PRINCIPLES OF MATHEMATICAL MODELLING

1 / 58

 Ω

(ロトイ部)→(差)→(差)→

prof.dr.sc. Miljenko Marušic´

miljenko.marusic@math.hr

WWW: <https://web.math.pmf.unizg.hr/nastava/pmm/>

Lectures:

```
Tuesday: 9–11 (A201)
```
Exercises:

```
Tuesday: 11–13 (A201)
```
Consultations:

Monday: 14–16

 $\mathbf{A} = \mathbf{A} + \mathbf$

Contents.

Mathematical models

- **•** Exponential model
- **•** Logistic model
- Tunor growth models (von Bertalanffy, Gompertz,...)
- **Growth with limitation**
- Model of bioreactor ('chemostat' model)
- Lotka-Volterra model (predator-prey model)
- Compartmental models
- Epidemiological models (SIS, SIR, ...)

Mathematical contents

- Prerequisite: derivation, integration
- **•** Differential equations
- Solving differential equations
- Numerical solutions of differential equations
- Least squares method (determination of model parameters)
- **•** Equilibria
- Stability of equilibria
- **•** Partial derivative
- **•** Eigenvalues of linear operator

Programming: 'Mathematica'

Grading

- 1. exam 50%
- 2. exam 50%
- **Homework**
- Repeated exam (maximal grade is 2)

 \equiv

イロトメ 御 トメ 君 トメ 君 トッ

GROWTH MODELS

イロト 不優 トイ磨 トイ磨 トー Þ Ω

6 / 58

1.1. EXPONENTIAL MODEL 1.1.1. Exponential function

Exponential function:

$$
\text{exp}:\mathbb{R}\to\mathbb{R},
$$

(General) exponential function:

$$
\text{exp}_a:\mathbb{R}\to\mathbb{R},
$$

a - base of exponential function, $a > 0$ and $a \neq 1$.

Notation:

$$
\exp_a(x)=a^x
$$

в

イロト イ押 トイラ トイラトー

Graph of exponential function.

メロトメ 御 トメ ヨ トメ ヨト Þ

8 / 58

Definition of exponential function.

$$
\exp(x) = e^x.
$$

NO!

Power series:

$$
\exp x = \sum_{k=0}^{\infty} \frac{x^k}{k!}
$$

or differential equation

$$
f'(x)=f(x),\quad f(0)=1,
$$

or

$$
\exp x = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n
$$

Property:

$$
e^{X+y}=e^X e^y \qquad \qquad \text{or} \qquad e^x \rightarrow e^x e^x \rightarrow e^x e^x e^x
$$

Motivation for exponential function.

For $n \in \mathbb{N}$:

$$
a^n = a \cdot a \cdot \ldots \cdot a
$$

To extend property
$$
f(x + y) = f(x)f(y)
$$
 on \mathbb{N}_0 :

$$
a^n = a^{n+0} = a^n a^0 \Rightarrow a^0 = 1.
$$

The same property we extend on \mathbb{Z} :

$$
1 = a^0 = a^{n-n} = a^n a^{-n} \Rightarrow a^{-n} = \frac{1}{a^n},
$$

and on Q:

$$
a=a^1=a^{n\frac{1}{n}}=a^{\frac{1}{n}+\frac{1}{n}+\ldots+\frac{1}{n}}=\left(a^{\frac{1}{n}}\right)^n\quad\Rightarrow\quad a^{\frac{1}{n}}=\sqrt[n]{a}.
$$

1

Property

$$
f(x + y) = f(x)f(y)
$$

uniquely define exponential function on Q. Can we this property extend on \mathbb{R} ?

Theorem (1)

For given a ∈ R*, a* > 0*, there exists unique continuous function f* : $\mathbb{R} \to \mathbb{R}$ *satisfying* $f(x + y) = f(x)f(y)$ *for all* $x, y \in \mathbb{R}$ *and* $f(1) = a$.

Theorem (2)

For given a ∈ R*, a* > 0*, there exists unique monotone function f* : $\mathbb{R} \to \mathbb{R}$ *satisfying* $f(x + y) = f(x)f(y)$ *for all x*, $y \in \mathbb{R}$ *and* $f(1) = a$.

Definition

Function from Theorem 1 (2) for $a = f(1) > 0$ and $a \neq 1$ we call exponential function. Number *a* we call a bas[e o](#page-9-0)f [e](#page-11-0)[x](#page-9-0)[po](#page-10-0)[n](#page-11-0)[e](#page-5-0)[n](#page-11-0)[ti](#page-12-0)[a](#page-5-0)[l](#page-6-0) [f](#page-37-0)[u](#page-38-0)[nc](#page-0-0)[tio](#page-57-0)n.

1.Homework

Prove Theorems 1. and 2.

For those who want more: Show that a continuity is necessary condition for uniqueness, i.e., show that there exists a function satisfying $f(x + y) = f(x)f(y)$ for all $x, y \in \mathbb{R}$ and it is not continuosus.

イロト イ押 トイラ トイラトー

1.1.2. Discrete exponential model

We observe cell where each cell divides after time T_d (exactly). We start with one cell

After time T_d it will divide and we will have two cells

イロト イ団 トイモト イモト 隱 299

14 / 58

After time $2T_d$ each cell will divide and we will have 4 cells

メロメメ 御 メメ きょく きょう E 299 After time $3T_d$ we will have 8 cells

etc.

メロトメ 御 トメ 差 トメ 差 トー \equiv 299

17 / 58

Number of cells at time $t_i = i \cdot T_d$ is: 1, 2, 4, 8, 16, ...

(*Geometrical growth.*)

N - population size,

$$
N_i := N(t_i) = 2^i.
$$

Exponential function. Exponential growth.

Different notation:

Ni - population size at time *tⁱ* After period of T_d population will double:

$$
N_{i+1}=2N_i.
$$

Diference equation.

K ロ ▶ K 御 ▶ K 重 ▶ K 重 ▶ │ 重

Solution of diference equation:

$$
N_i = 2N_{i-1} = 2^2 N_{i-2} = \ldots = N_0 2^i.
$$

Solution is not unique.

With given initial value N_0 at time t_0 the solution will be unique.

Thomas Robert Malthus (1766-1834)

- English economist and demographist
- He was the first who used exponential function for the description of a population growth.
- Malthusian growth
- "An Essay on the Principle of Population" (1798)

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1$

1.1.3. Derivation of exponential model

- Assumption that all cells divide at the same time is unrealistic.
- More realistic: cells are mixed and divide at different moments.
- Time between two divisions (T_d) is not the same for all cells.
- **Doubling time** is the average time it takes for a population to double in number.

Assumption

All cells divide exactly after the same time T^d .

- Doubling time (average time for division) should not be constant with the respect on time.

- For example, it depends on availability of su[bst](#page-19-0)r[at](#page-21-0)[e](#page-19-0) [\(f](#page-20-0)[o](#page-21-0)[o](#page-19-0)[d](#page-20-0)[\)](#page-29-0)[.](#page-30-0)

Define gain function

$$
G(N(t),h)=N(t+h)-N(t).
$$

G does not depend on *t* explicitly.

If we start to observe population gain of size *N* at different time points *t*, after the time interval *h* the gain is the same.

- We consider a system that is not influenced by external factors.

Simpler notation: $N = N(t)$.

First consider dependence of gain function *G* on population size. For fixed *h* define function

$$
g_h(N)=G(N,h).
$$

 $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

Divide population on two subpopulations of sizes *M* i *N*. Each of them continues to grow under the same conditions:

$$
G(N(t),h) = N(t+h) - N(t) \quad \text{if} \quad G(M(t),h) = M(t+h) - M(t).
$$

On the other side, two populations can be considered as one population:

$$
G(N(t) + M(t), h) = N(t + h) + M(t + h) - N(t) - M(t)) =
$$

= $G(N(t), h) + G(M(t), h),$

i.e.,

$$
g_h(N+M)=g_h(N)+g_h(M).
$$

 Ω 23 / 58

4 0 8 4 6 8 4 9 8 4 9 8 1

Cauchy's functional equation

$$
f(x + y) = f(x) + f(y).
$$

- \Rightarrow *f* is linear function on \mathbb{Q} : $f(x) = ax$. What about \mathbb{R}^2
- If *f* is monotonic (or continuous) \Rightarrow *f* is linear function on R.
- Note: function *G* is monotonic (increasing) with the respect to *N* and *h*.

Larger population \rightarrow larger gain

 \Rightarrow *G* is monotonic by variable *N* and q_h is monotonic (increasing) function.

 g_h is linear function \rightarrow *G* is linear in variable *N*:

$$
g_h(N) = aN = a(h)N.
$$

24 / 58

KOLKAR KELKEL E VAN

Gain function:

⇒

$$
N(t+h)-N(t)=G(N(t),h)=a(h)N(t).
$$

$$
N(t + h) = a(h)N(t) + N(t) = (1 + a(h))N(t) = b(h)N(t).
$$

Population increase after time $h_1 + h_2$:

$$
N(t + h_1 + h_2) = b(h_1 + h_2)N(t).
$$

On the other side,

$$
N(t + h_1 + h_2) = b(h_2)N(t + h_1) = b(h_1)b(h_2)N(t).
$$

Equalize right sides:

$$
b(h_1 + h_2) = b(h_1)b(h_2).
$$

G [is](#page-23-0) [m](#page-25-0)[o](#page-19-0)[no](#page-24-0)[t](#page-25-0)o[n](#page-37-0)[i](#page-29-0)[c](#page-38-0) [f](#page-5-0)[u](#page-6-0)nc[ti](#page-0-0)on in variable $h \Rightarrow b$ is monotonic functi[on.](#page-57-0)

b is exponential function:

$$
b(h) = e^{\alpha h}
$$

and

$$
N(t+h)=e^{\alpha h} N(t).
$$

Especially, for $t = 0$ and $h = t$, we obtain expresion for N:

 $N(t) = N(0) e^{\alpha t}$.

- exponential model
- model function
- $N(0)$ and α are model parameters

 $A \cap (A \cup A \cup B) \cup (A \cup B) \cup (A \cup B) \cup (B \cup B)$

Instead of: cells divide after time T_d , exactly

We may consider: all cells have the same probability of splitting and this probability is time independent. \Rightarrow In population of relatively large number of cells, average doubling time will be constant.

Derivation of exponential model from this assumption is the same as previous derivation. (Note: if population is divided in two parts, for both parts, assumption about the same probability of splitting holds.)

イロトメ 御 トメ 君 トメ 君 トー 君

Cauchy's functional equation

$$
f(x + y) = f(x) + f(y), \quad \forall x \in \mathbb{R}.
$$

and *f* is monotonic (continuous). Then *f* is a linear function.

Proof. First, we show that $f(x + y) = f(x) + f(y)$ is a linear function on $\mathbb{O}.$

For $m \in \mathbb{N}$:

$$
f(mx)=m f(x).
$$

Now, for $n \in \mathbb{N}$:

$$
f(x) = f\left(n\frac{1}{n}x\right) = nf\left(\frac{1}{n}x\right).
$$

\n
$$
\Rightarrow f\left(\frac{1}{n}x\right) = \frac{1}{n}f(x).
$$

Hence, for all $r \in \mathbb{Q}$, $r = \frac{m}{n}$ *n* , we have

$$
f(r x) = r f(x).
$$

f is linear function, but only on Q.

Let $a \in \mathbb{R}$ is given.

 \heartsuit is dense in the set $\mathbb{R} \Rightarrow$ for arbitrary $\delta > 0$ there exists $r_1, r_2 \in \mathbb{Q}$ such that $r_1 < a < r_2$, $|a-r_1| < \delta$ and $|a-r_2| < \delta$.

f is monotonic (increasing) \Rightarrow

$$
f(ay) - af(y) \le f(r_2y) - af(y) = r_2f(y) - af(y) = (r_2 - a)f(y).
$$

Similarly,

$$
f(ay) - af(y) \geq f(r_1y) - af(y) = r_1f(y) - af(y) = (r_1 - a)f(y).
$$

 \curvearrowright

Therefore,

$$
|f(ay) - af(y)| \leq \max\{|r_1 - a|, |r_2 - a|\}|f(y)| \leq
$$

 $\leq \delta |f(y)|$

for all $\delta > 0$.

$$
\Rightarrow f(ay)-af(y)=0,
$$

i.e.

$$
\Rightarrow f(ay) = af(y)
$$

for arbitrary $a \in \mathbb{R}$.

$$
\Rightarrow f(x) = f(x \cdot 1) = x f(1)
$$

f is a linear function.

[Q](#page-0-0)[.E.](#page-57-0)D.

メロトメ 御 トメ 君 トメ 君 ト

1.1.4. Taylor expansion of the gain function

Taylorov mean value theorem:

$$
f(x+h) = f(x) + f'(x)h + \frac{1}{2}f''(x)h^{2} + ... + \frac{1}{k!}f^{(k)}(x)h^{k} + \frac{1}{(k+1)!}f^{(k+1)}(\zeta)h^{k+1}.
$$

For $k = 2$:

$$
f(x+h) = f(x) + f'(x)h + \frac{1}{2}f''(x)h^{2} + \mathcal{O}(h^{3}).
$$

Function *f* is approximates by polinomial:

$$
f(x + h) = a + bh + ch2 + O(h3) = P2(h) + O(h3).
$$

 $(0.12 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

Gain function

$$
G(N(t),h)=N(t+h)-N(t)
$$

depends on two variables: *N* i *h*.

$$
G(N,h)=P_2(N,h)+\mathcal{O}.
$$

(remainder O consists of third powers and higher)

'Neglect' O:

$$
G(N, h) = a + bh + cN + dh2 + ehN + fN2.
$$

イロトメ 御 トメ 君 トメ 君 トー 君

1. For $N = 0$ (no population) a gain is 0 $G(0, h) = 0$, $\forall h \Rightarrow$

$$
0=G(0,h)=a+bh+dh^2, \quad \forall h
$$

 \Rightarrow $a = b = d = 0$

Now,

$$
G(N, h) = cN + ehN + fN^2.
$$

2. For $h = 0$ (no time laps) a gain is 0 $G(N, 0) = 0$, $\forall N \Rightarrow$

$$
0=G(N,0)=cN+fN^2,\quad \forall N
$$

 $\Rightarrow c = f = 0$

Now,

$$
G(N,h)=ehN=:\alpha hN.
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 | X 9 Q Q

$$
G(N,h)=\alpha hN.
$$

$$
N(t+h)-N(t)=\alpha hN(t).
$$

$$
\frac{N(t+h)-N(t)}{h}=\alpha N(t). \quad / \lim_{h\to 0}
$$

$$
N'(t) = \alpha N(t).
$$

Differential equation

Function $N_0 e^{\alpha t}$ is a solution.

Is it unique?

イロトメ 御 トメ 君 トメ 君 トー 君

1.1.5. Application of exponential model

Implicit assumption: unlimited access to food

Applicable in initial phase of growth.

Exponential function is unbounded!

 $(0.125 \times 10^{-14} \text{ m})$

Example

Growth of tunor cells (volume is shown).

Choose first 5 data points:

Data coincide with an exponential curve!

Þ

K ロメ K 御 メ K 君 メ K 君 X

Doubling time

Funkcija:

$$
N(t) = N_0 e^{\alpha t}
$$

T^d - doubling time

 299 38 / 58

重

1.2. Differential equations 1.2.1. Definition and example

Exponential model:

$$
y(t) = N_0 e^{\alpha t}
$$

or

$$
y'(t) = \alpha y(t), \quad N(0) = N_0, \quad \forall t
$$

Model is described by differential equation!

Interpretation of derivative:

- tangent (Leibniz)
- **velocity** (Newton)

K ロ ▶ K 個 ▶ K 重 ▶ K 重 ▶ …

Definition

Let $f : [a, b] \times \mathbb{R} \to \mathbb{R}$ be a given function. Then an equation of the form

 $y'(t) = f(t, y(t)) \quad \forall t \in [a, b]$

is named **ordinary differential equation (ODE)**. Function $y : [a, b] \to \mathbb{R}$ satisfying this equation is named a **solution of (ordinary) differential equation**.

- We will use shorter form: **differential equation**
- It is common to omit argument *t* in the notation of a function *y*
- ∀*t* ∈ [*a*, *b*] is also omitted (maximal domain is assumed):

$$
y'=f(t,y)
$$

 $(0.125 \times 10^{-14} \text{ m})$

Examples.

Example 1.

$$
y'(t) = \alpha y(t)
$$

\n
$$
\Rightarrow \quad f(t, y(t)) = \alpha y(t) \quad \Rightarrow \quad f(t, y) = \alpha y
$$

Shorter:

$$
y'=\alpha y
$$

Example 2. Check if $y(x) = e^x$ is a solution of the equation

y ⁰ = *y*? $y(x) = e^x \Rightarrow y'(x) = e^x$ $y' = y \Leftrightarrow e^x = e^x$

It holds for $\forall x (\in \mathbb{R})$.

Fu[n](#page-39-0)c[ti](#page-38-0)[on](#page-57-0) $y(x) = e^x$ $y(x) = e^x$ $y(x) = e^x$ is a solution of the given di[ffe](#page-39-0)[re](#page-41-0)n[tia](#page-40-0)[l](#page-41-0) e[q](#page-38-0)[u](#page-45-0)[a](#page-37-0)tion[.](#page-0-0) QQ Function $y(x) = 2e^x$ is also a solution of the differential equation *y* ⁰ = *y*:

$$
y(x) = 2ex \Rightarrow y'(x) = 2ex
$$

$$
y' = y \Leftrightarrow 2ex = 2ex.
$$

Solution is not unique!

Moreover, $y(x) = ce^x$ is also solution for all $c \in \mathbb{R}!$

$$
y(x) = ce^{x} \Rightarrow y'(x) = ce^{x}
$$

$$
y' = y \Leftrightarrow ce^{x} = ce^{x}.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ - 할 → 9 Q @

Primjer 3. Check if function $y(x) = e^{2x}$ is a solution of the equation

$$
y'=y?
$$

$$
y(x) = e^{2x}
$$
 \Rightarrow $y'(x) = 2e^{2x}$
 $y' = y$ \Leftrightarrow $e^{2x} = 2e^{2x}$

Does not hold $\forall x (\in \mathbb{R})$.

Function $y(x) = e^{2x}$ is not solution of the given differential equation.

KON KONVENTENT BLOGG

Differential equation $y' = f(t, y)$

- may have no solution
- if there is a solution, it should not have to be unique
- Additional condition (equation) may be implied of the form

 $y(a) = y_0$ - initial condition \rightarrow initial value (Cauchy) problem for ODE.

- condition including behaviour in end points of some interval, for example $y(a) + \alpha y(b) = \beta \rightarrow$ boundary condition \rightarrow boundary problem for ODE.

We may define differential equations of higher order (using higher order derivatives):

$$
y^{(k)} = f\left(t, y, y', \ldots, y^{(k-1)}\right)
$$

44 / 58

Example 4. Find solution of initial value problem for ODE

$$
y'=y, \quad y(1)=1.
$$

One solution of the equation is of the form

$$
y(x)=ce^x.
$$

Constant *c* is is determined from the initial condition

$$
y(1) = 1.
$$
\n
$$
\Rightarrow \quad 1 = y(1) = ce^{1} = ce
$$
\n
$$
\Rightarrow \quad c = e^{-1}
$$
\n
$$
\Rightarrow \quad y(x) = e^{-1}e^{x} = e^{x-1}
$$

イロトメ 倒下 メミトメ ミトー 差 Ω

1.2.2. Solving differential equations

Consider differential equation

$$
y'=f(t,y).
$$

When function *f* may be written as a product

$$
f(t,y)=g(t)h(y)
$$

equation is

$$
y'=g(t)h(y)
$$

or

$$
\frac{y'}{h(y)}=g(t).
$$

Functions are equal \Rightarrow indefinite integrals (set of all antiderivatives) are equal:

$$
\int \frac{y'}{h(y)} dt = \int g(t) dt.
$$

46 / 58

$$
\int \frac{y'}{h(y)} dt = \int g(t) dt.
$$

integration by substitution: *y* ⁰*dt* = *dy*

$$
\int \frac{dy}{h(y)} = \int g(t) dt.
$$

Let *H* and *G* are antiderivatives:

$$
H'(y)=\frac{1}{h(y)} \quad \text{if} \quad G'(t)=g(t).
$$

Now,

$$
H(y)=G(t)+C
$$

C - generic constant.

If *H* is an bijection, then

$$
y = H^{-1}(G(t) + C).
$$

47 / 58

Solving differential equation \Leftrightarrow calculating indefinite integral

- Method of separation of variables

Problem

Check that

$$
y(t) = H^{-1} \left(G(t) + C \right).
$$

is a solution of differential equation

$$
y'=f(x,y).
$$

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1$

Rješenje.

Derivative of inverse function:

$$
(f^{-1}(y))' = \frac{1}{f'(f^{-1}(y))}
$$

The composite function rule:

$$
(f(g(x)))'=f'(g(x))g'(x).
$$

$$
y'(t) = (H^{-1} (G(t) + C))' = \frac{G'(t)}{H'(H^{-1} (G(t) + C))} =
$$

=
$$
\frac{G'(t)}{H'(y(t))} = \frac{g(t)}{\frac{1}{h(y(t))}} = g(t)h(y(t)) = f(t, y(t)).
$$

Example 6. Solve differential equation

$$
y'=\alpha y.
$$

Solution.

Separation of variables:

$$
y' = \alpha y = g(t)h(y) \Rightarrow g(t) = \alpha, \quad h(y) = y
$$

$$
\frac{y'}{y} = \alpha \Rightarrow \int \frac{y'}{y} dt = \int \alpha dt \Rightarrow \int \frac{dy}{y} = \alpha t + C
$$

$$
\Rightarrow \quad \ln|y| = \alpha t + C \Rightarrow \quad |y| = e^{\alpha t + C} = C_1 e^{\alpha t}, \ C_1 > 0
$$

$$
\Rightarrow \quad y = C_2 e^{\alpha t}, \ C_2 \in \mathbb{R}
$$

イロト イ団 トイミト イミト 重 299

50 / 58

In growth models differential equation does not depend explicitly on time *t*.

The very same argument as for gain function holds:

- If we start experiment in different times starting wit populations of the same size, growth should be the same.

Growth models:

$$
y'=f(y)
$$

- Autonomous differential equation

 $(0.123 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m} \times 10^{-14} \text{ m}$

Numerical solution of differential equatioi

- Even if differential equation has a solution, it often can not be expressed explicitly.
- Method of separation of variables is just one among many methods.
- It is often the case that antiderivative can not be expressed using 'simple' functions.
- Even if we determine inverse function in the method of separation of variables, it does not mean that we will find its inverse.

New approach: calculate numerical (approximate) solution of ODE instead of exact solution.

 $(0.123 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m} \times 10^{-14} \text{ m}$

Consider initial value problem

$$
y' = f(t, y), y(0) = y_0.
$$

Main idea - Taylor polynomial:

$$
y(t+h) = y(t) + y'(t)h + \frac{y''(\zeta)}{2}h^{2}.
$$

Neglect quadratic term:

$$
y(t+h) \approx y(t) + y'(t)h.
$$

If *y* is a solution of differential equation $y' = f(t, y)$, then

$$
y(t+h) \approx y(t) + h \cdot f(t, y(t)).
$$

 Ω 53 / 58

イロトメ 倒下 メミトメ ミトー 差

Initial value problem:

$$
y' = f(t, y), y(0) = y_0.
$$

We are looking for the solution on the interval [0, *a*].

n - given

Divide interval [0, *a*] on *n* equal parts:

$$
h = \frac{a}{n}
$$
, $t_i = i \cdot h$, $i = 0, 1, 2, ..., n$.

 t_0 and v_0 are known (initial conditions). Calculate an approximation to the solution at *x*1:

$$
y_1 = y_0 + h \cdot f(t_0, y_0)
$$

Next step:

$$
y_2=y_1+h\cdot f(t_1,y_1)
$$

etc.

 $(0.125 \times 10^{-14} \text{ m})$

Method:

$$
y_{i+1} = y_i + h \cdot f(t_i, y_i), \quad i = 0, 1, ...
$$

- Euler's method

Example

Using Euler's method approximate solution of the initial value problem

$$
y'=y, \quad y(0)=1,
$$

at point $x = 1$ using subdivision on 5 subintervals.

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1$

Solution.

Interval [0, 1].

$$
n=5\quad\Rightarrow\quad h=0.2
$$

重

メロトメ 御 トメ ミトメ ミト

 \equiv

- • $y(t + h)$ is approximated by a linear term from Taylor expansion
- The simplest of all methods
- Better approximation \rightarrow better method
- Well known:
	- Runge-Kutta methods
	- linear multistep methods

 $\mathbf{A} = \mathbf{A} + \mathbf$