs ,
s(1− ξ), if cs ≤ ξ ≤ 1 ,

where cs = s−1
s

is the critical point. Let Cs denote the limit of the inverse

sequence consisting of copies of [0, 1], where the bonding map is the rescaled

core fs,

Cs = lim
←−
{[0, 1], fs} = {(. . . , ξ−3, ξ−2, ξ−1) ∈ [0, 1]N : ξ−i = fs(ξ−i−1), i ∈ N}.

Cs is a continuum (compact connected metric space). It is well known that

to describe the structure of continua lim
←−
{[0, 1], Ts}, s ∈ (1, 2], it is sufficient

to describe the structure of continua Cs, s ∈ (
√

2, 2].

Now we recall a symbolic representation of the inverse limit spaces Cs

provided by Brucks and Diamond in [B-D].

For every point ξ ∈ [0, 1] an itinerary of ξ under the map fs is a right-

infinite sequences of zeros and ones −→x (ξ) = (xi)i∈Z+ = x0x1x2 · · · ∈ {0, 1}Z+ ,

where

xi =

{
0 , f i

s(ξ) ≤ cs ,
1 , f i

s(ξ) ≥ cs .

Note that every point ξ ∈ [0, 1] has at most two itineraries and the points

which have two itineraries are the preimages of the critical point. The knead-

ing sequence of the map fs, denoted by −→c1 = (ci)i∈N, is the itinerary of

fs(cs) = 1. Note that −→c2 = c2c3c4 . . . is the itinerary of f 2
s (cs) = 0. A se-

quence −→x ∈ {0, 1}Z+ is called allowed (with respect to fs) if there is ξ ∈ [0, 1]

such that −→x is the itinerary of ξ under the map fs. By Theorem II.3.8 in

[C-E], −→x is allowed if and only if −→c2 ¹ −→x and σk−→x ¹ −→c1, for every k ∈ Z+.

Let us denote by X+
s the set of all allowed sequences −→x ∈ {0, 1}Z+ . The met-

ric d on the space X+
s is given as follows: For two sequences −→x = (xi)i∈Z+ and
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−→y = (yi)i∈Z+ , let d(−→x ,−→y ) = 0 if −→x = −→y , and let d(−→x ,−→y ) = 2−k if −→x 6= −→y ,

where k = min{j ∈ Z+ : xj 6= yj}. The one-sided shift σ : X+
s → X+

s , given

by σ((xi)i∈Z+) = (xi+1)i∈Z+ , is continuous. Let us define an equivalence rela-

tion ∼ on X+
s as follows: −→x ∼ −→y if either −→x = −→y , or there exists m ∈ Z+,

such that x0x1 . . . xm−1 = y0y1 . . . ym−1, xm 6= ym and −→x m+1 = −→y m+1 = −→c1.

If [−→x ] ∈ X+
s /∼ and there exists −→y ∈ [−→x ] with −→y 6= −→x , we will write, for

simplicity, [−→x ] = x0x1 . . . xm−1
0
1
−→c1. The mapping π : X+

s /∼ → [0, 1], given

by π[−→x ] = ξ if −→x is an itinerary of the point ξ, is a homeomorphism, and

π(σ̃([−→x ])) = fs(π([−→x ])), for every [−→x ] ∈ X+
s /∼, where σ̃ : X+

s /∼ → X+
s /∼

is given by σ̃([−→x ]) = [σ−→x ]. For this reason, we will often identify [0, 1] and

X+
s /∼.

For a bi-infinite sequence x̄ = (xi)i∈Z, we denote the right-infinite se-

quence xjxj+1xj+2 . . . , also called a right tail of x̄, by −→xj = xjxj+1xj+2 . . . .

A bi-infinite sequence x̄ ∈ {0, 1}Z is called allowed (with respect to fs), if all

of its right tails −→xj are itineraries (with respect to fs), i.e., if for every right

tail −→xj, j ∈ Z, one has −→c2 ¹ −→xj and σk−→xj ¹ −→c1, for every k ∈ Z+. Let

Xs = {x̄ ∈ {0, 1}Z : x̄ is allowed with respect to fs} denote the space of all

bi-infinite allowed sequences with respect to fs. The metric d on the space

Xs is given as follows: For two sequences x̄, ȳ ∈ Xs, x̄ = (xi)i∈Z, ȳ = (yi)i∈Z,

if x̄ 6= ȳ, let k = min{|j| : j ∈ Z, xj 6= yj}. Then d(x̄, ȳ) = 2−k if x̄ 6= ȳ, and

d(x̄, ȳ) = 0 if x̄ = ȳ. The shift map σ : Xs → Xs given by (σx̄)i = xi+1, for

every i ∈ Z, is a homeomorphism. Let us define an equivalence relation ≈ on

the space Xs as follows: Two sequences x̄, ȳ ∈ Xs, x̄ = (xi)i∈Z, ȳ = (yi)i∈Z,

are equivalent, x̄ ≈ ȳ, if either x̄ = ȳ, or if there is k ∈ Z with xi = yi,

for i < k, xk 6= yk and −→xk+1 = −→yk+1 = −→c1. By Theorem 2.5 in [B-D] there

is a homeomorphism h : Xs/≈ → Cs such that h(σ̃([x̄])) = f̂s(h([x̄])), for

every [x̄] ∈ Xs/≈, where σ̃ : Xs/≈ → Xs/≈ is given by σ̃([x̄]) = [σx̄], and

f̂s : Cs → Cs is given by f̂s(. . . , ξ−3, ξ−2, ξ−1) = (. . . , ξ−2, ξ−1, fs(ξ−1)), i.e.,

the maps σ̃ and f̂s are conjugate. Note that the maps σ̃ and f̂s are homeo-

morphisms. We will often identify Cs and Xs/≈. If there is a sequence ȳ ∈ [x̄]
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with ȳ 6= x̄, it is unique, and we denote it by x̄∗ = (x∗i )i∈Z. If there is no such

ȳ ∈ [x̄] with ȳ 6= x̄, we put x̄∗ = x̄. Let πj : Xs/≈ → [0, 1], j ∈ Z+, be the

projection on the j-th coordinate, i.e., πj[x̄] = π(−→x−j), where π(−→x−j) = ξ if
−→x−j is an itinerary of the point ξ.

For a bi-infinite sequence x̄ = (xi)i∈Z, we denote the left-infinite sequence

. . . xj−2xj−1xj, also called left tail of x̄, by←−xj = . . . xj−2xj−1xj. A left-infinite

sequence ←−x = (x−i)i∈N is allowed if for every k ∈ N, there exists an itinerary,

such that its initial part of length k is the finite sequence x−k . . . x−1. Note

that if x̄ is allowed, then all of its left tails ←−xj are allowed. Each left-infinite

sequence ←−x = . . . x−3x−2x−1 describes one composant in Cs which is the set

of bi-infinite sequences having a left tail common to ←−x . Two sequences ←−x
and ←−y describe the same composant if and only if they have a common left

tail (Corollary 2.10 in [B-D]).

Next we introduce some of our own definitions and results which ap-

peared in [S2] for inverse limit spaces of tent maps that have a preperiodic

critical point. These are also valid in this more general setting of inverse

limit spaces of tent maps with nonrecurrent critical points.

Every composant of Cs is arcwise connected. Let←−a = . . . a−3a−2a−1 and

let n ∈ Z+. The set An←−a = {[x̄] ∈ Cs : ∃x̄ ∈ [x̄], ←−x−n = ←−a } is an arc and we

call it a basic arc. For a fixed left-infinite sequence ←−y = . . . y−3y−2y−1, let C

be the corresponding composant of Cs. If An←−v is a basic arc contained in the

composant C, then either ←−v−1 = ←−y−n, or there is k ∈ N with v−k 6= y−n−k+1

and ←−v−k−1 = ←−y−n−k. In the first case we put k = 0. When k = 0, and

whenever it is clear which sequence ←−y represents the composant containing

the basic arc An←−v , we write only An instead of An←−y−n
. When k > 0, we

write only An
v instead of An←−v , where v = v−k . . . v−1, and we understand that

←−v−k−1 = ←−y−n−k.

For n ∈ N, let P (n) = card { i : y−i = 1, 1 ≤ i ≤ n}. If n = 0, let P (0) =

0. An arc An is called even (respectively odd), if P (n) is even (respectively

odd). An arc An
v , v = v−k . . . v−1, v−k 6= y−n−k, is called even (respectively
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odd) if (−1)P (n+k) =
∏k

i=1(−1)v−i (respectively (−1)P (n+k) 6= ∏k
i=1(−1)v−i ).

We introduce an ordering on the composant C denoted by ¹ and called

generalized parity-lexicographical ordering, as follows: For [x̄], [z̄] ∈ C, let

k = k([x̄], [z̄]) = max{i ∈ N : x−i 6= y−i or z−i 6= y−i, x̄ = (xi)i∈Z ∈ [x̄], z̄ =

(zi)i∈Z ∈ [z̄]}. If x−i = y−i and z−i = y−i, for all i ∈ N, x̄ ∈ [x̄], z̄ ∈ [z̄],

let k = 0. We say that x̄ ≺ z̄ if either (−1)P (k)x−k < (−1)P (k)z−k, or there

exists l ∈ Z, l > −k, such that xi = zi, for −k ≤ i < l, and (−1)P (k)εxl <

(−1)P (k)εzl, where ε =
∏l−1

i=−k(−1)xi =
∏l−1

i=−k(−1)zi ∈ {−1, 1}. We say that

[x̄] ¹ [z̄] if x̄ ≺ z̄ or x̄ = z̄.

Note that the ordering depends on the chosen left-infinite sequence ←−y .

The choice of another representative of this particular composant would lead

either to the same, or to the opposite ordering. There exists an order-

preserving bijection φ between the real line, endowed with its natural or-

der, and C, endowed with the ordering ¹. Therefore, the ordering ¹ on the

composant C is natural. Note that φ is continuous, but its inverse is not.

We define some special points as follows: A point [x̄] ∈ Cs is called an

identification point or shorter an i-point if there is m ∈ Z+ with −→x−m+1 = −→c1.

Let [x̄] ∈ Cs be an i-point with x̄ 6= x̄∗. The level of [x̄] is defined by

L[x̄] = m if |x−m − x∗−m| = 1. If x̄ = x̄∗, let L[x̄] = ∞.

The importance of the i-points and their levels is visible from the fol-

lowing: Let ←−a = (a−i)i∈N and
←−
b = (b−i)i∈N,

←−a 6= ←−
b , be allowed sequences.

For n ∈ N, let An←−a and An←−
b

be the basic arcs. If there is [x̄] ∈ An←−a ∩An←−
b
, then

←−x−n = ←−a and ←−x ∗
−n =

←−
b . Hence, [x̄] is an i-point, and there is m ≥ n with

x−i = x∗−i = an−i−1, for i > m, |x−m − x∗−m| = 1 and −→x−m+1 = −→x ∗
−m+1 = −→c1,

implying that L[x̄] = m. Also, if [ȳ] ∈ An←−a is an i-point with L[ȳ] > n, then

[ȳ] ∈ ∂An←−a .

Note that πn−1|An←−a
is an injection and if An←−a has boundary points [x̄] and

[ȳ] with L[x̄] = l and L[ȳ] = k, then πn−1(A
n←−a ) = {πn−1[x̄] : [x̄] ∈ An←−a } is a

closed interval with boundary points f l−n+1
s (cs) and fk−n+1

s (cs). Let An←−
b

be

another basic arc. Let {[x̄0] ≺ · · · ≺ [x̄i]} be the ordered set of all i-points
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of An←−a , and {[ū0] ≺ · · · ≺ [ūj]} be the ordered set of all i-points of An←−
b
. If

πn−1(∂An←−a ) = πn−1(∂An←−
b
), then i = j and either L[x̄m] = L[ūm], for every

m ∈ {1, . . . , j− 1}, if An←−a and An←−
b

have the same parity, or L[x̄m] = L[ūj−m],

for every m ∈ {1, . . . , j − 1}, if they have different parity. For every k ∈
{0, . . . , n − 1}, the arc An←−a is a union of arcs Ak

w, i.e., An←−a = ∪wAk
w, where

the union is computed over all finite sequences w of length n − k such that
←−a w is allowed. Since fs is l.e.o. and π ◦ σ = fs ◦ π, for every arc A, there is

m ∈ Z+ such that σ̃m(A) = {σ̃m[x̄] : [x̄] ∈ A} contains at least one i-point.

In [S2] (Proposition 2.10) we proved the following properties for basic

arcs:

Proposition 2.1 Let ←−a = (a−i)i∈N be an allowed sequence, n ∈ N, and

let An←−a be the associated basic arc. Then, for every i-point [ȳ] ∈ intAn←−a ,

there are points [x̄], [z̄] ∈ An←−a , [x̄] ≺ [ȳ] ≺ [z̄], such that, for every point

[ū] ∈ An←−a , [x̄] ¹ [ū] ≺ [ȳ], there is a point [v̄] ∈ An←−a , [ȳ] ≺ [v̄] ¹ [z̄], such that

[−→u−l+1] = [−→v−l+1], where l = L[ȳ].

The proof for nonrecurrent case is the same as the proof for preperiodic case.

We say that the arc An←−a is [ȳ]-symmetric between [x̄] and [z̄]. If either

[x̄] ∈ ∂An←−a , or [z̄] ∈ ∂An←−a , we say that the arc An←−a is [ȳ]-symmetric.

Note that, if the basic arc An←−a contains an i-point [ȳ] such that L[ȳ] =

n−1, then An←−a is [ȳ]-symmetric. If An←−a is [ȳ]-symmetric and [x̄] ∈ ∂An←−a then,

in the nonrecurrent case (as in the strictly preperiodic case) the corresponding

point [z̄] is not an i-point.

Since every basic arc contains finitely many i-points, the following corol-

lary (Corollary 2.12 in [S2]) is a direct consequence of the previous proposi-

tion:

Corollary 2.2 Let An←−a and An←−
b

be two neighboring arcs, let {[x̄0] ≺ [x̄1] ≺
· · · ≺ [x̄m]} be their i-points and let k ∈ {1, . . . , m − 1} be such that [x̄k] =

An←−a ∩An←−
b
. Let j = min{k, m− k}. Then for every [ū], [x̄k−j+1] ¹ [ū] ≺ [x̄k],

there is [v̄], [x̄k] ≺ [v̄] ¹ [x̄k+j−1], such that [−→u−n+1] = [−→v−n+1]. In particular,

L[x̄k−i] = L[x̄k+i], for every i ∈ N, i ≤ j − 1.
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3 The Structure of a Composant Containing

a Periodic Point

Let [ā] be any periodic point of continuum Cs. Let the period of [ā] be N ∈ N.

Then ā = ā∗ = w∞.w∞ for some finite word w of the length |w| = N . Let us

denote by C the composant represented by the sequence
←−
w∞. Let K = 2kN ,

for some k ∈ N. For every i ∈ Z, the mapping σ̃iK is an order-preserving

homeomorphism on C having [ā] as a fixed point. We will study the structure

of composant C. In what follows we ‘adjust’ most of our definitions, lemmas,

and theorems to the σ̃pKth image of the space. Since σ̃ is a homeomorphism

this is obviously the same space, but the indices will have changed. The

reason for doing this is two-fold: (1) Since K is an even multiple of the

period of [ā], σ̃pK will send the composant we are studying back to itself in

an order-preserving way and (2) in a forthcoming paper we will prove that

a homeomorphism of these spaces must ‘almost commute’ with some power

of the shift, so in that context we will need to be working in this adjusted

space.

We sort the i-points of C in the following way: For every p ∈ Z+ a point

[x̄] ∈ C is called p-point, if either there is m ∈ Z+ with [−→x−pK−m+1] = [−→c1],

or if [x̄] = [ā]. A p-point [x̄] has p-level Lp[x̄] = m if |x−pK−m−x∗−pK−m| = 1.

Let us define Lp[ā] = ∞, for every p ∈ Z+. For every p, m ∈ Z+, the

set Ep,m = {[x̄] ∈ Ci : ∃x̄ ∈ [x̄], −→x−pK−m+1 = −→c1} is the set of all p-

points of level m and Ep = ∪∞m=0Ep,m ∪ {[ā]} is the set of all p-points of

the composant C. Note that Ep+1 ⊂ Ep, for every p ∈ Z+. Since there

is an order-preserving bijection from (Z,≤) to (Ep,¹), such that 0 ∈ Z is

mapped to [ā] ∈ Ep, from now on, the points of Ep will be indexed by Z. So,

Ep = {. . . , [x̄−1], [x̄0], [x̄1], . . . } and [x̄0] = [ā].

The sequence Lp[x̄
0], Lp[x̄

1], Lp[x̄
2], . . . is called the folding pattern of

the composant C. Note that [x̄0] ≺ [x̄1] ≺ [x̄2] ≺ . . . . Let q ∈ Z+, q >

p, and Eq = {. . . , [ȳ−1], [ȳ0], [ȳ1], . . . }. Since σ̃(q−p)K is an order-preserving
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homeomorphism on C, it is easy to see that, for every i ∈ Z+, one has

σ̃(q−p)K([x̄i]) = [ȳi] and Lp[x̄
i] = Lq[ȳ

i]. Therefore, the folding pattern of the

composant C does not depend on p.

Now, we give some basic properties of the folding pattern of the com-

posant C. These properties were first proved in [S2] for the preperiodic case.

In that paper they were stated and proved for a composant containing a

point in the inverse limit generated by the particular periodic orbit to which

the critical point was mapped. However, the results are true in a more gen-

eral setting. As long as the critical point is nonrecurrent and the composant

contains a point periodic under the shift-map we have the following results.

The proofs require no change and so we simply list the relevant results here:

1. Let p ∈ Z+. Let [x̄n] ∈ Ep and Lp[x̄
n] = iK + k, for some i ∈ N and

k ∈ Z+, k < K. Then, for every j ∈ Z+, j < i, there is [x̄m] ∈ Ep,

[x̄m] ≺ [x̄n], such that Lp[x̄
m] = jK + k (The paragraph preceding

Lemma 3.2).

2. Let p, q, k ∈ Z+ and let arcs A,B ⊂ C be such that there are no

i-points [x̄] ∈ intA and [ȳ] ∈ intB with Lp[x̄] > k and Lq[ȳ] > k.

If πpK+k(A) = πqK+k(B), then for Ep ∩ intA = {[x̄0] ≺ · · · ≺ [x̄n]}
and for Eq ∩ intB = {[ȳ0] ≺ · · · ≺ [ȳm]}, one has m = n and either

Lp[x̄
i] = Lq[ȳ

i], for every 0 ≤ i ≤ n, or Lp[x̄
i] = Lq[ȳ

n−i], for every

0 ≤ i ≤ n (The paragraph preceding Lemma 3.2).

3. Let p ∈ Z+. Let [x̄n] ∈ Ep be such that [x̄n] 6= [ā] and Lp[x̄
n] 6=

0. Let i, j ∈ N be the smallest numbers with Lp[x̄
n+i] > Lp[x̄

n] and

Lp[x̄
n−j] > Lp[x̄

n]. Then the arc between the points [x̄n−j] and [x̄n+i] is

[x̄n]-symmetric and Lp[x̄
n−k] = Lp[x̄

n+k], for every k, 0 < k < min{i, j}
(Lemma 3.2).

4. Let p ∈ Z+ and [x̄], [ȳ] ∈ Ep, [x̄] 6= [ȳ]. If Lp[x̄] = Lp[ȳ], then there is

[z̄] ∈ Ep between [x̄] and [ȳ] such that Lp[z̄] > Lp[x̄] (Lemma 3.4 and

Remark 3.5).
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5. Let p ∈ Z+ and [x̄n], [x̄m] ∈ Ep, |m − n| ≥ 2. If there is k ∈ Z+

such that Lp[x̄
m] = Lp[x̄

n], and Lp[x̄
j] 6= Lp[x̄

n], for every n < j < m,

then n + m is even and, for l = max{Lp[x̄
j] : n < j < m}, one has

Lp[x̄
n] < l = Lp[x̄

n+m
2 ] (Corollary 3.7 and Remark 3.8).

6. Let p ∈ Z+. Let [x̄], [ȳ] ∈ Ep be such that Lp[x̄] = k, Lp[ȳ] = k +1, k ∈
Z+, and there is no [w̄] ∈ Ep between [x̄] and [ȳ], satisfying Lp[w̄] ≥ k.

Then, for every n < k, there is [z̄] ∈ Ep between [x̄] and [ȳ], such that

Lp[z̄] = n (Lemma 3.9 and Remark 3.10).

An arc A of the composant C such that ∂A = {[ū], [v̄]} and A ∩ Ep =

{[ȳ0], . . . , [ȳn]} is called p-symmetric if [−→u−pK ] = [−→v−pK ] and Lp[ȳ
i] = Lp[ȳ

n−i],

for every 0 ≤ i ≤ n. By statement 2. above, every p-symmetric arc is also

q-symmetric, for every 0 ≤ q ≤ p. Note that if A is a p-symmetric arc of

the composant C and A∩Ep = {[x̄0], . . . , [x̄n]}, then by statement 5. above,

n is even. The p-point [x̄
n
2 ] is called the center of A, it is denoted by [χ̄A],

and also by statement 5. above, Lp[χ̄
A] = max{Lp[x̄] : [x̄] ∈ Ep ∩ intA}.

Therefore, the centers of the p-symmetric arcs of the composant C are the

“turning points” of the composant C.

In order to describe the folding pattern of the composant C, we study

some special arcs. For p ∈ Z+ an arc B of the composant C is called a

p-bridge if ∂B ⊂ Ep, Lp[x̄] = 0, for every [x̄] ∈ ∂B, and Lp[x̄] 6= 0, for every

[x̄] ∈ int B ∩ Ep. Note that for every [x̄] ∈ int B one has either x−pK = 0, or

x−pK = 1. If for every [x̄] ∈ int B one has x−pK = 0 (respectively x−pK = 1),

we will say that B is a p-bridge of sign 0 (respectively of sign 1).

For q ≤ p, let B ∩Eq = {[z̄0], . . . , [z̄m]}. We will call the finite sequence

FPq(B) = Lq[z̄
0], . . . , Lq[z̄

m] the q-folding pattern of the p-bridge B. If q = p,

we will write, for simplicity, FP (B) instead of FPp(B). It is easy to see that

p-bridges are p-symmetric, and that Lp[χ̄
B] determines the q-folding pattern

of the p-bridge B, for all q ≤ p. Therefore, it is natural to ask which kind

of p-bridges with respect to the p-levels of their centers exist? The answer is

the same as in the preperiodic case:
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Lemma 3.1 Let p ∈ Z+ and n ∈ N. There is a p-bridge B ⊂ C such that

Lp[χ̄
B] = n if and only if cs ∈ fn

s ([0, cs]).

The proof is the same as the proof of Lemma 3.12 in [S2]. The following

corollary is a direct consequence of the previous lemma:

Corollary 3.2 Let p ∈ Z+. If c3 = 0, then for every n ∈ N, there is a

p-bridge B ⊂ C such that Lp[χ̄
B] = n.

Lemma 3.3 Let p ∈ Z+. For every n ∈ N, there is a p-bridge B ⊂ C such

that Lp[χ̄
B] = 2n.

The proof is the same as the proof of Lemma 3.14 in [S2].

Lemma 3.4 Let p ∈ Z+ and m = min{i ∈ N : c2i+1 = 0}. There is a

p-bridge B ⊂ C such that Lp[χ̄
B] = 2n− 1 if and only if n ≥ m.

The proof is the same as the proof of Lemma 3.15 in [S2].

Corollary 3.5 Let p ∈ Z+ and let [x̄], [ȳ] ∈ Ep be such that Lp[x̄] = k,

Lp[ȳ] = k + 1, k ∈ Z+. Then for every n < k, there is [z̄] ∈ Ep between

[x̄] and [ȳ], such that Lp[z̄] = n. Furthermore, either there is a p-bridge B

between [x̄] and [ȳ] such that Lp[χ̄
B] = n, or there is no p-bridge whose p-level

of the center equals n.

The proof is similar to the proof of Corollary 3.17 in [S2] for the case i = j = 0

(see Remark 3.18 in [S2]).

Let B be a p-bridge with B ∩ Ep = {[x̄0], . . . , [x̄n]}. Let

T (B) = min{Lp[χ̄
A] : A is a p-bridge of the same sign as B such that for

A ∩ Ep = {[ū0], . . . , [ūn]} one has Lp[ū
i] = Lp[x̄

i], 0 ≤ i < n/2}.

For q ∈ Z+, let D ⊂ C be a q-bridge and D ∩ Eq = {[ȳ0], . . . , [ȳm]}. If

T (B) = T (D), than there are a p-bridge B1 ⊂ C and a q-bridge D1 ⊂ C with

Lp[χ̄
B1 ] = Lq[χ̄

D1 ]. Hence, m = n and Lp[x̄
i] = Lq[ȳ

i], for every 0 ≤ i ≤ n,

i 6= n/2. Therefore, we will call the number T (B) the type of the p-bridge B.
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Theorem 3.6 There are finitely many bridge types.

Proof : Let p ∈ Z+. It is sufficient to prove that there exists M ∈ N such

that for every p-bridge B ⊂ C and for every [x̄] ∈ B ∩ Ep, [x̄] 6= [χ̄B], one

has Lp[x̄] < M .

The kneading sequence −→c1 satisfies the following properties:

(a) There is the smallest k1 ∈ N such that for every i ∈ N one has

ci+1 . . . ci+k1 6= c1 . . . ck1 (otherwise −→c1 is recurrent),

(b) There is the smallest odd k2 such that ck2 = 0 (if c2i−1 = 1 for every

i ∈ N, then −→c1 = 10111c61c81 · · · = 1 ∗ 10(1 − c6)(1 − c8) . . . which

contradicts the assumption that s >
√

2).

Let A ⊂ C be an arc and let A ∩ Ep = {[x̄0], . . . , [x̄m]}. Let us denote

by FP (A) the folding pattern of the arc A, i.e. FP (A) = (Lp[x̄
i])m

i=0 =

Lp[x̄
0], . . . , Lp[x̄

m].

Let us suppose, on the contrary, that for every i ∈ N, there exists a p-bridge

Bi which contains a p-point [x̄mi ], [x̄mi ] 6= [χ̄Bi
] such that Lp[x̄

mi ] = ni =

max{Lp[x̄] : [x̄] ∈ Bi ∩ Ep, [x̄] 6= [χ̄Bi
]} and the sequence (ni)i∈N is strictly

increasing. Then for every p-bridge Bl ∈ (Bi)i∈N there exists a p-bridge A

with FP (A) = 0 n 0, for some n ∈ N, with the following properties:

(i) σ̃nl(A) = Anl ⊂ Bl,

(ii) [x̄ml ] ∈ ∂Anl .

Note that Lp[x̄
ml ] = nl and n = Lp[χ̄

Bl
]−nl. Now we fix some p-bridge Bl ∈

(Bi)i∈N and the corresponding p-bridge A. We will study arcs Ai = σ̃i(A),

i ≤ nl, and their folding patterns FP (Ai).

(1) Since FP (A) = 0 n 0, one has cn+1 = c1 and FP (A1) = 1 n + 1 1 (if

cn+1 6= c1 then FP (A1) = 1 0 n + 1 0 1 and Anl * Bl).
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(2) Suppose that cn+2 6= c2. Then FP (A2) = 2 0 n + 2 0 2. Therefore,

cn+3 = c3 = c1 and FP (A3) = 3 1 n + 3 1 3. Since c3 = c1 implies c4 =

c1, one has that FP (A4) contains the pattern 2 0 4. Thus, c5 = c1 and

FP (A5) contains the pattern 3 1 5. Continuing we get that FP (A2i)

contains 0 for every 2i ≤ nl, and FP (A2i+1) contains 1, 3, . . . , 2i+1 and

does not contain 0 for every 2i + 1 ≤ nl. Since the sequence (ni)i∈N is

strictly increasing, one has c1 = c2i+1 for every i ∈ N which contradicts

(b). Therefore, cn+2 = c2 and FP (A2) = 2 n + 2 2.

(3) Suppose that cn+3 6= c3. Then FP (A3) = 3 0 n + 3 0 3 and hence

cn+4 = c4 = c1 and FP (A4) = 4 1 n + 4 1 4. If c5 6= c2, then FP (A5)

contains the pattern 2 0 5. This implies that c1 = c3 = c6 and that

FP (A6) contains the pattern 3 1 6. Going on we get that FP (A2i+1)

contains 0 for every 2i+1 ≤ nl, and FP (A2i+2) contains 1, 3, . . . , 2i+1

and does not contain 0 for every 2i + 2 ≤ nl. But c1 = c2i+1 for every

i ∈ N contradicts (b). Therefore, c5 = c2.

Suppose that ci = ci+3 for every i < j and cj 6= cj+3. Then FP (Aj+3)

contains the pattern j + 3 0 j.

If j = 3i + 1 for some i, then

c1 = c4 = · · · = cj 6= cj+3

c2 = c5 = · · · = cj+1

c3 = c6 = · · · = cj+2.

Since c2 = cj+1, then FP (Aj+4) contains the pattern 1 0 j + 1 which

contradicts the assumption that Anl ⊂ Bl.

If j = 3i + 2 for some i, then

c1 = c4 = · · · = cj+2

c2 = c5 = · · · = cj 6= cj+3

c3 = c6 = · · · = cj+1.

Since FP (Aj+3) contains the pattern j + 3 0 j, then cj+1 = c1 and

c3 = c1. Since cj+2 = c1, then FP (Aj+5) contains the pattern 2 0 j + 2
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and FP (Aj+6) contains the pattern 3 1 j + 3. Since c4 = c1 6= c2,

then FP (Aj+7) contains the pattern 4 0 2. Since c5 = c2 6= c1, then

FP (Aj+8) contains the pattern 5 0 1 which contradicts the assumption

that Anl ⊂ Bl.

If j = 3i for some i, then

c1 = c4 = · · · = cj+1

c2 = c5 = · · · = cj+2

c3 = c6 = · · · = cj 6= cj+3.

Therefore, c3 = 0 (otherwise −→c1 is not σ-maximal). Since FP (Aj+3)

contains the pattern 3 0 j + 3, then cj+4 = c1. If cj+5 6= c2, then

FP (Aj+5) contains the pattern 2 0 j + 5 and FP (Aj+6) contains the

pattern 3 0 1 which contradicts the assumption that Anl ⊂ Bl. There-

fore, cj+5 = c2. If cj+7 6= c4, then FP (Aj+7) contains the pattern

4 0 j + 7 and FP (Aj+8) contains the pattern 5 0 1 which contradicts

the assumption that Anl ⊂ Bl. If cj+8 6= c5, then FP (Aj+8) contains

the pattern 5 0 j + 8 and FP (Aj+9) contains the pattern 6 0 1 which

again contradicts the assumption that Anl ⊂ Bl. Continuing we get

that c1 = cj+1 = cj+4 = · · · = c3i+1 and c2 = cj+2 = cj+5 = · · · = c3i+2

for every i with 3i + 2 ≤ nl. Since the sequence (ni)i∈N is strictly in-

creasing, this implies that −→c1 = 10 ∗ (1− c3)(1− c6) . . . (1− c3i) which

contradicts the assumption that s >
√

2. Therefore, cn+3 = c3 and

FP (A3) = 3 n + 3 3.

Note that the only assumptions on n are the following:

(0) FP (A) = 0 n 0, i.e. n is the p-level of p-point whose both neigh-

boring p-points have p-levels 0,

and the assumptions (i) and (ii). In (1), (2) and (3) we have proved

that for every n which satisfies (0), (i) and (ii), one has ci = cn+i, for

every i < 4, i.e. the proofs in (1), (2) and (3) do not depend on n.
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(4) Suppose that we have proved that there exists j such that for every

n which satisfies (0), (i) and (ii), one has ci = cn+i, for every i < j,

and suppose that cj 6= cn+j. Then FP (Aj) = j 0 n + j 0 j. Therefore,

similarly to (1), one has cn+j+1 = cj+1 = c1 and FP (Aj+j) = j+1 1 n+

j + 1 1 j + 1. Similarly to (2), one has cj+2 = c2, and so on.

Since j satisfies (0), (i) and (ii), one has cj+i = ci for every i < j.

0 n 0
1 n + 1 1
2 n + 2 2
...

...
...

j − 1 n + j − 1 j − 1
j 0 n + j 0 j

j + 1 1 n + j + 1 1 j + 1
j + 2 2 n + j + 2 2 j + 2

...
...

...
...

...
2j − 1 j − 1 n + 2j − 1 j − 1 2j − 1

2j (0) j (0) n + 2j (0) j (0) 2j
2j + 1 j + 1 = 1 n + 2j + 1 j + 1 = 1 2j + 1
2j + 2 j + 2 = 2 n + 2j + 2 j + 2 = 2 2j + 2

...
...

...
...

...
3j − 1 2j − 1 = j − 1 n + 3j − 1 2j − 1 = j − 1 3j − 1

...
...

...
...

...

Therefore, cdj+i = ci for every i < j and for every d such that (d+1)j <

nl. Since the sequence (ni)i∈N is strictly increasing, this implies that
−→c1 = 10c3 . . . cj−1 ∗ −→y for some −→y , which contradicts the assumption

that s >
√

2. Therefore, ci = cn+i for every i, which contradicts (a).

Therefore, there exists M ∈ N such that for every p-bridge B ⊂ C and for

every [x̄] ∈ B ∩ Ep, [x̄] 6= [χ̄B], one has Lp[x̄] < M .

We should point out that we do not know which bridge types are allowed

for a given tent map with a nonrecurrent critical point, only that there are
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finitely many types.

Next, we consider relations between different bridges of the composant

C. For two p-bridges B1, B2 ⊂ C, we say that B1 ≺ B2, if for every [x̄] ∈ B1,

and for every [ȳ] ∈ B2, one has [x̄] ¹ [ȳ]. Let B ⊂ C be a p-bridge and let

B ∩ Ep−1 = {[x̄0], . . . , [x̄n]}. The arc between the points [x̄0] and [χ̄B] we

will denote by A2, and the arc between the point [χ̄B] and [x̄n] we will de-

note by A1. The arcs A1 and A2 we will call the (p − 1)-semibridges. Note

that Lp−1[x̄
i] = Lp−1[x̄

n−i], for every i ∈ {0, . . . , n/2}. We say that the

(p− 1)-semibridges A1 and A2 have the semitype sT (A1) = sT (A2) = T (B).

Let A be an arc such that ∂A ⊂ Ep−1 and let A ∩ Ep−1 = {[ȳ0], . . . , [ȳm]}.
If m = n/2 and either Lp−1[ȳ

i] = Lp−1[x̄
i] for every i ∈ {0, . . . , n/2 − 1},

and [−→y m
−(p−1)K ] = [−→χ B

−(p−1)K ], or Lp−1[ȳ
i] = Lp−1[x̄

n/2+i], for every i ∈
{1, . . . , n/2}, and [−→y 0

−(p−1)K ] = [−→χ B
−(p−1)K ], then the arc A is a (p − 1)-

semibridge with the semitype sT (A) = T (B).

If K > M , then the only p-bridges which contain p-points of p-level K

are p-bridges whose centers are p-points of p-level K. Therefore, from now

on we assume that K > M .

Let D be a p-bridge and D ∩ Ep−1 = {[x̄0], . . . , [x̄n]}. Then Lp[x̄
0] = 0,

Lp−1[x̄
0] = K, and [x̄0] is the center of (p−1)-bridge of type K. Let i ∈ N be

the smallest number with Lp−1[x̄
i] = 0, and let j < n be the largest number

with Lp−1[x̄
j] = 0. Let A1

D be the arc between the points [x̄0] and [x̄i], and let

A2
D be the arc between the points [x̄j] and [x̄n]. Then sT (A1

D) = sT (A2
D) =

K. The arc A1
D we will call the first (p − 1)-semibridge of the p-bridge D,

and the arc A2
D we will call the last (p − 1)-semibridge of the p-bridge D.

Between the points [x̄i] and [x̄j] there is one or more (p − 1)-bridges. The

ordered set of the first and the last (p−1)-semibridges and all (p−1)-bridges

contained in the p-bridge B is called the structure of the p-bridge B, and it

is denoted by S(B).

Lemma 3.7 Let p ∈ Z+. Let B ⊂ C be a p-bridge, B∩Ep = {[x̄0], . . . , [x̄n]}
and S(B) = (A1

B, B1, . . . , Bm, A2
B). Let A be the arc between the points [x̄0]
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and [x̄1]. Then {[−→x−pK ] : [x̄] ∈ A} = {[−→x−pK ] : [x̄] ∈ B} and A1
B ⊂ A.

The proof is the same as the proof of Lemma 3.21 of [S2].
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