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Introduction Contents

Contents.

Mathematical models

Exponential model
Logistic model
Tunor growth models (von Bertalanffy, Gompertz,...)
Growth with limitation
Model of bioreactor (’chemostat’ model)
Lotka-Volterra model (predator-prey model)
Compartmental models
Epidemiological models (SIS, SIR, ...)
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Introduction Contents

Mathematical contents

Prerequisite: derivation, integration
Differential equations
Solving differential equations
Numerical solutions of differential equations
Least squares method (determination of model parameters)
Equilibria
Stability of equilibria
Partial derivative
Eigenvalues of linear operator

Programming: ’Mathematica’
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Introduction Exam

Grading

1. exam 50%
2. exam 50%
Homework
Repeated exam (maximal grade is 2)
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GROWTH MODELS
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Exponential model Exponential function

1.1. EXPONENTIAL MODEL

1.1.1. Exponential function

Exponential function:
exp : R→ R,

(General) exponential function:

expa : R→ R,

a - base of exponential function, a > 0 and a 6= 1.

Notation:
expa(x) = ax
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Exponential model Exponential function

Graph of exponential function.
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Exponential model Exponential function

Definition of exponential function.

exp(x) = ex .

NO!

Power series:

exp x =
∞∑

k=0

xk

k !

or differential equation

f ′(x) = f (x), f (0) = 1,

or
exp x = lim

n→∞

(
1 +

x
n

)n

Property:
ex+y = ex ey
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Exponential model Exponential function

Motivation for exponential function.

For n ∈ N:
an = a · a · . . . · a

To extend property f (x + y) = f (x)f (y) on N0:

an = an+0 = ana0 ⇒ a0 = 1.

The same property we extend on Z:

1 = a0 = an−n = ana−n ⇒ a−n =
1
an ,

and on Q:

a = a1 = an 1
n = a

1
n+

1
n+...+

1
n =

(
a

1
n

)n
⇒ a

1
n = n
√

a.
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Exponential model Exponential function

Property
f (x + y) = f (x)f (y)

uniquely define exponential function on Q.
Can we this property extend on R?

Theorem (1)
For given a ∈ R, a > 0, there exists unique continuous function
f : R→ R satisfying f (x + y) = f (x)f (y) for all x , y ∈ R and f (1) = a.

Theorem (2)
For given a ∈ R, a > 0, there exists unique monotone function
f : R→ R satisfying f (x + y) = f (x)f (y) for all x , y ∈ R and f (1) = a.

Definition
Function from Theorem 1 (2) for a = f (1) > 0 and a 6= 1 we call
exponential function. Number a we call a base of exponential function.
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Exponential model Exponential function

1.Homework

Prove Theorems 1. and 2.

For those who want more: Show that a continuity is necessary
condition for uniqueness, i.e., show that there exists a function
satisfying f (x + y) = f (x)f (y) for all x , y ∈ R and it is not continuosus.
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Exponential model Discrete exponential model

1.1.2. Discrete exponential model

We observe cell where each cell divides after time Td (exactly).
We start with one cell
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Exponential model Discrete exponential model

After time Td it will divide and we will have two cells
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Exponential model Discrete exponential model

After time 2Td each cell will divide and we will have 4 cells
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Exponential model Discrete exponential model

After time 3Td we will have 8 cells
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Exponential model Discrete exponential model

etc.
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Exponential model Discrete exponential model

Number of cells at time ti = i · Td is: 1,2,4,8,16, . . ..

(Geometrical growth. )

N - population size,
Ni := N(ti) = 2i .

Exponential function.
Exponential growth.

Different notation:

Ni - population size at time ti
After period of Td population will double:

Ni+1 = 2Ni .

Diference equation.
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Exponential model Discrete exponential model

Solution of diference equation:

Ni = 2Ni−1 = 22Ni−2 = . . . = N02i .

Solution is not unique.
With given initial value N0 at time t0 the solution will be unique.
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Exponential model Discrete exponential model

Thomas Robert Malthus (1766-1834)

- English economist and demographist

- He was the first who used exponential function for the description of a
population growth.

- Malthusian growth

- ”An Essay on the Principle of Population” (1798)
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Exponential model Derivation of exponential model

1.1.3. Derivation of exponential model

- Assumption that all cells divide at the same time is unrealistic.

- More realistic: cells are mixed and divide at different moments.

- Time between two divisions (Td ) is not the same for all cells.

- Doubling time is the average time it takes for a population to double
in number.

Assumption
All cells divide exactly after the same time Td .

- Doubling time (average time for division) should not be constant with
the respect on time.

- For example, it depends on availability of substrate (food).
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Exponential model Derivation of exponential model

Define gain function

G(N(t),h) = N(t + h)− N(t).

G does not depend on t explicitly.

If we start to observe population gain of size N at different time points
t , after the time interval h the gain is the same.

- We consider a system that is not influenced by external factors.

Simpler notation: N = N(t).

First consider dependence of gain function G on population size.

For fixed h define function

gh(N) = G(N,h).
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Exponential model Derivation of exponential model

Divide population on two subpopulations of sizes M i N.

Each of them continues to grow under the same conditions:

G(N(t),h) = N(t + h)− N(t) i G(M(t),h) = M(t + h)−M(t).

On the other side, two populations can be considered as one
population:

G(N(t) + M(t),h) = N(t + h) + M(t + h)− N(t)−M(t)) =
= G(N(t),h) + G(M(t),h),

i.e.,
gh(N + M) = gh(N) + gh(M).
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Exponential model Derivation of exponential model

Cauchy’s functional equation

f (x + y) = f (x) + f (y).

⇒ f is linear function on Q: f (x) = ax .

What about R?

If f is monotonic (or continuous)⇒ f is linear function on R.

Note: function G is monotonic (increasing) with the respect to N and h.

Larger population→ larger gain

⇒ G is monotonic by variable N and gh is monotonic (increasing)
function.

gh is linear function → G is linear in variable N:

gh(N) = aN = a(h)N.
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Exponential model Derivation of exponential model

Gain function:

N(t + h)− N(t) = G(N(t),h) = a(h)N(t).

⇒

N(t + h) = a(h)N(t) + N(t) = (1 + a(h))N(t) = b(h)N(t).

Population increase after time h1 + h2:

N(t + h1 + h2) = b(h1 + h2)N(t).

On the other side,

N(t + h1 + h2) = b(h2)N(t + h1) = b(h1)b(h2)N(t).

Equalize right sides:

b(h1 + h2) = b(h1)b(h2).

G is monotonic function in variable h ⇒ b is monotonic function.
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Exponential model Derivation of exponential model

b is exponential function:
b(h) = eαh

and
N(t + h) = eαh N(t).

Especially, for t = 0 and h = t , we obtain expresion for N:

N(t) = N(0) eαt .

- exponential model

- model function

- N(0) and α are model parameters
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Exponential model Derivation of exponential model

Instead of: cells divide after time Td , exactly

We may consider: all cells have the same probability of splitting and
this probability is time independent. ⇒ In population of relatively
large number of cells, average doubling time will be constant.

Derivation of exponential model from this assumption is the same as
previous derivation. (Note: if population is divided in two parts, for both
parts, assumption about the same probability of splitting holds.)
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Exponential model Derivation of exponential model

Cauchy’s functional equation

f (x + y) = f (x) + f (y), ∀x ∈ R.

and f is monotonic (continuous).
Then f is a linear function.

Proof. First, we show that f (x + y) = f (x) + f (y) is a linear function on
Q.

For m ∈ N:
f (mx) = m f (x).

Now, for n ∈ N:

f (x) = f
(

n
1
n

x
)

= n f
(

1
n

x
)
.

⇒ f
(

1
n

x
)

=
1
n

f (x) .
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Exponential model Derivation of exponential model

Hence, for all r ∈ Q, r = m
n , we have

f (r x) = r f (x) .

f is linear function, but only on Q.

Let a ∈ R is given.

Q is dense in the set R ⇒
for arbitrary δ > 0 there exists r1, r2 ∈ Q such that r1 < a < r2,
|a− r1| < δ and |a− r2| < δ.

f is monotonic (increasing) ⇒

f (ay)− af (y) ≤ f (r2y)− af (y) = r2f (y)− af (y) = (r2 − a)f (y).

Similarly,

f (ay)− af (y) ≥ f (r1y)− af (y) = r1f (y)− af (y) = (r1 − a)f (y).

29 / 58



Exponential model Derivation of exponential model

Therefore,

|f (ay)− af (y)| ≤ max{|r1 − a|, |r2 − a|}|f (y)| ≤
≤ δ|f (y)|

for all δ > 0.
⇒ f (ay)− af (y) = 0,

i.e.
⇒ f (ay) = af (y)

for arbitrary a ∈ R.

⇒ f (x) = f (x · 1) = x f (1)

f is a linear function.

Q.E.D.
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Exponential model Taylor expansion of the gain function

1.1.4. Taylor expansion of the gain function

Taylorov mean value theorem:

f (x + h) = f (x) + f ′(x)h +
1
2

f ′′(x)h2 + . . .+
1
k !

f (k)(x)hk +

+
1

(k + 1)!
f (k+1)(ζ)hk+1.

For k = 2:

f (x + h) = f (x) + f ′(x)h +
1
2

f ′′(x)h2 +O(h3).

Function f is approximates by polinomial:

f (x + h) = a + bh + ch2 +O(h3) = P2(h) +O(h3).
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Exponential model Taylor expansion of the gain function

Gain function
G(N(t),h) = N(t + h)− N(t)

depends on two variables: N i h.

G(N,h) = P2(N,h) +O.

(remainder O consists of third powers and higher)

’Neglect’ O:

G(N,h) = a + bh + cN + dh2 + ehN + fN2.
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Exponential model Taylor expansion of the gain function

1. For N = 0 (no population) a gain is 0 G(0,h) = 0, ∀h ⇒

0 = G(0,h) = a + bh + dh2, ∀h

⇒ a = b = d = 0

Now,
G(N,h) = cN + ehN + fN2.

2. For h = 0 (no time laps) a gain is 0 G(N,0) = 0, ∀N ⇒

0 = G(N,0) = cN + fN2, ∀N

⇒ c = f = 0

Now,
G(N,h) = ehN =: αhN.
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Exponential model Taylor expansion of the gain function

G(N,h) = αhN.

N(t + h)− N(t) = αhN(t).

N(t + h)− N(t)
h

= αN(t). / lim
h→0

N ′(t) = αN(t).

Differential equation

Function N0 eαt is a solution.

Is it unique?
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Exponential model Application of exponential model

1.1.5. Application of exponential model

Implicit assumption: unlimited access to food

Applicable in initial phase of growth.

Exponential function is unbounded!
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Exponential model Application of exponential model

Example
Growth of tunor cells (volume is shown).

10 20 30 40 50 60 70

5000

10 000

15 000

20 000

10 20 30 40 50 60 70

10

100

1000

104

36 / 58



Exponential model Application of exponential model

Choose first 5 data points:

5 6 7 8

10.0

5.0

2.0

20.0

3.0

1.5

15.0

7.0

Data coincide with an exponential curve!
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Exponential model Application of exponential model

Doubling time

Funkcija:
N(t) = N0 eαt

Td - doubling time

N(t + Td) = 2N(t)

N0 eα(t+Td ) = 2N0 eαt

eαt eαTd = 2 eαt

eαTd = 2

α =
ln 2
Td
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Differential equations Definition and examples

1.2. Differential equations
1.2.1. Definition and example

Exponential model:
y(t) = N0 eαt

or
y ′(t) = αy(t), N(0) = N0, ∀t

Model is described by differential equation!

Interpretation of derivative:

- tangent (Leibniz)

- velocity (Newton)
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Differential equations Definition and examples

Definition
Let f : [a,b]×R→ R be a given function. Then an equation of the form

y ′(t) = f (t , y(t)) ∀t ∈ [a,b]

is named ordinary differential equation (ODE).
Function y : [a,b]→ R satisfying this equation is named a solution of
(ordinary) differential equation.

- We will use shorter form: differential equation

- It is common to omit argument t in the notation of a function y

- ∀t ∈ [a,b] is also omitted (maximal domain is assumed):

y ′ = f (t , y)
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Differential equations Definition and examples

Examples.

Example 1.
y ′(t) = αy(t)

⇒ f (t , y(t)) = αy(t) ⇒ f (t , y) = αy

Shorter:
y ′ = αy

Example 2. Check if y(x) = ex is a solution of the equation

y ′ = y?

y(x) = ex ⇒ y ′(x) = ex

y ′ = y ⇔ ex = ex

It holds for ∀x(∈ R).

Function y(x) = ex is a solution of the given differential equation.
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Differential equations Definition and examples

Function y(x) = 2 ex is also a solution of the differential equation
y ′ = y :

y(x) = 2 ex ⇒ y ′(x) = 2 ex

y ′ = y ⇔ 2 ex = 2 ex .

Solution is not unique!

Moreover, y(x) = c ex is also solution for all c ∈ R!

y(x) = c ex ⇒ y ′(x) = c ex

y ′ = y ⇔ c ex = c ex .
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Differential equations Definition and examples

Primjer 3. Check if function y(x) = e2x is a solution of the equation

y ′ = y?

y(x) = e2x ⇒ y ′(x) = 2 e2x

y ′ = y ⇔ e2x = 2 e2x

Does not hold ∀x(∈ R).

Function y(x) = e2x is not solution of the given differential equation.
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Differential equations Definition and examples

Differential equation y ′ = f (t , y)
may have no solution

if there is a solution, it should not have to be unique

Additional condition (equation) may be implied of the form

- y(a) = y0 - initial condition→ initial value (Cauchy) problem for
ODE.

- condition including behaviour in end points of some interval, for
example y(a) + αy(b) = β → boundary condition→ boundary
problem for ODE.

We may define differential equations of higher order (using higher
order derivatives):

y (k) = f
(

t , y , y ′, . . . , y (k−1)
)
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Differential equations Definition and examples

Example 4. Find solution of initial value problem for ODE

y ′ = y , y(1) = 1.

One solution of the equation is of the form

y(x) = c ex .

Constant c is is determined from the initial condition

y(1) = 1.

⇒ 1 = y(1) = c e1 = c e

⇒ c = e−1

⇒ y(x) = e−1 ex = ex−1
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Differential equations Solving differential equations

1.2.2. Solving differential equations

Consider differential equation

y ′ = f (t , y).

When function f may be written as a product

f (t , y) = g(t)h(y)

equation is
y ′ = g(t)h(y)

or
y ′

h(y)
= g(t).

Functions are equal⇒ indefinite integrals (set of all antiderivatives)
are equal: ∫

y ′

h(y)
dt =

∫
g(t)dt .
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Differential equations Solving differential equations∫
y ′

h(y)
dt =

∫
g(t)dt .

integration by substitution: y ′dt = dy∫
dy

h(y)
=

∫
g(t)dt .

Let H and G are antiderivatives:

H ′(y) =
1

h(y)
i G′(t) = g(t).

Now,
H(y) = G(t) + C

C - generic constant.

If H is an bijection, then

y = H−1 (G(t) + C) .

47 / 58



Differential equations Solving differential equations

Solving differential equation⇔ calculating indefinite integral

- Method of separation of variables

Problem
Check that

y(t) = H−1 (G(t) + C) .

is a solution of differential equation

y ′ = f (x , y).
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Differential equations Solving differential equations

Rješenje.

Derivative of inverse function:(
f−1(y)

)′
=

1
f ′(f−1(y))

The composite function rule:

(f (g(x)))′ = f ′(g(x))g′(x).

y ′(t) =
(

H−1 (G(t) + C)
)′

=
G′(t)

H ′
(
H−1 (G(t) + C)

) =

=
G′(t)

H ′(y(t))
=

g(t)
1

h(y(t))

= g(t)h(y(t)) = f (t , y(t)).
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Differential equations Solving differential equations

Example 6.
Solve differential equation

y ′ = αy .

Solution.

Separation of variables:

y ′ = αy = g(t)h(y) ⇒ g(t) = α, h(y) = y

y ′

y
= α ⇒

∫
y ′

y
dt =

∫
αdt ⇒

∫
dy
y

= αt + C

⇒ ln |y | = αt + C ⇒ |y | = eαt+C = C1eαt , C1 > 0

⇒ y = C2eαt , C2 ∈ R
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Differential equations Solving differential equations

In growth models differential equation does not depend explicitly on
time t .

The very same argument as for gain function holds:

- If we start experiment in different times starting wit populations of the
same size, growth should be the same.

Growth models:
y ′ = f (y)

- Autonomous differential equation
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Differential equations Numerical solution of differential equation

Numerical solution of differential equatioi
Even if differential equation has a solution, it often can not be
expressed explicitly.

Method of separation of variables is just one among many
methods.

It is often the case that antiderivative can not be expressed using
’simple’ functions.

Even if we determine inverse function in the method of separation
of variables, it does not mean that we will find its inverse.

New approach: calculate numerical (approximate) solution of ODE
instead of exact solution.
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Differential equations Numerical solution of differential equation

Consider initial value problem

y ′ = f (t , y), y(0) = y0.

Main idea - Taylor polynomial:

y(t + h) = y(t) + y ′(t)h +
y ′′(ζ)

2
h2.

Neglect quadratic term:

y(t + h) ≈ y(t) + y ′(t)h.

If y is a solution of differential equation y ′ = f (t , y), then

y(t + h) ≈ y(t) + h · f (t , y(t)).
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Differential equations Numerical solution of differential equation

Initial value problem:

y ′ = f (t , y), y(0) = y0.

We are looking for the solution on the interval [0,a].

n - given

Divide interval [0,a] on n equal parts:

h =
a
n
, ti = i · h, i = 0,1,2, . . . ,n.

t0 and y0 are known (initial conditions).
Calculate an approximation to the solution at x1:

y1 = y0 + h · f (t0, y0)

Next step:
y2 = y1 + h · f (t1, y1)

etc.
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Differential equations Numerical solution of differential equation

Method:
yi+1 = yi + h · f (ti , yi), i = 0,1, . . .

- Euler’s method

Example
Using Euler’s method approximate solution of the initial value problem

y ′ = y , y(0) = 1,

at point x = 1 using subdivision on 5 subintervals.
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Differential equations Numerical solution of differential equation

Solution.
Interval [0,1].

n = 5 ⇒ h = 0.2

i ti yi f (ti , yi) yi+1

0 0.0 1.000 1.000 1.200
1 0.2 1.200 1.200 1.440
2 0.4 1.440 1.440 1.728
3 0.6 1.728 1.728 2.074
4 0.8 2.074 2.074 2.488
5 1.0 2.488
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Differential equations Numerical solution of differential equation
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Differential equations Numerical solution of differential equation

y(t + h) is approximated by a linear term from Taylor expansion

The simplest of all methods

Better approximation → better method

Well known:
Runge-Kutta methods
linear multistep methods
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