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Dedekind worked on the foundation of arithmetic practically from the start of
his mathematical career in 1854. He did not put forward any formal foundational
program, but one can be recreated retrospectively. This program reached its
culmination point in 1888 when he published his arguably the most important
mathematical work Was sind und was sollen die Zahlen?.

In it, he tried to precisely define the concept of natural number, and develop
all of the arithmetic. His main tools were sets and mappings, which he viewed
as purely logical notions. Therefore, he formulated a version of logicism, which
turns out not to be much different from Frege’s.

In this talk, we will present the content of Was sind und was sollen die
Zahlen?, and its background. That is, we will show what were Dedekind’s main
motivational ideas, and why he viewed the notion of sets as the most suitable
notion for achieving his goals.
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Cyber-Physical Systems (CPS) are used to perform complex, safety-critical
tasks, often with limited or no human intervention and in disruptive or hos-
tile environments. Examples include applications of autonomous vehicles and
drones. Given that the systems themselves and their assigned tasks involve
complex specifications, constraints, and inherent non-determinism, the proper-
ties of CPS performance are the resut of the interaction between the system
design and the influence of the environment. In [2, 3] we considered various
verification properties (realizability, survivability, reliability and recoverability),
that relate the ability of such systems to function in the face of perturbations
that occur in the environment.

In [1] we further consider properties of CPSes that go beyond task realization
under nominal conditions, with fixed goals and fixed regulations and policies.
Instead, we address possible changes in mission objectives or regulatory updates
that may occur during mission execution, and focus on the ability of CPS to
adapt to such changes. This capability is informally referred to as resilience.

We formalize the intuitive notion of resilience as a formal verification prop-
erty using timed multiset rewriting. An important innovation in our formaliza-
tion is the distinction between rules that are under the control of the CPS and
those that are not. The latter rules specify the changes in system conditions,
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e.g., mission goals, to which the system may need to adapt.
We also study the computational complexity of resilience problems. Al-

though undecidable in general, we show that these problems are PSPACE-
complete for a class of bounded systems, more precisely, balanced systems where
the rules do not affect the number of facts of the configurations and where facts
are of bounded size.
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The extensive development of modern technologies and artificial intelligence
has greatly influenced natural language processing (NLP). The ability of com-
puter programs to interpret spoken and written human language is becoming
increasingly useful and practical. Sentiment analysis, a subfield of NLP, deals
with large amounts of textual data such as emails, chat transcripts, social me-
dia comments, and reviews that are categorized as positive, neutral, or neg-
ative. Sentiment analysis allows users to use technology to learn more about
the emotional aspects of linguistic expressions, such as customers’ attitudes and
opinions. With advances in NLP, it already appears that computers understand
human language.

One of the pillars of sentiment analysis are sentiment dictionaries, collec-
tions of lexemes classified or numerically evaluated according to the emotional
characteristics they carry. The coverage of a sentiment dictionary is an impor-
tant feature in the development of computational sentiment analysis techniques.
When dealing with sentiment analysis, one may find that sentiment dictionaries
are quite sparse, especially for languages other than English.

This paper describes an iterative, graph-based algorithm for propagation
of sentiment values. We offer a novel approach to creating a comprehensive
sentiment dictionary, where the existing sentiment dictionaries are utilized to
propagate the original dictionary values to a large collection of lexemes, result-
ing in a considerably broader and multidimensional dictionary coverage. Our
solution is applicable to a variety of sentiment dictionaries and languages.
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As early as in 1934, Skolem [5] proved that, if we add the axioms n < c
(n ∈ N) to first-order arithmetic, in other words, if we demand the existence of
an infinite number, then the resulting theory is consistent [3, 4]. We examine
Heyting arithmetic [2, 6], that is, first-order arithmetic with intuitionistic pred-
icate logic, augmented with these axioms of non-standardness together with a
predicate expressing the property of being feasible. We define feasibility follow-
ing [1]. The property of feasibility is a downward closed property, where 0 is
feasible, and, for all primitive recursive functions, if the arguments are feasible,
then the result should be feasible. Furthermore, the infinite number c is not
feasible. Formally:

1. F (0),

2. ∀x∀y(F (x) ∧ y < x ⊃ F (y)),

3. ∀x(F (x) ⊃ x < c),

4. ∀x1...∀xn(F (x1)∧ ...∧F (xn) ⊃ F (g(x1, ..., xn))), for each symbol g stand-
ing for a primitive recursive function.

We denote the theory obtained as above by HAF0. There are two kinds of
induction axiom which appear to be reasonable to extend HAF0 with.

A,
A(0) ∧ ∀x(A(x) ⊃ A(Sx)) ⊃ ∀xA(x) (Indc),

where A(x) does not contain F. The new theory will be referred to as
HAF c. We note that nonstandard elements can be present in the induc-
tion formula.
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B,
A(0) ∧ ∀fx(A(x) ⊃ A(Sx)) ⊃ ∀fxA(x) (Indf ),

where A(x) does not contain F and ∀fxA(x) means ∀x(F (x) ⊃ A(x)). We
denote the new theory by HAF .

We verify some proof-theoretical properties concerning these theories by
standard realizability techniques. Namely, we show that both theories are con-
sistent relative to HA and we demonstrate that, under certain restrictions, they
admit disjunctive and existential properties.
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NFU is an alternative (to ZF) set theory, in which we’re concerned with as-
signing levels to variables and terms of formulas defining sets by comprehension.
If the levels (types) can be assigned in a consistent way, we call the formula or
term stratified.

In developing set theory, it is usual to name some terms by function (or
constant) symbols, and to name some formulas by relation symbols. In NFU,
however, we must also ensure that stratification is preserved. We will see what
this means for our terms and formulas.

In [1], we have developed two ways of dealing with abstraction terms: elimi-
nating them from the language, and typing them by extended level assignment.
This is an overview of the third approach, naming them by expanding the sig-
nature.
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The aim of this paper is to introduce a calculus for a presentation of com-
pact, orientable, connected 3-manifolds with boundary in terms of diagrams
embedded in S3 in a form akin to the standard surgery presentation of closed,
orientable, connected 3-manifolds. Our motivation to introduce such a pre-
sentation of manifolds is to give a completely combinatorial description of the
category 3Cob1, whose arrows are 3-dimensional cobordisms, which is an ongo-
ing project. We hope this could support further investigations of faithfulness
of 3-dimensional Topological Quantum Field Theories. On the other hand, the
calculus could be applied within some coherence results in Category theory.

That every closed, orientable, connected 3-manifold may be obtained by
surgery on a link in S3 was proved by Wallace, [10] and (independently) by
Lickorish, [5]. This result provides a language for presentation of such manifolds.
The rational surgery calculus for this language was introduced by Rolfsen, [8,
Chapter 9.H]. This calculus consists of two types of modifications and he proved
that two surgery descriptions yield homeomorphic 3-manifolds if one can be
transformed into the other by a finite sequence of these modifications. At about
the same time, Kirby, [4] introduced another surgery calculus and he proved
its completeness, i.e. that two surgery descriptions (with integral framing) yield
homeomorphic 3-manifolds if and only if one can be transformed into the other
by a finite sequence of operations from this calculus. By relying on Kirby’s
result, Rolfsen, [9], proved the completeness of his calculus.

1By this we mean a diagrammatic presentation of cobordisms and a calculus for composition
of diagrams.
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Fenn and Rourke, [1], merged two Kirby’s operations into an infinite list of
integral moves of one type, which is a special case of Rolfsen’s second modifica-
tion. Roberts, [7], developed a calculus for surgery data in arbitrary compact,
connected 3-manifold (possibly with boundary, or non-orientable). This calculus
consists of moves of three types and he proved its completeness.

The first part of our work uses a generalization of Wallace-Lickorish result to
compact, orientable, connected 3-manifolds with boundary in order to establish
a diagrammatic language of these manifolds. This language is based on the well
known language for closed manifolds that consists of surgery data in S3 written
in terms of framed links. We extend the “alphabet” by introducing some rigid
“symbols” in the form of wedges of circles. The intuition behind a wedge of
circles in a diagram is that its neighbourhood is removed from S3 forming one
component of the boundary. By the neighbourhood of a wedge of circles we
mean its regular neighbourhood in terminology of [3, Definition 1.4], which
is appropriate for piecewise-linear category, or its graphical neighbourhood in
terminology of [2, Definition 6], which is appropriate for smooth category.

The second part adapts Roberts’ calculus into a diagrammatic calculus ad-
equate for our language. This adaptation is akin to the adaptation of Kirby’s
calculus made by Fenn and Rourke. As the Fenn and Rourke local moves can
be reduced to a finite list, which is shown by Martelli, [6], our calculus is also
presentable by a finite list of local moves. Finally, we develop a rational surgery
calculus for our language. We prove the completeness for all the calculi.
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Intuitionistic propositional logic with second order quantifiers (IPL2) was
introduced by Gabbay [1]. Since then, there has been a substantial body of work
produced about various semantics for it, some of which have been shown not to
be equivalent [2]. However none of the work so far on IPL2 has introduced a
sequent calculus system for IPL2, which is better adapted to doing proof theory,
or tackled questions of cut elimination or normalisation. We introduce a sequent
calculus for IPL2, on which we attempt to obtain cut elimination.

The calculus we introduce is the same as the sequent calculus for intuition-
istic propositional logic, but with the addition of a rule for the propositional
quantifier ∀. This is sufficient to express ∃ as well. The rules for ∀ are:

(L∀)
Γ,∀pB(p), B(A) ⇒ C

Γ,∀pB(p) ⇒ C
(R∀)

Γ ⇒ B(p)

Γ ⇒ ∀pB(p)

with the condition in the (R∀) rule that p is not free in Γ. In addition
to these, we introduce an n-ary branching multicut rule for use within the
proof of cut elimination. This is a natural extension of the linear multicut
used by Fortier and Santocanale [3], similar to that used by Baelde, Doumane,
and Saurin [4]. The n-ary multicut rule essentially groups together multiple
cut rule applications, with an associated tree T representing the cut formula
relationships between the premise sequents for the multicut.

The usual approach to cut elimination makes use of a number of rewrite
operations on proofs with cut, each of which reduces some measure on the proof.
Then, induction is carried out in an order derived from these measures so as
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to reduce them, and thereby eliminate the cut. Instead of using this usual cut
elimination process, we will apply Büchholz hydra game methods in a similar
style to Hamano and Okada [5]. A hydra game is a 1 player game wherein
the player makes use of a number of rewrite operations to rewrite a (possibly
labelled) tree T . The player wins if they can reduce the number of edges in
the tree to 0 using the rewrite operations. If we can assign a measure to the
trees such that each rewrite operation reduces this measure, then no matter
what sequence of moves the player uses, the player will win [6] [7]. This process
shares much of its structure in common with the usual inductive process. This
is given by the supremum of the ordinals used for the unique measure. Here, we
have a clear choice for both the tree and the rewrites. These are the multicut
tree and rewrites of the same form as those used for the usual cut elimination
process. To the multicut tree, we add labels to represent information associated
with each cut that will be useful when defining the measure to be reduced.
These are a notion of cut formula complexity and local and global notions of
hereditary subproof magnitude. This labelled tree is the structure on which the
hydra game will be carried out. We then define an appropriate ordinal measure
using the information in the labelled tree, with the objective of reducing it to 0
during the hydra game.

However, this cut elimination procedure cannot work for full IPL2, because
of the arbitrary increase in cut formula complexity enabled by the rewrite for
the principal ∀ case. This is because the substituted formula A in the rule
(L∀) does not have any restrictions on its complexity, and any increase in its
complexity will be inherited by B(A). Thus, if we restrict to fragments of the
IPL2 proof system that limit the complexity allowed for A, then cut formula
complexity will always decrease. Hence, the measure on the labelled trees will
decrease with every rewrite application, and therefore the player must win the
hydra game.

We show that termination of this hydra game corresponds to the elimina-
tion of a cut from the proof, and obtain single cut elimination results for the
appropriate fragments of IPL2. This cut elimination process can be applied
repeatedly to obtain cut elimination for these fragments of IPL2. In the talk I
will discuss the cut elimination process in more detail.
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The lambda calculus is a model of computation based on functions intro-
duced by Alonzo Church in the 1930s. Lambda calculus comes in two variants:
untyped and typed. The untyped lambda calculus is Turing-equivalent. Types
are introduced in lambda calculus to control term formation, i.e. computation.
The basic typed lambda calculus is the so called simply typed lambda calculus,
where types control function applications. The Curry–Howard correspondence,
a.k.a. formulae-as-types, proofs-as-terms or proofs-as-programs, represents a
correspondence between simply typed lambda calculus and intuitionistic logic.
Intuitionistically provable formulae coincide with inhabited types, proofs coin-
cide with terms/programs and proof normalization represents term reduction.
This relationship directly underpins the fundamental relationship between logic
and computation. Kripke-style semantics have gained an important role and
wide applicability in logic since it was introduced by Saul Kripke in the late
1950s as a semantics for modal logics. In logic, these semantics were later
adapted to intuitionistic logic and various other logics. In computation, a class
of Kripke-style models was defined for typed lambda calculus [4, 3] and Scott-
Ershov model for partial continuous functionals [5]. In this talk, we present a
new approach to Kripke semantics for full simply typed lambda calculus, which
is the simply typed lambda calculus endowed with product types and sum types.
The full simply typed lambda calculus is related to minimal propositional logic
with all connectives via the Curry–Howard correspondence. We show sound-
ness and completeness of full simply typed lambda calculus w.r.t. the proposed
semantics [1, 2]. The completeness result is proved by an adaptation of the
Henkin-style completeness method.

The present talk is based on joint work with Simona Prokić.
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The finite model property is a key step in proving decidability of modal
logics (see e.g. [1]). In [1] two distinct ways are presented to show that modal
logics possesses finite model property: the selection and the filtration method.

Generalised Veltman semantics for interpretability logic, or nowadays called
Verbrugge semantics (in honor of Rineke Verbrugge), was developed to obtain
certain non-derivability results since Veltman semantics for interpretability logic
is not fine-grained enough for certain applications. It has turned out that this
semantics has various good properties (see e.g. [3] and [5]).

Vuković and Perkov [6] applied the filtration technique to prove finite model
property of interpretability logic IL and some of its extensions with respect to
Verbrugge semantics. A filtration is usually the partition generated by logical
equivalence over so called adequate sets of formulas, i.e. sets of formulas that
possess certain properties like being closed under taking subformulas and special
negations. In [6] it was proved that ILM0 has the finite model property with
respect to Verbrugge models which satisfy certain condition. Together with the
completeness of ILM0 with respect to Verbrugge models, this suffices to prove
that ILM0 is decidable, by a standard argument ([1], p. 341). In [4] they used the
same technique to prove the finite model property of interpretability logics ILW
and ILW∗ w.r.t. Verbrugge models. Thus they obtained the decidability result
for interpretability logics ILM0 and ILW∗.

It is important to note that in the filtration method they heavily used the
properties and results for the notion of bisimulation (and their finite approxi-
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mation called n-bisimulation) for Verbrugge semantics as defined in [7] and [8].
Namely, they used the following (Lemma 3.1. in [6]):

Let M and M′ be two Verbrugge models. Let w ∈ M and w′ ∈ M′.
If there are only finitely many propositional variables then we have:
if w and w′ are n-modally equivalent, then w and w′ are n-bisimilar.

However, as proved in [2], this statement is not valid in general. So, we have
defined in [2] a new notion of weak bisimulation (or short, w-bisimulation) and
its finite approximation called n-w-bisimulation. Using that new notion, we
proved that the desired statement holds if we use w-bisimulations instead of
bisimulations. In that way, all the results from [5] and [6] still hold with the use
of w-bisimulations.

In this talk we will prove that interpretability logic IL has the finite model
property by using the other method of building finite models - the selection
method. The selection method is more straightforward than the filtration
method. In short, for every satisfiable IL-formula we know there exists a model
that satisfies that formula. Then we will apply tree unravelling to obtain a
model of finite height that still satisfies that same formula. The resulting model
may still be infinite, as it may be infinitely branching. We obtain the finite tree-
like model we are looking for by a further selection of points which corresponds
to discarding unwanted branches of the tree we have obtained. In that process
we will heavily use the w-bisimulations and their properties. Finally, we will
point out the main drawback of the selection method: the input model for our
construction may satisfy important relational properties, but the end result is
always a finite tree-like model, and the desired relational properties are often
lost. So if we want to establish the finite model property with respect to a class
of models satisfying additional properties - for instance property (M)gen for ILM
- we have to do some additional work once we have obtained our finite tree-like
model. In such cases, the selection method tends to be harder to use than the
filtration method, which is the main reason that the filtration method is much
more used (e.g. in [5] and [6]).
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Inquisitive logic is a generalization of classical logic which, besides state-
ments, also expresses questions. The language of classical propositional logic is
extended with a new connective ⪕ , called inquisitive disjunction. For example,
p ⪕ q can be read as the question �whether p or q is the case�. Although in-
tuitively there is no sense for a question to be true or false, there is a sense in
which question can be said to be settled by given information. This is achieved
by using the so-called support semantics, a possible world semantics in which,
instead of a satisfaction relation between worlds and formulas, a support relation
is established between sets of worlds and formulas (cf. [1], [2]).

Since a possible world semantics is used, it is very natural to combine inquis-
itive and modal logic, so for example in the epistemic context we can express
statements like �agent knows whether p�, namely by 2(p ⪕ ¬p).

A further enrichment, the inquisitive modal logic InqML, was �rst introduced
in [2]. Its language contains a new modality ⊞, which is a natural analogue of
2 w.r.t. the support semantics, and enables expressing statements like �agent
wonders whether p� (cf. [2]). This makes the semantics even more complex �
not only sets of worlds, but also sets of sets of worlds need to be considered.

In [2], soundness and completeness of InqML is proved. Notions of bisimula-
tions, bisimulation games and translations from InqML to two-sorted �rst-order
logic are developed and analogues of Van Benthem Characterization Theorem
are proved in [3] and [4].

Our contributions include the adaptation of �ltration technique to support
semantics, and de�nition and properties of bisimulation quotient for InqML.
Using �ltration, we show that InqML has the �nite model property and conse-
quently InqML is decidable.
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Redescription mining [4] is a �eld of data mining with the goals to: a) dis-
cover subsets of instances that can be re-described, b) construct appropriate
redescriptions, interpretable objects that re-describe these subsets of instances.
The execution and the overall results of the task depend on a set of parameters,
such as: query language, constraints on redescription accuracy (the Jaccard in-
dex) [2], statistical signi�cance [1], allowed support size interval and constraints
on the size of redescription queries.

We present the proofs that several decision variants of the task are NP-
complete:

� T1: con�guration where conjunction and literal level negations are used
to construct redescription queries, minimal redescription accuracy equals
1, minimal support size equals δ and the minimal query size equals η.

� T2: con�guration where conjunction and disjunction operators are used
to construct redescription queries, minimal redescription accuracy equals
1, minimal support size equals δ and the maximal query size equals η.

� T3: con�guration where conjunction, disjunction and negation operators
are used to construct redescription queries, minimal redescription accuracy
(pessimistic or query non-missing) equals 1, minimal support size equals
δ and the maximal query size equals η.

� T4: con�guration where redescription queries are Horn clauses, minimal
redescription accuracy (pessimistic or query non-missing) equals 1, mini-
mal support size equals δ and the maximal query size equals η.

� T5: con�guration where conjunction, disjunction and negation operators
are used to construct redescription queries, minimal redescription accuracy
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(pessimistic or query non-missing) equals 1, minimal support size equals
δ, maximal statistical signi�cance equals γ and the maximal query size
equals η.

Con�gurations T1-T3 and T5 have already been presented in [3], whereas
T4 is a novel contribution.

We also present a decision variant of the task from [3] that can be solved in
polynomial time:

� P1: con�guration where conjunction, disjunction and negation operators
are used to construct redescription queries, minimal redescription accuracy
equals β, minimal support size equals δ, maximal query size equals η ∈
{1, 2} and the maximal allowed statistical signi�cance equals γ.

As a consequence of the studied con�gurations, we deduce that the com-
plexity of the original redescription mining task, aiming to list all possible re-
descriptions with a pre-de�ned general constraint set C and a query language Q
must be NP-hard.
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Provability logic arises from a interaction between proof theory and modal
logic. Let T be a theory strong enough to formalize logic. In particular, assume
that T is strong enough to codify its formulas and a predicate provT (x) whose
intuitive meaning is: “x is a formula provable in T”. Using this formula, we
can define a modal logic formed by the modal formulas such that, interpreting
its variables as T -sentences and as provT , we get a theorem of T . This modal
logic is called the provability logic of T .

The turning point of provability logic was when Solovay proved in [6] that
the provability logic of Peano Arithmetic (PA) is exactly GL, Gödel-Löb’s logic.
Later, in [7], Visser calculated the Σ1-provability logic of PA. The idea behind
the concept of Σ1-provability logic is to restrict the interpretation of proposi-
tional variables to Σ1-sentences. More recently, in [2], Ardeshir and Mojtahedi
showed that from the Σ1-provability logic of PA, one can calculate its full prov-
ability logic. This provides a new method for calculating provability logics.

In [1], Ardeshir and Mojtahedi, calculated the Σ1-provability logic of Heyting
arithmetic (HA), the intuitionistic version of PA. Mojtahedi in [4] has recently
proven the extension of this result to full provability logic, thus calculating
the provability logic of HA via its Σ1-provability logic. This problem has been
remarkably hard to solve, being open for four decades. In [11], Visser and
Zoethout have given an alternative way of characterizing the Σ1-provability of
HA. This alternative method resembles Solovay’s original proof for PA.

In the classical case, we know that Solovay’s results have a great stability. In
particular, arithmetical completeness holds for any Σ1-sound extension of EA.
The result of Mojtahedi, calculating the provability logic HA, makes this ques-
tion appear also for the intutionistic case. Will subtheories of HA also behave
uniformly with respect to arithmetical completeness? With this project we start
to study this question. In particular, we focus in the Σ1-provability logic of sub-
theories of HA. The main examples of these theories are: iEA+BΣ1 (intuition-
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istic elementary arithmetic with Σ1-collection), iIΣ1 (intuitionistic Robinson’s
Arithmetic with induction for Σ1-formulas) and iPRA (intuitionistic primitive
recursive arithmetic).

We analyze the theorems that lead to the characterization made by Visser
and Zoethout. The proof of this characterization can be divided in two parts:
one related to Solovay’s construction in the intuitionistic setting and one re-
lated to the NNIL algorithm, defined by Visser [9]. One of our main discoveries,
is that one of the relevant properties needed for the construction, that is im-
plicitely used for the HA case, is that the theory proves some degree of sentential
reflection with provability predicates of its finite subtheories. This makes the
tools hard to apply: for iPRA we only know that the first part works and for
iEA and iIΣ1 neither of them work in the actual state. We prove that in fact,
this happens since both theories are finitely axiomatizable. This mean that for
being able to apply Visser and Zoethout construction, it is necessary to obtain
a provability predicate whose logic is weaker than intuitionistic first order logic.

As a future work, it is left to study the relation of iPRA with the NNIL
algorithm to check if the second part of the construction works. It is also left how
to apply these tools to finite axiomatizable theories, which will require either a
better understanding of arithmetical theories with fragments of first order logic
or a new way of calculating the Σ1-provability logic in the intuitionistic setting.
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Building on their previous solutions for confidential computing, namely har-
dware accelerated memory encryption for data-in-use protection called Secure
Encrypted Virtualization (SEV) and SEV with Encrypted State (SEV-ES),
AMD recently proposed (in a 2020 white paper [1]) and implemented (in 2021,
in their EPYC� line of processors) an extension called Secure Nested Paging
(SEV-SNP). We use the Tamarin prover tool [3] to formally verify the firmware
ABI specification [2] of AMD SEV-SNP with respect to desirable security pro-
perties under the specified threat model.
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1. Extension of simple type theory by evaluation terms

To increase expressive power, some programming languages (e.g. Lisp, and its sequels, see [3]),
extend the language L of simple type theory (STT)1 by two new terms (here denoted by):

⌜X⌝ – quotation of the term X

⌊⌊X⌋⌋ – evaluation of the term X

(For an analogous proposal aiming at natural language processing (NLP), see Tichý [10].)
Motivation of this paper : Investigating the extensions for better understanding (from the

logical point of view) of programming and NLP using such L s; see e.g. [3, 4] for more.
Using the familiar Henkin-style semantics for STT, let Vv(X ) be short for [[X ]]Mv , where v

is an assignment, M is a model ⟨F ,I ⟩, where I is an interpretation function from constants
to objects of F , and F is {Dτ | τ ∈ T }, where τ is a type belonging to the set of types
T (consisting of the well-known hierarchy of function types), Dτ is a domain, i.e. a set (of
τ -objects) that interprets τ . Typically, Vv(X ) = X. The evaluation rules for ⌜X⌝ and ⌊⌊X⌋⌋ are:

Vv(⌜X⌝) = X , where X/τ (read: X stands for an object X of type τ , i.e. X ∈ Dτ ).

Vv(⌊⌊X⌋⌋) = Vv(X), where X = Vv(X ) and (optionally) X, ⌊⌊X⌋⌋/τ .

In other words, while X represents Vv(X ) (i.e. X), ⌜X⌝ represents X itself and ⌊⌊X⌋⌋ represents
Vv(X). As noted in [3], employment of ⌜X⌝ and ⌊⌊X⌋⌋ necessiates STT with partial functions.

Aims of the paper. Several problems with i. and ii. have recently been observed (some
of them solved) by Farmer [3, 4], Tichý and his followers (e.g. [10, 7, 5, 8]). We use here a
partial STT called TT∗ [6] which lies between the systems of [3, 9, 10, 7, 8]). We focus on
various problems related to β-conversion rules, cf. the next section, and propose solutions to
them, distinguishing two notions of β-conversion.

2. Solutions to problems of β-converting abstractions with ⌊⌊X⌋⌋
Following the ramified typing of procedural semantics behind [10, 7, 6], ∗n is a type of nth-order
computations X of objects X of various types τ1, ..., τm. Let x ∈ D∗1 and c ∈ D∗2 . However,
⌊⌊c⌋⌋ is untypeable [7], for e.g. Vv1(⌊⌊c⌋⌋) = x and x/τ1, but e.g. Vv2(⌊⌊c⌋⌋) = y and y/τ2, τ1 ̸= τ2.

Problem 1. In [10, 7], body Y of the abstraction λx .Y must fulfil Y /τ , i.e. the above
Y := ⌊⌊c⌋⌋ is excluded. Hence one easily avoids the following failure [5] of β-contraction rule

βc [λx .Y ](Z ) ⊢ Y(Z/x)

where Y(Z/x) is the result of substitution of Z for z in Y . Let Vv(x) = X where x/τ (precisely,

1By Church [2], Andrews [1] and others ([3, 4]). LSTT: a (constants), x (variables), Y (X ) (applications),
λx .Y (abstractions); auxiliary expressions: (, ), λx . and for LSTT’s extensions by ⌜X⌝ and ⌊⌊X⌋⌋ also ⌜, ⌝, ⌊⌊, ⌋⌋.
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x/τ1, so x ∈ D∗1) and Vv(c) = x (while c/∗1, so c ∈ D∗2) and Vv(Z ) = Z, Z/τ ; keeping it
fixed below. Thus, Vv([λx .⌊⌊c⌋⌋](Z )) = Z, for Vv(λx .⌊⌊c⌋⌋) = Id (the identity mapping for objects
of type τ), but Vv(⌊⌊c⌋⌋(Z/x)) = X (where X ̸= Z), for x ̸∈ FV (c) (read: x is not a free variable of

c) and so ⌊⌊c⌋⌋(Z/x) = ⌊⌊c⌋⌋. The failure of βc thus: Vv([λx .⌊⌊c⌋⌋](Z )) ̸= Vv(⌊⌊c⌋⌋(Z/x)).

Problem 2. The above problem with βc (re)appears in case (2.a) with λx .(⌊⌊c⌋⌋ = x) which
is typeable according to [10, 7]; and also in case (2.b) with ⌊⌊X⌋⌋τ that is restricted to τ [8] (i.e.
the above optional type condition for ⌊⌊X⌋⌋τ is strictly required). Observe again that x which is
not present/visible in ⌊⌊c⌋⌋τ is ‘activated’ when evaluating the abstraction containing ⌊⌊c⌋⌋τ .

Solutions (S1) – (S2).
(S1) Elimination of terms ⌊⌊X⌋⌋τ – because one may achieve their effect by evaluation

functions-as-mappings Evalτ (·) (v-constructed, for any v, by Evalτ ). Though the key source
of Problem 2 (viz. ⌊⌊X⌋⌋τ s) was removed, the problem persists if one keeps the idea that x ∈
FV (Evalτ (c)) when Vv(c) = x ; and uses the ‘natural’ evaluation rule for abstractions ([9], [6]):
Vv(λx .Y ) = f such that for any v′ the function f maps each Vv′(x) to Vv′(Y ) where each v′

that is distinct from the actual v only differs from v as regards values for x (this evaluation rule
works perfectly for STT that is not extended by evaluation terms or terms involving Evalτ ).

(S2) Different evaluation rules for abstractions. Recall that on ‘natural’ evaluation rule
for abstractions one considers v and assignments v′ such that each v′ is like v except for x ’s
value. On (A)-approach, which is evidently embraced in [5] where Problem 1 was published, ⌊⌊c⌋⌋τ
is v′-evaluated in synchronicity with v′(x). Thus, Vv(λx .⌊⌊c⌋⌋τ ) = Id, for x is treated as free in
⌊⌊c⌋⌋τ . But on (B)-approach, that synchronicity is broken, for one evaluates ⌊⌊c⌋⌋τ of λx .⌊⌊c⌋⌋τ w.r.t.
v only. Vv(λx .⌊⌊c⌋⌋τ ) is a constant mapping, not Id, for x is not treated as free in ⌊⌊c⌋⌋τ . Hence the
above failure is prevented: Vv([λx .⌊⌊c⌋⌋](Z )) = Vv(⌊⌊c⌋⌋(Z/x)). In the extended STT, (B)-approach

requires a reformulation of evaluation rule for abstractions, either i. ‘substitutional’ (using
substitution of computations-as-constants; à Church [2]), or ii. ‘objectual’ (using substitution
of computations acquired by quotation function Quoteτ ).
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Kleene’s G4 sequent calculus for classical propositional logic is a very man-
ageable proof-theoretic tool, due to its nice structural properties: in particular,
it can be used as a tool for decomposing any classically valid formula into a
unique (disjunctive or conjunctive) normal form. We consider a variant of G4
with contexts as sets, and extend it with rules for classically invalid sequents,

thus taking a hybrid (anti)sequent calculus G4 for classical logic: we use G4 to
decompose any (anti)sequent into a multiset of atomic (anti)sequents, and thus
any classical formula into a unique normal form.

We show that any logical G4 derivation can be translated into an operation

on multisets of atomic (anti)sequents, and that any G4 derivation of atomic
(anti)sequents can be transformed into a derivation where all applications of

Weakening (if any) are permuted last. This normal form result for structural G4
derivations can be further refined for particular classes of atomic (anti)sequents,

to the effect that structural G4 derivations involving them can be put in Gocle-
nian (dually, Aristotelian) normal form: this allows to give syntactical reformu-
lations of results given by Gentzen himself [2, 8, 6].

For any set S of atomic antisequents, maximal application of the rewriting
rule

n⋃
i=1

{Θi ⊣ Λi} ∪ {Φ,Θ′
1, . . . ,Θj , . . . ,Θ

′
n ⊣ Λ′

1, . . . ,Λk, . . . ,Λ
′
n,Ψ} →

n⋃
i=1

{Θi ⊣ Λi}

with n ≥ 1, 1 ≤ j, k ≤ n – provided that for any 1 ≤ j′ ̸= j, k′ ̸= k, j′ ̸= k′ ≤ n,
Θ′

j′ = Θj′ \ {p} and Λ′
k′ = Λk′ \ {p} for any p ∈ Θj′ ∩ Λk′ – yields a reduct

under Weakening and Cut [7] of S: we exploit our normal form result to show
that a reduct under Weakening and Cut of S is a (possibly) reduced version of
S where no antisequent can be dropped modulo logical equivalence. Moreover,
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if S is a consistent set of atomic antisequents and S∗ is the closure under Cut
of S, then maximal application of the rewriting rules

{Θ ⊣ Λ, p} → {Θ ⊣ Λ} if p,Θ′ ⊣ Λ′ with Θ′ ⊆ Θ, Λ′ ⊆ Λ belonging to S∗

{p,Θ ⊣ Λ} → {Θ ⊣ Λ} if Θ′ ⊣ Λ′, p with Θ′ ⊆ Θ, Λ′ ⊆ Λ belonging to S∗

yields a strengthening under Cumulative Cut of S: we prove that a strength-
ening under Cumulative Cut of a reduct under Weakening and Cut of S is a
(possibly) reduced version of S where neither an antisequent nor an atom can
be dropped modulo logical equivalence. We thus define a sequent-based proce-
dure which decomposes any classically invalid formula into a unique irreducible
normal form, and another one which decomposes any classically invalid formula
into a minimal normal form – i.e., an irreducible normal form of minimal length.
As a result, we get a proof-theoretic reformulation of the consensus method for
the minimization of Boolean circuits [4].

We discuss the extension of our method to the case of G4ip sequent calculus
for intuitionistic propositional logic [1, 3], and provide an approximate result
of minimization for conditional normal forms [5] of intuitionistically invalid for-
mulas.
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Lambek’s two calculi, the associative one [3] and the non-associative one
[4], each have their advantages and disadvantages for the analysis of natural
language syntax by means of categorial grammar. In some cases, associativity
leads to over-generation, i.e., validation of grammatically incorrect sentences.
In other situations, associativity is useful.

One approach, developed by Morrill [8] and Moortgat [5], begins with the
associative calculus and reconstructs local non-associativity by means of the
so-called bracket modalities, ultimately leading to Morrill’s CatLog parser [9].
Bracket modalities interact in a subtle way with the subexponential modali-
ties originating in linear logic. Our contributions to this approach include [2].
We have discussed this approach in several presentations at the recent LAP
conferences.

Another approach, developed by Moot and Retoré [7], begins with the non-
associative calculus and utilizes multi-modalities, ultimately leading to the Grail
parser [6]. We enhance the latter approach in [1], showing that local associativity
may be expressed by means of subexponentials. We discuss decidability and
undecidability results. This is joint work with Eben Blaisdell, Max Kanovich,
Stepan L. Kuznetsov, and Elaine Pimentel.
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Is there mathematical concepts that are

real?

Zvonimir Šikić

According to [3], C. F. Gauss said: If eiπ = −1 was not immediately apparent
to a student upon being told it, that student would never become a first-class
mathematician. We will explore the arguments that support Gauss’s claim in
order to prove that there are no mathematical concepts that are real in Steiner’s
sense.

We conform to the position that concept exists if it satisfies the W. O.
Quine’s condition: Fs exist if ∃xFx is a theorem of a true theory; cf. [8].
But M. Steiner claims in [10] that it is possible for Fs to satisfy this condition
without being real. His inspiration is P. Bridgman’s definition of physical re-
ality: Something is physically real if it is connected with physical phenomena
independent of those phenomena which entered its definition; cf. [1] p.56.

There is something profoundly right in the idea that the real is that which
has properties transcending those which enter its definition and Steiner’s aim is
to show that mathematical entities can occasionally be said to be real in exactly
the same sense.

Quine’s condition is applicable to the existence of mathematical entities:
scientific theories are committed to the existence of mathematical entities, and
since we regard some of them as true, we must regard mathematical entities as
existent. However, according to Steiner, this is not an argument for the reality
of mathematical entities.

To demonstrate the reality of an entity in the natural sciences one typically
shows that the entity is indispensable in explaining some new phenomenon. In
this way the entity acquires new and independent descriptions. Steiner applies
the same idea in mathematics.

For example, π is real because we have at least two independent descriptions

for π. Geometric, π = C
2r and analytic, π = ln(−1)

i . In the first case π is derived
from the formula for the circumference of a circle C with radius r. In the second
case π is derived from the special case of Euler’s formula, epii = −1.

We know by deductive proof that the descriptions are coreferential (unlike
the situation in the physical sciences where this is demonstrated empirically).
But then, how can provably coreferential descriptions be regarded as indepen-
dent? Steiner’s answer is to distinguish between two kinds of proof of coreference
in mathematics: those which are nonexplanatory and merely demonstrate the
coreference, and those which explain it. Descriptions are independent if the
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proofs of their coreferentiality are nonexplanatory.
We show that the “independence of the descriptions of two mathematical

entities” is not additionally explained by the “absence of explanatory proofs of
their coreference”, so we will stick with “independence” as a less vague criterion.

After a detailed analysis of the “reality status” of π, in the previously de-
scribed context, we conclude that π is not real in Steiner’s sense. As a matter
of fact, it is difficult to prove for any mathematical concept that it is real in
Steiner’s sense. Namely, it is not enough to formulate two descriptions of a
concept and find a proof of their coreference which keeps the descriptions inde-
pendent. It should be proved that all proofs of their coreference are such.

But mathematical theories are deeply connected and in the entire history of
mathematics, mathematicians are constantly striving to discover these connec-
tions. For example, it is typical for mathematicians to persistently search for
new proofs of old theorems in order to discover these intertheoretical dependen-
cies.

Hence, our hypothesis is that no mathematical concept is real in Steiner’s
sense.
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Human decision-making has relied on statistical analysis for decades. How-
ever, several statistical paradoxes have raised questions about human intuition.
One of the most well-known paradoxes is Simpson’s paradox, also known as the
Yule-Simpson effect. Simpson’s paradox is a statistical phenomenon that oc-
curs when an association between two variables is observed in sub-populations
but disappears or reverses when the sub-populations are combined. This phe-
nomenon is also relevant for the analysis of fairness: a decision can appear as
biased against one group when examined globally, while it is actually fair, or
even biased against the other group, when examined in the sub-population.

There are numerous examples of Simpson’s paradox, such as the Berkeley
admission [1], kidney stone treatment [2], baseball batting averages [3], COVID-
19 death rates in Italy and China, just to cite a few.

Simpson’s paradox has been extensively analyzed by mathematicians and
statisticians such as Pearson [4], Yule [5], Simpson [6], Blyth [7], Gardner [8],
Good and Mittal [9], Lindley and Novick [10], Hand [11], and many others.
However, there are still certain aspects of the paradox that have not been suffi-
ciently addressed. One such issue is the quantification of the paradox’s strength.
Existing classifications on Yule’s paradox, Association Reversal, and Amalga-
mation paradox do not provide enough information about the magnitude of the
paradox.

Furthermore, it can be observed that in several examples of Simpson’s para-
dox, sensitive attributes such as gender, vaccination status, etc., play a key role.
This type of data should be protected using various privacy techniques before
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its use. One of these techniques is differential privacy (DP) [12, 13], which
involves incorporating controlled random noise into the original data (or analy-
sis). This raises a new question: How does the obfuscation of the data through
randomized response (RR) [14, 15] affect the presence of the paradox in a given
dataset? RR is a data collection method in which the true value is reported
with probability p, while the rest of the probability is distributed uniformly on
the other values.

In this paper, we introduce a novel measure to quantify the strength of Simp-
son’s Paradox. Additionally, we analyze the impact of satisfying DP through
RR on Simpson’s Paradox, both theoretically and empirically.
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In formal epistemology, group knowledge is often modeled as the knowledge
that the group would have if the agents share all their individual knowledge.
However, this interpretation does not account for relations between agents. In
this work, we propose the notion of synergistic knowledge, which makes it pos-
sible to model different relationships between agents.

To do so, we present a novel semantics for modal logic that is based on
simplicial complexes. In our logic, a group of agents may know more than just
the deductive closure of the joint individual knowledge. That is our epistemic
operators support a principle that could be paraphrased as the sum is greater
than its parts, hence the name synergistic knowledge.

Synergistic knowledge may occur, for instance, when agents communicate
through shared objects. As examples, we investigate the use of consensus objects
and the problem of dining cryptographers. Moreover, we show that our logic can
also model network topology, which we illustrate with an example of a missing
communication link.

This talk is based on [1], which is joint work with Christian Cachin and
David Lehnherr.
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Reasoning about Cyberphysical Systems

using Rewriting Modulo Constraints

Carolyn Talcott

Modeling cyber-physical systems, such as autonomous vehicles, factory robots,
surveillance drones, . . ., involves interaction of discrete controllers and con-
tinuous evolution of physical state. Traditional verification methods such as
reachability analysis and model-checking suffer from state space explosion. Fur-
thermore, each analysis covers one instance, from infinitely many possibilities.
The analyses assume a closed system. By using patterns (terms with variables)
paired with constraints on values of variables one can begin to address these
problems using rewriting modulo constraints.

In this talk we will briefly review rewriting logic and its application to mod-
eling cyberphysical systems. We will introduce the extension of rewriting to
rewriting modulo constraints, including its soundness and completenss proper-
ties. We will give examples of how rewriting modulo constraints can be used to
address some of the challenges in verifying cyber-physical systems and discuss
some of the challenges in automating proofs of key properties of such systems.
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