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Introduction

R. M. Solovay proved in 1976. that system Gödel-Löb (GL) is provability logic of Peano
arithmetics. That means that the set of all modal formulas such that their every arithmetical
interpretation is theorem of Peano arithmetic is precisely the set of all theorem in system GL.
Since provability logic GL cannot distuinguish some properties that different first-order theories
have, many extensions of provability logics have been considered. One of them is interpretability
logic (IL) defined by A. Visser in 1990. System IL is natural from the modal point of view, but
arithmetically incomplete - it doesn’t prove all of the formulas which are valid in every adequate
theory. Various extenstions of IL are obtained by adding some new axioms - for instance,
Feferman’s principle F which is a modal description of Feferman’s theorem - a generalization of
Gödel’s second incompleteness theorem.
The basic semantics for interpretability logic are Veltman models. V. Švejdar in 1991. proved
some independence results using Veltman models. They were suitable to distinguish some non-
equivalent formulas of interpretability. D. de Jongh tried to generalize Švejdar’s arguments
and came up with the notion of generalized Veltman semantics. R. Verbrugge worked this out
in an unpublished note.
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Fig. 2: Rineke Verbrugge

(rinekeverbrugge.nl)

Verbrugge frame and Verbrugge model

An ordered triple (W,R, {Sw : w ∈ W}) is called a Verbrugge frame if it satisfies the
following conditions:

a) W is a non-empty set and R is transitive and reverse well-founded relation on W ;

b) For every w ∈ W set Sw is subset of R[w]× P(R[w]) \ {∅};

c) If wRu then uSw{u};

d) If uSwV and (∀v ∈ V )(vSwZv) then uSw
⋃
v∈V

Zv;

e) If wRuRv then uSw{v};

f) If uSwV and V ⊆ Z ⊆ R[w] then uSwZ.

An ordered quadruple (W,R, {Sw : w ∈ W},⊩) is called aVerbrugge model if it satisfies
the following conditions:

1) (W,R, {Sw : w ∈ W}) is a Verbrugge frame;

2) ⊩ is a forcing relation. We emphasize only the definition

w ⊩ A▷B iff ∀u((wRu & u ⊩ A) ⇒ ∃V (uSwV &(∀v ∈ V )(v ⊩ B))).

w-bisimulations and their finite approximations - n-w-bisimulations

A n-w-bisimulation between two Verbrugge models M = (W,R, S,⊩) and M′ = (W ′, R′, S′,⊩′) is a decreasing sequence of relations
Zn ⊆ Zn−1 ⊆ · · · ⊆ Z1 ⊆ Z0 ⊆ W ×W ′, that possesses the following properties:

(at) If wZ0w
′ then w ⊩ p if and only if w′ ⊩′ p, for all propositional letters p;

(w-forth) For every i from 1 to n, if wZiw
′ and wRu, then there exists a nonempty set U ′ ⊆ W ′ such that for all u′ ∈ U ′, uZi−1u

′ and
w′R′u′, and for each function V ′ : U ′ → P(W ′) such that for all u′ ∈ U ′, u′S′

w′V
′(u′), there exists set V with uSwV and for all

v ∈ V there exists v′ ∈
⋃

u′∈U ′
V ′(u′) with vZi−1v

′;

(w-back) If wZiw
′ and w′R′u′, then there exists a nonempty set U ⊆ W such that for all u ∈ U , uZi−1u

′ and wRu, and for each function
V : U → P(W ) such that for all u ∈ U , uSwV (u), there exists set V ′ with u′S′

w′V ′ and for all v′ ∈ V ′ there exists v ∈
⋃
u∈U

V (u)
with vZi−1v

′.

A w-bisimulation between M and M′ is a single relation Z ⊆ W × W ′, that has the properties (at), (W-forth) and (W-back), with all Zi
being equal to Z. When Zn ⊆ Zn−1 ⊆ · · · ⊆ Z1 ⊆ Z0 is a n-W-bisimulation linking the nodes w ∈ W and w′ ∈ W ′ we say that w and w′ are
n-w-bisimilar. When Z is a w-bisimulation linking the nodes w ∈ W and w′ ∈ W ′ we say that w and w′ are w-bisimilar.
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Ilustration of w-back condition
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Basic properties of w-bisimulations

Let M, M1 and M2 be Verbrugge models.

a) The relation Z = {(w,w) : w ∈ M} is a w-bisimulation. So, w is w-bisimilar to itself.

b) If Z is a w-bisimulation between models M1 and M2 then Z−1 = {(w′, w) : wZw′} is a w-bisimulation between models M2 and M1.

c) If Z is a w-bisimulation between modelsM andM1, and Z
′ is a w-bisimulation between modelsM1 andM2, then Z ◦Z ′ is a w-bisimulation

between models M and M2.

d) If {Zi : i ∈ I} is a set of w-bismulations between models M1 and M2 then the union ∪Zi is a w-bisimulation. There is a maximum of all
w-bisimulations between models M1 and M2.

w-bisimulations preserve modal truth

If M and M′ are two Verbrugge models and w ∈ M, w′ ∈ M′ we say that w and w′ are modally equivalent if they satisfy the same formula.
We have proved the following: if Z is a w-bisimulation between models M and M′ such that (w,w′) ∈ Z, then w and w′ are modally equivalent.

w-bisimulation games

Let Mi =
(
Wi, Ri, {S

(i)
w : w ∈ Wi},⊩

)
, i ∈ {0, 1}, be two Verbrugge models. The w-bisimulation game is played

by two players, challenger and defender, who move from one configuration to another in a series of consecutive
rounds. A configuration is simply a 4-tuple (M0, w0,M1, w1), where w0 ∈ W0 and w1 ∈ W1. A single round,
starting with that configuration, is played as follows:

1. Challenger chooses i ∈ {0, 1}, index of one Verbrugge model. We denote j := 1− i, the index of another model.

2. Challenger picks ui ∈ Wi such that wiRiui. If there are no such worlds, the defender wins and game is over.

3. Defender picks a non-empty set of worlds Uj ⊆ Wj such that for all uj ∈ Uj, wjRjuj. If there are no such
sets, the challenger wins and game is over.

4. Challenger picks a function Vj : Uj → P(Wj) such that ujS
(j)
wj Vj(uj), for all uj ∈ Uj.

5. Defender picks a set Vi ⊆ Wi such that uiS
(i)
wiVi.

The configuration from which the next round is played is determined as follows:

(i) Challenger picks uj ∈ Uj or vi ∈ Vi.

(ii) In case the challenger has chosen the world uj, the configuration with which the next round starts is
(M0, u0,M1, u1). If the challenger has chosen vi ∈ Vi, then the defender chooses a world vj ∈

⋃
uj∈Uj

Vj(uj),

and the configuration with which the next round starts is (M0, v0,M1, v1).

At the beginning of a game, it is checked that w0 and w1 satisfy exactly the same propositional variables. Also, this
is checked after each round for worlds u0 and u1, and for worlds v0 and v1. If any of these checks fail, challenger
wins.

w-games and w-bisimulations

An n-w-game is a w-game with the following rule added: if n rounds have been played, and challenger
hasn’t won, then defender wins and the game ends.
A winning strategy for a player is a tactic for picking worlds in response to opponent’s move, such
that the player following it always wins by above rules.

Theorem

Let M and M′ be two Verbrugge models and w ∈ M, w′ ∈ M′ be worlds in them, respectively.
Defender has a winning strategy in an n-w-game with a starting configuration (M, w,M′, w′) if
and only if w and w′ are n-w-bisimilar.

Future work

Expressivity issues of modal logics were studied by van Benthem,
who developed the subject now known as correspondence the-
ory. He proved the fundamental Characterisation Theorem: ba-
sic modal languages are the bisimulation invariant fragment of the
corresponding first-order language. We wish to prove the analogue
of this theorem for w-bisimulations and interpretability logics.
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Fig. 3: Johan van Benthem
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Although this semantics has so
far been called generalized Veltman semantics, after

discussion in a wide circle of experts in
interpretabil

ity logics, it wa
s agreed that

the name Verbrugg
e’s semantics would

be used in her honor.

Note that (w-back) is t
he same property as (w-forth),

just with M and M′ interchanged!

This means that two w-bisimilar worlds

are indistinguishable by modal languages!

It can be proved that every w-game ends (i.e., there are no infinite games)!


