PRINCIPLES OF MATHEMATICAL MODELLING

4. ANALYSIS OF SYSTEMS OF DIFFERENTIAL EQUATIONS

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

1/120

Chemostat model is an example for system of differential equations:

$$S' = -V \frac{S}{K+S} \frac{P}{Y} + \omega S_0 - \omega S, \quad S(0) = s_0$$
$$P' = V \frac{S}{K+S} P - \omega P, \qquad P(0) = p_0$$

 \rightarrow Two differential equations with two unknown functions.

< 日 > < 同 > < 回 > < 回 > < □ > <

Chemostat model is an example for system of differential equations:

$$S' = -V \frac{S}{K+S} \frac{P}{Y} + \omega S_0 - \omega S, \quad S(0) = s_0$$
$$P' = V \frac{S}{K+S} P - \omega P, \qquad P(0) = p_0$$

 \rightarrow Two differential equations with two unknown functions.

System of differential equations may be written in a vector form.

Chemostat model is an example for system of differential equations:

$$S' = -V \frac{S}{K+S} \frac{P}{Y} + \omega S_0 - \omega S, \quad S(0) = s_0$$
$$P' = V \frac{S}{K+S} P - \omega P, \qquad P(0) = p_0$$

 \rightarrow Two differential equations with two unknown functions.

System of differential equations may be written in a vector form. Define

$$X(t) = \left[egin{array}{c} S(t) \ P(t) \end{array}
ight], \quad X: \mathbb{R} o \mathbb{R}^2$$

A D A A B A A B A A B A B B

Chemostat model is an example for system of differential equations:

$$S' = -V \frac{S}{K+S} \frac{P}{Y} + \omega S_0 - \omega S, \quad S(0) = s_0$$
$$P' = V \frac{S}{K+S} P - \omega P, \qquad P(0) = p_0$$

 \rightarrow Two differential equations with two unknown functions.

System of differential equations may be written in a vector form. Define

$$X(t) = \left[egin{array}{c} S(t) \ P(t) \end{array}
ight], \quad X: \mathbb{R} o \mathbb{R}^2$$

X - vector function

A D A A B A A B A A B A B B

Derivative of vector function:

$$X'(t) = \left[egin{array}{c} \mathcal{S}'(t) \ \mathcal{P}'(t) \end{array}
ight],$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Derivative of vector function:

$$X'(t) = \left[egin{array}{c} \mathcal{S}'(t) \ \mathcal{P}'(t) \end{array}
ight],$$

 $\rightarrow \,$ derivative by components

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへ⊙

Derivative of vector function:

$$X'(t) = \left[egin{array}{c} \mathcal{S}'(t) \ \mathcal{P}'(t) \end{array}
ight],$$

\rightarrow derivative by components

For

$$F(X) = \begin{bmatrix} -V \frac{S}{K+S} \frac{P}{Y} + \omega S_0 - \omega S \\ V \frac{S}{K+S} P - \omega P \end{bmatrix} \text{ and } X_0 = \begin{bmatrix} s_0 \\ p_0 \end{bmatrix},$$

vector function

$$X(t) = \begin{bmatrix} S(t) \\ P(t) \end{bmatrix}$$

is a solution of the differential equation

$$X'(t) = F(X(t)), \quad X(0) = X_0.$$

3/120

Generally, system of differential equations

$$y'_{1} = f_{1}(y_{1},...,y_{n}), \quad y_{1}(0) = y_{1}^{0}$$

$$y'_{2} = f_{2}(y_{1},...,y_{n}), \quad y_{2}(0) = y_{2}^{0}$$

$$\vdots$$

$$y'_{n} = f_{n}(y_{1},...,y_{n}), \quad y_{n}(0) = y_{n}^{0}$$

may be written in a vector form.

$$Y'(t)=F(Y(t)),\quad Y(0)=Y_0,$$

where

$$Y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}, \quad F(Y) = \begin{bmatrix} f_1(y_1, \dots, y_n) \\ \vdots \\ f_n(y_1, \dots, y_n) \end{bmatrix} \quad i \quad Y_0 = \begin{bmatrix} y_1^0 \\ \vdots \\ y_n^0 \end{bmatrix},$$

2

ヘロト ヘアト ヘビト ヘビト

4.3. Linear system of differential equations

Diiferential equation

$$X'(t) = AX(t).$$

for $A \in M_n(\mathbb{R})$ is called a linear system of differential equations.

4.3. Linear system of differential equations

Diiferential equation

$$X'(t) = AX(t).$$

for $A \in M_n(\mathbb{R})$ is called a linear system of differential equations.

-X' = F(X) and F is a linear function.

4.3. Linear system of differential equations

Diiferential equation

$$X'(t) = AX(t).$$

for $A \in M_n(\mathbb{R})$ is called a linear system of differential equations.

-X' = F(X) and F is a linear function.

-Otherwise, nonlinear system of differential equations.

$$\begin{aligned} x_1'(t) &= a_{11}x_1(t) + a_{12}x_2(t) + \ldots + a_{1n}x_n(t) \\ x_2'(t) &= a_{21}x_1(t) + a_{22}x_2(t) + \ldots + a_{2n}x_n(t) \\ \vdots &\vdots \\ x_n'(t) &= a_{n1}x_1(t) + a_{n2}x_2(t) + \ldots + a_{nn}x_n(t) \end{aligned}$$

Definition

Scalar λ is an eigenvalue of matrix $A \in M_n(\mathbb{R})$ if there exists $x \neq 0$ such that

$$A x = \lambda x.$$

Vector *x* is called eigenvector of matrix *A*.

Definition

Scalar λ is an eigenvalue of matrix $A \in M_n(\mathbb{R})$ if there exists $x \neq 0$ such that

$$A x = \lambda x.$$

Vector *x* is called eigenvector of matrix *A*.

Theorem

 λ is eigenvalue of matrix $A \in M_n(\mathbb{R}) \quad \Leftrightarrow \quad \det(A - \lambda I) = 0.$

6/120

Definition

Scalar λ is an eigenvalue of matrix $A \in M_n(\mathbb{R})$ if there exists $x \neq 0$ such that

$$A x = \lambda x.$$

Vector *x* is called eigenvector of matrix *A*.

Theorem

 λ is eigenvalue of matrix $A \in M_n(\mathbb{R}) \quad \Leftrightarrow \quad \det(A - \lambda I) = 0.$

 $\rightarrow \lambda$ is zero (root) of characteristic polynomial (characteristic root).

Find eigenvalues and eigenvectors of matrix

$$A = \left[\begin{array}{rrr} 3 & 1 \\ 1 & 4 \end{array} \right].$$

Find eigenvalues and eigenvectors of matrix

$$A = \left[egin{array}{cc} \mathbf{3} & \mathbf{1} \ \mathbf{1} & \mathbf{4} \end{array}
ight].$$

Solution.

$$p(\lambda) = \left| egin{array}{cc} 3-\lambda & 1 \ 1 & 4-\lambda \end{array}
ight| = (3-\lambda)(4-\lambda) - 1 = \lambda^2 - 7\,\lambda + 11$$

Find eigenvalues and eigenvectors of matrix

$$A = \left[egin{array}{cc} \mathbf{3} & \mathbf{1} \ \mathbf{1} & \mathbf{4} \end{array}
ight].$$

Solution.

$$p(\lambda) = \begin{vmatrix} 3-\lambda & 1\\ 1 & 4-\lambda \end{vmatrix} = (3-\lambda)(4-\lambda) - 1 = \lambda^2 - 7\lambda + 11$$
$$p(\lambda) = 0 \quad \Rightarrow$$

イロト イヨト イヨト イヨト

Find eigenvalues and eigenvectors of matrix

$$A = \left[egin{array}{cc} 3 & 1 \ 1 & 4 \end{array}
ight].$$

Solution.

$$\lambda_{1,2} = \frac{7 \pm \sqrt{49 - 4 \cdot 11}}{2} = \frac{7 \pm \sqrt{5}}{2}$$

・ロト・西ト・田・・田・ シック

Find eigenvalues and eigenvectors of matrix

$$A = \left[egin{array}{cc} 3 & 1 \ 1 & 4 \end{array}
ight].$$

Solution.

$$p(\lambda) = \begin{vmatrix} 3-\lambda & 1\\ 1 & 4-\lambda \end{vmatrix} = (3-\lambda)(4-\lambda) - 1 = \lambda^2 - 7\lambda + 11$$
$$p(\lambda) = 0 \quad \Rightarrow$$

$$\lambda_{1,2} = \frac{7 \pm \sqrt{49 - 4 \cdot 11}}{2} = \frac{7 \pm \sqrt{5}}{2}$$
$$\lambda_1 = \frac{7 + \sqrt{5}}{2}, \quad \lambda_2 = \frac{7 - \sqrt{5}}{2}$$

Solve the system:

$$Ax = \lambda_1 x \quad \Leftrightarrow \quad (A - \lambda_1 I)x = 0$$

Solve the system:

$$A x = \lambda_1 x \quad \Leftrightarrow \quad (A - \lambda_1 I) x = 0$$

$$\left[\begin{array}{rrr} \mathbf{3} - \lambda_1 & \mathbf{1} \\ \mathbf{1} & \mathbf{4} - \lambda_1 \end{array}\right] \mathbf{x} = \mathbf{0}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Solve the system:

$$Ax = \lambda_1 x \quad \Leftrightarrow \quad (A - \lambda_1 I)x = 0$$

$$\left[\begin{array}{rrr} 3-\lambda_1 & 1\\ 1 & 4-\lambda_1 \end{array}\right] x = 0$$

Augmented matrix (last column i a zero-vector and we omitted it):

$$\left[\begin{array}{cc} 3 - \frac{7 + \sqrt{5}}{2} & 1 \\ 1 & 4 - \frac{7 + \sqrt{5}}{2} \end{array} \right] \ \sim \label{eq:3}$$

э

Solve the system:

$$Ax = \lambda_1 x \quad \Leftrightarrow \quad (A - \lambda_1 I)x = 0$$

$$\begin{bmatrix} 3-\lambda_1 & 1\\ 1 & 4-\lambda_1 \end{bmatrix} x = 0$$

Augmented matrix (last column i a zero-vector and we omitted it):

$$\left[\begin{array}{ccc} 3 - \frac{7 + \sqrt{5}}{2} & 1 \\ 1 & 4 - \frac{7 + \sqrt{5}}{2} \end{array} \right] \ \sim \ \left[\begin{array}{ccc} \frac{-1 - \sqrt{5}}{2} & 1 \\ 1 & \frac{1 - \sqrt{5}}{2} \end{array} \right] \sim$$

8/120

э

Solve the system:

$$Ax = \lambda_1 x \quad \Leftrightarrow \quad (A - \lambda_1 I)x = 0$$

$$\begin{bmatrix} 3-\lambda_1 & 1\\ 1 & 4-\lambda_1 \end{bmatrix} x = 0$$

Augmented matrix (last column i a zero-vector and we omitted it):

$$\begin{bmatrix} 3 - \frac{7+\sqrt{5}}{2} & 1\\ 1 & 4 - \frac{7+\sqrt{5}}{2} \end{bmatrix} \sim \begin{bmatrix} \frac{-1-\sqrt{5}}{2} & 1\\ 1 & \frac{1-\sqrt{5}}{2} \end{bmatrix} \sim \\ \sim \begin{bmatrix} -\frac{1+\sqrt{5}}{2} & 1\\ \frac{1+\sqrt{5}}{2} & \frac{1-5}{4} \end{bmatrix} \sim$$

8/120

э

Solve the system:

$$Ax = \lambda_1 x \quad \Leftrightarrow \quad (A - \lambda_1 I)x = 0$$

$$\begin{bmatrix} 3-\lambda_1 & 1\\ 1 & 4-\lambda_1 \end{bmatrix} x = 0$$

Augmented matrix (last column i a zero-vector and we omitted it):

$$\begin{bmatrix} 3 - \frac{7+\sqrt{5}}{2} & 1\\ 1 & 4 - \frac{7+\sqrt{5}}{2} \end{bmatrix} \sim \begin{bmatrix} \frac{-1-\sqrt{5}}{2} & 1\\ 1 & \frac{1-\sqrt{5}}{2} \end{bmatrix} \sim \\ \sim \begin{bmatrix} -\frac{1+\sqrt{5}}{2} & 1\\ \frac{1+\sqrt{5}}{2} & \frac{1-5}{4} \end{bmatrix} \sim \begin{bmatrix} -\frac{1+\sqrt{5}}{2} & 1\\ -\frac{1+\sqrt{5}}{2} & 1 \end{bmatrix}$$

э

$$-rac{1+\sqrt{5}}{2}x_1+x_2=0 \quad \Rightarrow \quad x_2=rac{1+\sqrt{5}}{2}x_1$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

9/120

$$-\frac{1+\sqrt{5}}{2}x_1 + x_2 = 0 \quad \Rightarrow \quad x_2 = \frac{1+\sqrt{5}}{2}x_1$$
$$X_1 = \begin{bmatrix} x_1 \\ \frac{1+\sqrt{5}}{2}x_1 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ \frac{1+\sqrt{5}}{2} \end{bmatrix}$$

$$-\frac{1+\sqrt{5}}{2}x_1 + x_2 = 0 \quad \Rightarrow \quad x_2 = \frac{1+\sqrt{5}}{2}x_1$$
$$X_1 = \begin{bmatrix} x_1 \\ \frac{1+\sqrt{5}}{2}x_1 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ \frac{1+\sqrt{5}}{2} \end{bmatrix}$$
$$X_1 = \begin{bmatrix} 1 \\ \frac{1+\sqrt{5}}{2} \end{bmatrix}$$

$$-\frac{1+\sqrt{5}}{2}x_1 + x_2 = 0 \quad \Rightarrow \quad x_2 = \frac{1+\sqrt{5}}{2}x_1$$
$$X_1 = \begin{bmatrix} x_1\\ \frac{1+\sqrt{5}}{2}x_1 \end{bmatrix} = x_1 \begin{bmatrix} 1\\ \frac{1+\sqrt{5}}{2} \end{bmatrix}$$
$$X_1 = \begin{bmatrix} 1\\ \frac{1+\sqrt{5}}{2} \end{bmatrix}$$

A little bit faster.

$$-\frac{1+\sqrt{5}}{2}x_1 + x_2 = 0 \quad \Rightarrow \quad x_2 = \frac{1+\sqrt{5}}{2}x_1$$
$$X_1 = \begin{bmatrix} x_1 \\ \frac{1+\sqrt{5}}{2}x_1 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ \frac{1+\sqrt{5}}{2} \end{bmatrix}$$
$$X_1 = \begin{bmatrix} 1 \\ \frac{1+\sqrt{5}}{2} \end{bmatrix}$$

A little bit faster. Note that matrix

$$\left[\begin{array}{rrr} 3-\lambda_2 & 1 \\ 1 & 4-\lambda_2 \end{array}\right] x = 0$$

is singular.

9/120

$$\frac{1+\sqrt{5}}{2}x_1 + x_2 = 0 \quad \Rightarrow \quad x_2 = \frac{1+\sqrt{5}}{2}x_1$$
$$X_1 = \begin{bmatrix} x_1 \\ \frac{1+\sqrt{5}}{2}x_1 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ \frac{1+\sqrt{5}}{2} \end{bmatrix}$$
$$X_1 = \begin{bmatrix} 1 \\ \frac{1+\sqrt{5}}{2} \end{bmatrix}$$

A little bit faster. Note that matrix

and

$$\left[\begin{array}{rrr} \mathbf{3} - \lambda_2 & \mathbf{1} \\ \mathbf{1} & \mathbf{4} - \lambda_2 \end{array}\right] \mathbf{x} = \mathbf{0}$$

is singular. \Rightarrow rows are dependent

2

$$\frac{1+\sqrt{5}}{2}x_1 + x_2 = 0 \quad \Rightarrow \quad x_2 = \frac{1+\sqrt{5}}{2}x_1$$
$$X_1 = \begin{bmatrix} x_1 \\ \frac{1+\sqrt{5}}{2}x_1 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ \frac{1+\sqrt{5}}{2} \end{bmatrix}$$
$$X_1 = \begin{bmatrix} 1 \\ \frac{1+\sqrt{5}}{2} \end{bmatrix}$$

A little bit faster. Note that matrix

and

$$\left[\begin{array}{rrr} \mathbf{3} - \lambda_2 & \mathbf{1} \\ \mathbf{1} & \mathbf{4} - \lambda_2 \end{array}\right] \mathbf{x} = \mathbf{0}$$

is singular. \Rightarrow rows are dependent \Rightarrow rows are proportional

э

$$\frac{1+\sqrt{5}}{2}x_1 + x_2 = 0 \quad \Rightarrow \quad x_2 = \frac{1+\sqrt{5}}{2}x_1$$
$$X_1 = \begin{bmatrix} x_1 \\ \frac{1+\sqrt{5}}{2}x_1 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ \frac{1+\sqrt{5}}{2} \end{bmatrix}$$
$$X_1 = \begin{bmatrix} 1 \\ \frac{1+\sqrt{5}}{2} \end{bmatrix}$$

A little bit faster. Note that matrix

$$\left[\begin{array}{cc} \mathbf{3} - \lambda_2 & \mathbf{1} \\ \mathbf{1} & \mathbf{4} - \lambda_2 \end{array}\right] \mathbf{x} = \mathbf{0}$$

is singular. \Rightarrow rows are dependent \Rightarrow rows are proportional

$$(3-\lambda_2)x_1+x_2=0$$

and
$$\frac{1+\sqrt{5}}{2}x_1 + x_2 = 0 \quad \Rightarrow \quad x_2 = \frac{1+\sqrt{5}}{2}x_1$$
$$X_1 = \begin{bmatrix} x_1 \\ \frac{1+\sqrt{5}}{2}x_1 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ \frac{1+\sqrt{5}}{2} \end{bmatrix}$$
$$X_1 = \begin{bmatrix} 1 \\ \frac{1+\sqrt{5}}{2} \end{bmatrix}$$

A little bit faster. Note that matrix

and

$$\left[\begin{array}{rrr} \mathbf{3} - \lambda_2 & \mathbf{1} \\ \mathbf{1} & \mathbf{4} - \lambda_2 \end{array}\right] \mathbf{x} = \mathbf{0}$$

is singular. \Rightarrow rows are dependent \Rightarrow rows are proportional

$$(3-\lambda_2)x_1+x_2=0 \quad \Rightarrow \quad x_2=-(3-\lambda_2)x_1=-\left(3-\frac{7-\sqrt{5}}{2}\right)x_1$$

$$x_2=\frac{1-\sqrt{5}}{2}x_1$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

$$x_2 = \frac{1 - \sqrt{5}}{2} x_1 \quad \Rightarrow \quad X_2 = \begin{bmatrix} 1 \\ \frac{1 - \sqrt{5}}{2} \end{bmatrix} x_1$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ の Q @

$$x_{2} = \frac{1 - \sqrt{5}}{2} x_{1} \quad \Rightarrow \quad X_{2} = \begin{bmatrix} 1 \\ \frac{1 - \sqrt{5}}{2} \end{bmatrix} x_{1}$$
$$X_{2} = \begin{bmatrix} 1 \\ \frac{1 - \sqrt{5}}{2} \end{bmatrix}$$

$$x_{2} = \frac{1 - \sqrt{5}}{2} x_{1} \quad \Rightarrow \quad X_{2} = \begin{bmatrix} 1 \\ \frac{1 - \sqrt{5}}{2} \end{bmatrix} x_{1}$$
$$X_{2} = \begin{bmatrix} 1 \\ \frac{1 - \sqrt{5}}{2} \end{bmatrix}$$

$$AX_1 = \begin{bmatrix} 3 & 1 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ \frac{1+\sqrt{5}}{2} \end{bmatrix}$$

$$x_{2} = \frac{1 - \sqrt{5}}{2} x_{1} \quad \Rightarrow \quad X_{2} = \begin{bmatrix} 1 \\ \frac{1 - \sqrt{5}}{2} \end{bmatrix} x_{1}$$
$$X_{2} = \begin{bmatrix} 1 \\ \frac{1 - \sqrt{5}}{2} \end{bmatrix}$$

$$AX_{1} = \begin{bmatrix} 3 & 1 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ \frac{1+\sqrt{5}}{2} \end{bmatrix} = \begin{bmatrix} 3 + \frac{1+\sqrt{5}}{2} \\ 1 + 4 \frac{1+\sqrt{5}}{2} \end{bmatrix}$$

2

◆□▶ ◆圖▶ ◆理≯ ◆理≯

$$x_{2} = \frac{1 - \sqrt{5}}{2} x_{1} \quad \Rightarrow \quad X_{2} = \begin{bmatrix} 1 \\ \frac{1 - \sqrt{5}}{2} \end{bmatrix} x_{1}$$
$$X_{2} = \begin{bmatrix} 1 \\ \frac{1 - \sqrt{5}}{2} \end{bmatrix}$$

$$AX_{1} = \begin{bmatrix} 3 & 1 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ \frac{1+\sqrt{5}}{2} \end{bmatrix} = \begin{bmatrix} 3 + \frac{1+\sqrt{5}}{2} \\ 1+4\frac{1+\sqrt{5}}{2} \end{bmatrix} = \begin{bmatrix} \frac{7+\sqrt{5}}{2} \\ \frac{6+4\sqrt{5}}{2} \end{bmatrix}$$
$$\lambda_{1}X_{1} = \frac{7+\sqrt{5}}{2} \begin{bmatrix} 1 \\ \frac{1+\sqrt{5}}{2} \end{bmatrix}$$

10/120

2

◆□▶ ◆圖▶ ◆理≯ ◆理≯

$$x_{2} = \frac{1 - \sqrt{5}}{2} x_{1} \quad \Rightarrow \quad X_{2} = \begin{bmatrix} 1 \\ \frac{1 - \sqrt{5}}{2} \end{bmatrix} x_{1}$$
$$X_{2} = \begin{bmatrix} 1 \\ \frac{1 - \sqrt{5}}{2} \end{bmatrix}$$

$$AX_{1} = \begin{bmatrix} 3 & 1 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ \frac{1+\sqrt{5}}{2} \end{bmatrix} = \begin{bmatrix} 3+\frac{1+\sqrt{5}}{2} \\ 1+4\frac{1+\sqrt{5}}{2} \end{bmatrix} = \begin{bmatrix} \frac{7+\sqrt{5}}{2} \\ \frac{6+4\sqrt{5}}{2} \end{bmatrix}$$
$$\lambda_{1}X_{1} = \frac{7+\sqrt{5}}{2} \begin{bmatrix} 1 \\ \frac{1+\sqrt{5}}{2} \end{bmatrix} = \begin{bmatrix} \frac{7+\sqrt{5}}{2} \\ \frac{7+\sqrt{5}+7\sqrt{5}+5}{4} \end{bmatrix} = \begin{bmatrix} \frac{7+\sqrt{5}}{2} \\ \frac{12+8\sqrt{5}}{4} \end{bmatrix}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ○ Q ○

$$x_{2} = \frac{1 - \sqrt{5}}{2} x_{1} \quad \Rightarrow \quad X_{2} = \begin{bmatrix} 1 \\ \frac{1 - \sqrt{5}}{2} \end{bmatrix} x_{1}$$
$$X_{2} = \begin{bmatrix} 1 \\ \frac{1 - \sqrt{5}}{2} \end{bmatrix}$$

$$AX_{1} = \begin{bmatrix} 3 & 1 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ \frac{1+\sqrt{5}}{2} \end{bmatrix} = \begin{bmatrix} 3+\frac{1+\sqrt{5}}{2} \\ 1+4\frac{1+\sqrt{5}}{2} \end{bmatrix} = \begin{bmatrix} \frac{7+\sqrt{5}}{2} \\ \frac{6+4\sqrt{5}}{2} \end{bmatrix}$$
$$\lambda_{1}X_{1} = \frac{7+\sqrt{5}}{2} \begin{bmatrix} 1 \\ \frac{1+\sqrt{5}}{2} \end{bmatrix} = \begin{bmatrix} \frac{7+\sqrt{5}}{2} \\ \frac{7+\sqrt{5}+7\sqrt{5}+5}{4} \end{bmatrix} = \begin{bmatrix} \frac{7+\sqrt{5}}{2} \\ \frac{12+8\sqrt{5}}{4} \end{bmatrix}$$
$$\Rightarrow AX_{1} = \lambda_{1}X_{1}$$

10/120

2

イロト イポト イヨト イヨト

Example

Solve differential equation x' = Ax, $x(0) = x_0$ where

$$A = \left[\begin{array}{cc} 1 & 0 \\ 0 & 2 \end{array} \right] \quad \text{i} \quad x_0 = \left[\begin{array}{c} 1 \\ 1 \end{array} \right].$$

Example

Solve differential equation x' = Ax, $x(0) = x_0$ where

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \quad \mathbf{i} \quad x_0 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

Solution.

$$x' = Ax \quad \Leftrightarrow \quad \left[\begin{array}{c} x_1' \\ x_2' \end{array}
ight] = \left[\begin{array}{c} 1 & 0 \\ 0 & 2 \end{array}
ight] \left[\begin{array}{c} x_1 \\ x_2 \end{array}
ight]$$

Example

Solve differential equation x' = Ax, $x(0) = x_0$ where

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \quad i \quad x_0 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

Solution.

$$x' = Ax \quad \Leftrightarrow \quad \begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ 2x_2 \end{bmatrix}$$

Example

Solve differential equation x' = Ax, $x(0) = x_0$ where

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \quad i \quad x_0 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

Solution.

$$x' = Ax \quad \Leftrightarrow \quad \begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ 2x_2 \end{bmatrix}$$

System:

$$x'_1 = x_1$$

 $x'_2 = 2 x_2$

Example

Solve differential equation x' = Ax, $x(0) = x_0$ where

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \quad \mathbf{i} \quad x_0 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

Solution.

$$x' = Ax \quad \Leftrightarrow \quad \begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ 2x_2 \end{bmatrix}$$

System:

$$x_1' = x_1
 x_2' = 2 x_2$$

Each equation can be solved separatelly.

(日) (四) (日) (日) (日)

$$x'_1 = x_1 \Rightarrow x_1(t) = c_1 e^t$$

$$\begin{array}{rcl} x_1' &=& x_1 &\Rightarrow & x_1(t) = c_1 \, \mathrm{e}^t \\ x_2' &=& x_2 &\Rightarrow & x_2(t) = c_2 \, \mathrm{e}^{2\,t} \end{array}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ の Q @

$$\begin{array}{rcl} x_1' &=& x_1 &\Rightarrow & x_1(t) = c_1 \, \mathrm{e}^t \\ x_2' &=& x_2 &\Rightarrow & x_2(t) = c_2 \, \mathrm{e}^{2\,t} \end{array}$$

$$x(t) = \left[\begin{array}{c} c_1 e^t \\ c_2 e^{2t} \end{array}\right]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

$$\begin{array}{rcl} x_1' &=& x_1 &\Rightarrow & x_1(t) = c_1 \, \mathrm{e}^t \\ x_2' &=& x_2 &\Rightarrow & x_2(t) = c_2 \, \mathrm{e}^{2\,t} \end{array}$$

$$x(t) = \left[\begin{array}{c} c_1 e^t \\ c_2 e^{2t} \end{array} \right]$$

Constants c_1 i c_2 are determined from the initial condition

$$\left[\begin{array}{c}1\\1\end{array}\right]=x(0)=\left[\begin{array}{c}c_1\\c_2\end{array}\right]$$

ヘロト ヘアト ヘビト ヘビト

$$\begin{array}{rcl} x_1' &=& x_1 &\Rightarrow & x_1(t) = c_1 \, \mathrm{e}^t \\ x_2' &=& x_2 &\Rightarrow & x_2(t) = c_2 \, \mathrm{e}^{2\,t} \end{array}$$

$$x(t) = \left[\begin{array}{c} c_1 e^t \\ c_2 e^{2t} \end{array} \right]$$

Constants c_1 i c_2 are determined from the initial condition

$$\begin{bmatrix} 1\\1 \end{bmatrix} = x(0) = \begin{bmatrix} c_1\\c_2 \end{bmatrix}$$
$$x(t) = \begin{bmatrix} e^t\\e^{2t} \end{bmatrix}$$

・ロト・西ト・ヨト・ヨー シック・

Let matrix $A \in M_n(\mathbb{R})$ is similar to diagonal matrix. then a general solution of differential equation x'(t) = Ax is given by

$$x(t) = \sum_{i=1}^{n} c_i e^{\lambda_i t} v_i$$

where λ_i are eigenvalues and v_i corresponding eigenvectors of matrix A (A $v_i = \lambda_i v_i$). Constants c_i are determined from initial conditions.

Let matrix $A \in M_n(\mathbb{R})$ is similar to diagonal matrix. then a general solution of differential equation x'(t) = Ax is given by

$$x(t) = \sum_{i=1}^{n} c_i e^{\lambda_i t} v_i$$

where λ_i are eigenvalues and v_i corresponding eigenvectors of matrix A (A $v_i = \lambda_i v_i$). Constants c_i are determined from initial conditions.

Note. Matrix A is similar to diagonal matrix if there exist regular matrix T and diagonal matrix D satisfying

$$A = T D T^{-1}.$$

イロト イポト イヨト イヨト

Let matrix $A \in M_n(\mathbb{R})$ is similar to diagonal matrix. then a general solution of differential equation x'(t) = Ax is given by

$$x(t) = \sum_{i=1}^{n} c_i e^{\lambda_i t} v_i$$

where λ_i are eigenvalues and v_i corresponding eigenvectors of matrix A (A $v_i = \lambda_i v_i$). Constants c_i are determined from initial conditions.

Note. Matrix *A* is similar to diagonal matrix if there exist regular matrix T and diagonal matrix *D* satisfying

$$A=T D T^{-1}.$$

On the diagonal of D are eigenvalues of matrix A and columns of matrix T are eigenvectors:

$$\Rightarrow \quad AT = TD \quad \Rightarrow \quad ATe_i = TDe_i$$

13/120

(日)

e; - vecto

Let matrix $A \in M_n(\mathbb{R})$ is similar to diagonal matrix. then a general solution of differential equation x'(t) = Ax is given by

$$x(t) = \sum_{i=1}^{n} c_i e^{\lambda_i t} v_i$$

where λ_i are eigenvalues and v_i corresponding eigenvectors of matrix A (A $v_i = \lambda_i v_i$). Constants c_i are determined from initial conditions.

Note. Matrix *A* is similar to diagonal matrix if there exist regular matrix T and diagonal matrix *D* satisfying

$$A=T D T^{-1}.$$

On the diagonal of D are eigenvalues of matrix A and columns of matrix T are eigenvectors:

$$\Rightarrow AT = TD \Rightarrow ATe_i = TDe_i$$

$$\Rightarrow ATe_i = Td_{ii}e_i \Rightarrow A(Te_i) = d_{ii}(Te_i)$$

r of canonical basis

$A = T D T^{-1}$, $A v_i = \lambda_i v_i$, $D = diag(\lambda_1, \dots, \lambda_n)$, $T e_i = v_i$

$$A = T D T^{-1}$$
, $A v_i = \lambda_i v_i$, $D = diag(\lambda_1, \dots, \lambda_n)$, $T e_i = v_i$

$$\Rightarrow \quad x' = A x = T D T^{-1} x$$

$$A = T D T^{-1}$$
, $A v_i = \lambda_i v_i$, $D = diag(\lambda_1, \dots, \lambda_n)$, $T e_i = v_i$

$$\Rightarrow \quad x' = A x = T D T^{-1} x \quad \Rightarrow \quad T^{-1} x' = D T^{-1} x$$

$$A = T D T^{-1}$$
, $A v_i = \lambda_i v_i$, $D = diag(\lambda_1, \dots, \lambda_n)$, $T e_i = v_i$

$$\Rightarrow \quad x' = A \, x = T \, D \, T^{-1} \, x \quad \Rightarrow \quad T^{-1} \, x' = D \, T^{-1} x$$

Make substitution

$$y=T^{-1}x$$

◆□▶ ◆圖▶ ◆理≯ ◆理≯

$$A = T D T^{-1}$$
, $A v_i = \lambda_i v_i$, $D = diag(\lambda_1, \dots, \lambda_n)$, $T e_i = v_i$

$$\Rightarrow \quad x' = A x = T D T^{-1} x \quad \Rightarrow \quad T^{-1} x' = D T^{-1} x$$

Make substitution

$$y = T^{-1}x \quad \Rightarrow \quad y' = T^{-1}x'$$

14/120

Ξ.

▲口▶ ▲圖▶ ▲理▶ ▲理≯

$$A = T D T^{-1}$$
, $A v_i = \lambda_i v_i$, $D = diag(\lambda_1, \dots, \lambda_n)$, $T e_i = v_i$

$$\Rightarrow \quad x' = A x = T D T^{-1} x \quad \Rightarrow \quad T^{-1} x' = D T^{-1} x$$

Make substitution

$$y = T^{-1}x \quad \Rightarrow \quad y' = T^{-1}x'$$

Equation:

$$\Rightarrow \quad y' = D y$$

Э.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

$$A = T D T^{-1}$$
, $A v_i = \lambda_i v_i$, $D = diag(\lambda_1, \dots, \lambda_n)$, $T e_i = v_i$

$$\Rightarrow \quad x' = A \, x = T \, D \, T^{-1} \, x \quad \Rightarrow \quad T^{-1} \, x' = D \, T^{-1} \, x$$

Make substitution

$$y = T^{-1}x \quad \Rightarrow \quad y' = T^{-1}x'$$

Equation:

$$\Rightarrow \quad \mathbf{y}' = \mathbf{D} \, \mathbf{y}$$

D is a diagonal matrix and a system is of the form:

$$y_i' = \lambda_i y_i, \quad i = 1, \ldots, n$$

14/120

э

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

$$A = T D T^{-1}$$
, $A v_i = \lambda_i v_i$, $D = diag(\lambda_1, \dots, \lambda_n)$, $T e_i = v_i$

$$\Rightarrow \quad x' = A \, x = T \, D \, T^{-1} \, x \quad \Rightarrow \quad T^{-1} \, x' = D \, T^{-1} \, x$$

Make substitution

$$y = T^{-1}x \quad \Rightarrow \quad y' = T^{-1}x'$$

Equation:

$$\Rightarrow \quad y' = D y$$

D is a diagonal matrix and a system is of the form:

$$y'_i = \lambda_i y_i, \quad i = 1, \ldots, n$$

Solution

$$y_i(t) = c_i e^{\lambda_i t}, \quad i = 1, \dots, n$$

$$y(t) = \begin{bmatrix} y_1(t) \\ \vdots \\ y_n(t) \end{bmatrix} =$$

$$y(t) = \begin{bmatrix} y_1(t) \\ \vdots \\ y_n(t) \end{bmatrix} = \begin{bmatrix} c_1 e^{\lambda_1 t} \\ \vdots \\ c_n e^{\lambda_n t} \end{bmatrix} =$$

$$y(t) = \begin{bmatrix} y_1(t) \\ \vdots \\ y_n(t) \end{bmatrix} = \begin{bmatrix} c_1 e^{\lambda_1 t} \\ \vdots \\ c_n e^{\lambda_n t} \end{bmatrix} = \sum_{i=1}^n c_i e^{\lambda_i t} e_i$$

$$y(t) = \begin{bmatrix} y_1(t) \\ \vdots \\ y_n(t) \end{bmatrix} = \begin{bmatrix} c_1 e^{\lambda_1 t} \\ \vdots \\ c_n e^{\lambda_n t} \end{bmatrix} = \sum_{i=1}^n c_i e^{\lambda_i t} e_i$$

 $y(t) = T^{-1}x(t) \quad \Rightarrow \quad x(t) = T y(t)$

$$y(t) = \begin{bmatrix} y_1(t) \\ \vdots \\ y_n(t) \end{bmatrix} = \begin{bmatrix} c_1 e^{\lambda_1 t} \\ \vdots \\ c_n e^{\lambda_n t} \end{bmatrix} = \sum_{i=1}^n c_i e^{\lambda_i t} e_i$$

$$y(t) = T^{-1}x(t) \quad \Rightarrow \quad x(t) = T y(t)$$

$$\Rightarrow \quad x(t) = T \sum_{i=1}^{n} c_i e^{\lambda_i t} e_i =$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで
$$y(t) = \begin{bmatrix} y_1(t) \\ \vdots \\ y_n(t) \end{bmatrix} = \begin{bmatrix} c_1 e^{\lambda_1 t} \\ \vdots \\ c_n e^{\lambda_n t} \end{bmatrix} = \sum_{i=1}^n c_i e^{\lambda_i t} e_i$$

$$y(t) = T^{-1}x(t) \Rightarrow x(t) = T y(t)$$

$$\Rightarrow \quad x(t) = T \sum_{i=1}^{n} c_i e^{\lambda_i t} e_i = \sum_{i=1}^{n} c_i e^{\lambda_i t} T e_i =$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$y(t) = \begin{bmatrix} y_1(t) \\ \vdots \\ y_n(t) \end{bmatrix} = \begin{bmatrix} c_1 e^{\lambda_1 t} \\ \vdots \\ c_n e^{\lambda_n t} \end{bmatrix} = \sum_{i=1}^n c_i e^{\lambda_i t} e_i$$

$$y(t) = T^{-1}x(t) \Rightarrow x(t) = Ty(t)$$

$$\Rightarrow \quad x(t) = T \sum_{i=1}^{n} c_i e^{\lambda_i t} e_i = \sum_{i=1}^{n} c_i e^{\lambda_i t} T e_i = \sum_{i=1}^{n} c_i e^{\lambda_i t} v_i$$
Q.E.D.

< □ > < 률 > < 볼 > < 볼 > 별 의 Q (~ 15/120

Example

Solve differential equation x' = Ax, $x(0) = x_0$ where

$$A = \left[\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right] \quad \text{i} \quad x_0 = \left[\begin{array}{c} 1 \\ 1 \end{array} \right].$$

Example

Solve differential equation x' = Ax, $x(0) = x_0$ where

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \quad i \quad x_0 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

Solution.

$$x' = Ax \quad \Leftrightarrow \quad \left[\begin{array}{c} x_1' \\ x_2' \end{array}
ight] = \left[\begin{array}{c} 1 & 1 \\ 0 & 1 \end{array}
ight] \left[\begin{array}{c} x_1 \\ x_2 \end{array}
ight]$$

Example

Solve differential equation x' = Ax, $x(0) = x_0$ where

$$A = \left[\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right] \quad \text{i} \quad x_0 = \left[\begin{array}{c} 1 \\ 1 \end{array} \right].$$

Solution.

$$x' = Ax \quad \Leftrightarrow \quad \left[\begin{array}{c} x_1' \\ x_2' \end{array}
ight] = \left[\begin{array}{c} 1 & 1 \\ 0 & 1 \end{array}
ight] \left[\begin{array}{c} x_1 \\ x_2 \end{array}
ight] = \left[\begin{array}{c} x_1 + x_2 \\ x_2 \end{array}
ight]$$

・ロト ・ 四ト ・ ヨト ・ ヨト

Example

Solve differential equation x' = Ax, $x(0) = x_0$ where

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \quad i \quad x_0 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

Solution.

$$x' = Ax \quad \Leftrightarrow \quad \begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 + x_2 \\ x_2 \end{bmatrix}$$

System:

$$\begin{array}{rcl}
x_1' &=& x_1 + x_2 \\
x_2' &=& x_2
\end{array}$$

16/120

Example

Solve differential equation x' = Ax, $x(0) = x_0$ where

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \quad i \quad x_0 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

Solution.

$$x' = Ax \quad \Leftrightarrow \quad \left[\begin{array}{c} x_1' \\ x_2' \end{array}
ight] = \left[\begin{array}{c} 1 & 1 \\ 0 & 1 \end{array}
ight] \left[\begin{array}{c} x_1 \\ x_2 \end{array}
ight] = \left[\begin{array}{c} x_1 + x_2 \\ x_2 \end{array}
ight]$$

System:

$$\begin{array}{rcl} x_1' &=& x_1 + x_2 \\ x_2' &=& x_2 \end{array}$$

Each equation may be solved separately (first solve second equation and after that solve first equation).

$$x_2' = x_2, \quad x_2(0) = 1 \quad \Rightarrow \quad x_2 = e^t$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ ○ ○ ○

$$x_2' = x_2, \quad x_2(0) = 1 \quad \Rightarrow \quad x_2 = e^t$$

$$\Rightarrow$$
 $x'_1 = x_1 + x_2$, $x_1(0) = 1$ \Rightarrow $x'_1 = x_1 + e^t$, $x_1(0) = 1$

▲□▶▲圖▶▲≣▶▲≣▶ ▲国▼

$$x_2' = x_2, \quad x_2(0) = 1 \quad \Rightarrow \quad x_2 = e^t$$

$$\Rightarrow$$
 $x'_1 = x_1 + x_2$, $x_1(0) = 1$ \Rightarrow $x'_1 = x_1 + e^t$, $x_1(0) = 1$

$$x_2' = x_2, \quad x_2(0) = 1 \quad \Rightarrow \quad x_2 = e^t$$

$$\Rightarrow$$
 $x'_1 = x_1 + x_2$, $x_1(0) = 1$ \Rightarrow $x'_1 = x_1 + e^t$, $x_1(0) = 1$

Mathematica:

DSolve[y'[t] == y[t] + Exp[t], y[t], t]

$$x_2' = x_2, \quad x_2(0) = 1 \quad \Rightarrow \quad x_2 = e^t$$

$$\Rightarrow$$
 $x'_1 = x_1 + x_2$, $x_1(0) = 1$ \Rightarrow $x'_1 = x_1 + e^t$, $x_1(0) = 1$

Mathematica:

DSolve[y'[t] == y[t] + Exp[t], y[t], t]
{{y[t] -> E^t t + E^t C[1]}}

$$x_2' = x_2, \quad x_2(0) = 1 \quad \Rightarrow \quad x_2 = e^t$$

$$\Rightarrow$$
 $x'_1 = x_1 + x_2$, $x_1(0) = 1$ \Rightarrow $x'_1 = x_1 + e^t$, $x_1(0) = 1$

Mathematica:

DSolve[y'[t] == y[t] + Exp[t], y[t], t]
{{y[t] -> E^t t + E^t C[1]}}

$$x_1(t) = c_1 e^t + t e^t \quad \Rightarrow \quad x_1(t) = e^t + t e^t$$

17/120

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ ○ ○

$$x_2' = x_2, \quad x_2(0) = 1 \quad \Rightarrow \quad x_2 = e^t$$

$$\Rightarrow$$
 $x'_1 = x_1 + x_2$, $x_1(0) = 1$ \Rightarrow $x'_1 = x_1 + e^t$, $x_1(0) = 1$

Mathematica:

DSolve[y'[t] == y[t] + Exp[t], y[t], t]
{{y[t] -> E^t t + E^t C[1]}}

$$x_1(t) = c_1 e^t + t e^t \quad \Rightarrow \quad x_1(t) = e^t + t e^t$$

Note. In the case of multiple eigenvalues,

we obtain terms $e^{\lambda_i t}$, $t e^{\lambda_i t}$, $t^2 e^{\lambda_i t}$, ... in the solution.

Stability of the linear system of differential equations

Definition

Linear system of differential equations

X' = AX

where $A \in M_n(\mathbb{R})$, is said to be stable if any solution X(t) satisfies

$$\lim_{t\to\infty}X(t)=0.$$

Stability of the linear system of differential equations

Definition

Linear system of differential equations

X' = AX

where $A \in M_n(\mathbb{R})$, is said to be stable if any solution X(t) satisfies

 $\lim_{t\to\infty}X(t)=0.$

Theorem

A linear system with constant coefficients X' = AX is stable if and only if all eigenvalues of A have negative real parts. je

Proof. (Only for case when A is similar to diagonal matrix).

$$X(t) = \sum_{k=1}^{n} c_k e^{\lambda_k t} v_k.$$

$$X(t) = \sum_{k=1}^{n} c_k e^{\lambda_k t} v_k.$$

Generally, $\lambda_k \in \mathbb{C}$, $\lambda_k = a_k + i b_k$, $a_k, b_k \in \mathbb{R}$.

$$X(t) = \sum_{k=1}^{n} c_k e^{\lambda_k t} v_k.$$

Generally, $\lambda_k \in \mathbb{C}$, $\lambda_k = a_k + i b_k$, $a_k, b_k \in \mathbb{R}$.

$$e^{\lambda_k t} = e^{(a_k + i b_k)t} = e^{a_k t} (\cos b_k t + i \sin b_k t)$$

$$X(t) = \sum_{k=1}^{n} c_k e^{\lambda_k t} v_k.$$

Generally, $\lambda_k \in \mathbb{C}$, $\lambda_k = a_k + i b_k$, $a_k, b_k \in \mathbb{R}$.

$$\mathrm{e}^{\lambda_k t} = \mathrm{e}^{(a_k + i\,b_k)t} = \mathrm{e}^{a_k t}(\cos b_k t + i\,\sin b_k t)$$

and

$$\left|\mathrm{e}^{\lambda_{k}t}\right|=\mathrm{e}^{a_{k}t}$$

$$X(t) = \sum_{k=1}^{n} c_k e^{\lambda_k t} v_k.$$

Generally, $\lambda_k \in \mathbb{C}$, $\lambda_k = a_k + i b_k$, $a_k, b_k \in \mathbb{R}$.

$$\mathrm{e}^{\lambda_k t} = \mathrm{e}^{(a_k + i\,b_k)t} = \mathrm{e}^{a_k t}(\cos b_k t + i\,\sin b_k t)$$

and

$$\left|\mathrm{e}^{\lambda_{k}t}\right|=\mathrm{e}^{a_{k}t}$$

 $\lim_{t\to\infty} \mathrm{e}^{a_k t} = 0 \quad \Leftrightarrow \quad a_k < 0 \quad \Leftrightarrow \quad \mathrm{Re}\lambda_k < 0$

$$X(t) = \sum_{k=1}^{n} c_k e^{\lambda_k t} v_k.$$

Generally, $\lambda_k \in \mathbb{C}$, $\lambda_k = a_k + i b_k$, $a_k, b_k \in \mathbb{R}$.

$$\mathrm{e}^{\lambda_k t} = \mathrm{e}^{(a_k + i\,b_k)t} = \mathrm{e}^{a_k t}(\cos b_k t + i\,\sin b_k t)$$

and

$$\left|\mathrm{e}^{\lambda_{k}t}\right|=\mathrm{e}^{a_{k}t}$$

 $\lim_{t\to\infty} \mathrm{e}^{a_k t} = 0 \quad \Leftrightarrow \quad a_k < 0 \quad \Leftrightarrow \quad \mathrm{Re}\lambda_k < 0$

$$\lim_{t\to\infty} X(t) = 0 \quad \Leftrightarrow \quad \lim_{t\to\infty} e^{a_k t} = 0, \quad \forall k$$

A □ > A □ > A □ > A □ > Q_□E.D₂ ~

For 2 \times 2 matrices we do not have to calculate eigenvalues explicitly.

For 2 \times 2 matrices we do not have to calculate eigenvalues explicitly. Transform matrix *A* to Jordan form:

$$A \quad \rightarrow \quad \left[\begin{array}{cc} \lambda_1 & * \\ \mathbf{0} & \lambda_2 \end{array} \right]$$

 λ_1 and λ_2 are eigenvalues of matrix $A \in M_2(\mathbb{R})$.

For 2 \times 2 matrices we do not have to calculate eigenvalues explicitly. Transform matrix *A* to Jordan form:

$$A \quad \rightarrow \quad \left[\begin{array}{cc} \lambda_1 & * \\ \mathbf{0} & \lambda_2 \end{array} \right]$$

 λ_1 and λ_2 are eigenvalues of matrix $A \in M_2(\mathbb{R})$.

Determinant and trace do not depend on the choices of the basis.

 \Rightarrow Similar matrices have same trace and determinant.

イロト 不得 トイヨト イヨト

For 2 \times 2 matrices we do not have to calculate eigenvalues explicitly. Transform matrix *A* to Jordan form:

$$A \quad \rightarrow \quad \left[\begin{array}{cc} \lambda_1 & * \\ \mathbf{0} & \lambda_2 \end{array} \right]$$

 λ_1 and λ_2 are eigenvalues of matrix $A \in M_2(\mathbb{R})$.

Determinant and trace do not depend on the choices of the basis.

 \Rightarrow Similar matrices have same trace and determinant.

$$\operatorname{tr} A = \lambda_1 + \lambda_2, \quad \det A = \lambda_1 \lambda_2,$$

イロト 不得 トイヨト イヨト

Characteristic polynomial of matrix A is

$$k_A(\lambda) = \lambda^2 - b \lambda + c, \quad b = \operatorname{tr} A, c = \det A$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Characteristic polynomial of matrix A is

$$k_A(\lambda) = \lambda^2 - b \lambda + c, \quad b = \operatorname{tr} A, c = \det A$$

$$\lambda_1 = rac{b + \sqrt{b^2 - 4 \, a \, c}}{2}, \quad \lambda_2 = rac{b - \sqrt{b^2 - 4 \, a \, c}}{2}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇◇◇

Characteristic polynomial of matrix A is

$$k_{\mathcal{A}}(\lambda) = \lambda^2 - b \,\lambda + c, \quad b = \operatorname{tr} \mathcal{A}, c = \det \mathcal{A}$$

$$\lambda_1 = \frac{b + \sqrt{b^2 - 4 ac}}{2}, \quad \lambda_2 = \frac{b - \sqrt{b^2 - 4 ac}}{2}$$

Viete's formulae \Rightarrow

$$\lambda_1 + \lambda_2 = b = \operatorname{tr} A$$
$$\lambda_1 \lambda_2 = c = \operatorname{det} A$$

21/120

Theorem

For $A \in M_2(\mathbb{R})$, system of differential equations x' = Ax is stable \Leftrightarrow tr A < 0 i det A > 0

Theorem

For $A \in M_2(\mathbb{R})$, system of differential equations x' = Ax is stable \Leftrightarrow tr A < 0 i det A > 0

Proof.

1. $\lambda_1, \lambda_2 \in \mathbb{R}$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Theorem

For $A \in M_2(\mathbb{R})$, system of differential equations x' = Ax is stable \Leftrightarrow tr A < 0 i det A > 0

Proof.

1. $\lambda_1, \lambda_2 \in \mathbb{R}$.

$$\lambda_1 < \mathbf{0}, \lambda_2 < \mathbf{0} \quad \Rightarrow \quad \lambda_1 + \lambda_2 < \mathbf{0} \quad i \quad \lambda_1 \, \lambda_2 > \mathbf{0}$$
For $A \in M_2(\mathbb{R})$, system of differential equations x' = Ax is stable \Leftrightarrow tr A < 0 i det A > 0

Proof.

1. $\lambda_1, \lambda_2 \in \mathbb{R}$. $\lambda_1 < 0, \lambda_2 < 0 \implies \lambda_1 + \lambda_2 < 0 \quad i \quad \lambda_1 \lambda_2 > 0$ \Leftarrow . Let $\lambda_1 + \lambda_2 < 0 \quad i \quad \lambda_1 \lambda_2 > 0$.

For $A \in M_2(\mathbb{R})$, system of differential equations x' = Ax is stable \Leftrightarrow tr A < 0 i det A > 0

Proof.

1. $\lambda_1, \lambda_2 \in \mathbb{R}$. $\lambda_1 < 0, \lambda_2 < 0 \implies \lambda_1 + \lambda_2 < 0 \quad i \quad \lambda_1 \lambda_2 > 0$ \Leftarrow . Let $\lambda_1 + \lambda_2 < 0 \quad i \quad \lambda_1 \lambda_2 > 0$. Since $\lambda_1 \lambda_2 > 0 \Rightarrow \quad \lambda_1$ and λ_2 are of the same sign.

< 日 > < 同 > < 回 > < 回 > < □ > <

For $A \in M_2(\mathbb{R})$, system of differential equations x' = Ax is stable \Leftrightarrow tr A < 0 i det A > 0

Proof.

1. $\lambda_1, \lambda_2 \in \mathbb{R}$. $\lambda_1 < 0, \lambda_2 < 0 \implies \lambda_1 + \lambda_2 < 0 \quad i \quad \lambda_1 \lambda_2 > 0$ \Leftarrow . Let $\lambda_1 + \lambda_2 < 0 \quad i \quad \lambda_1 \lambda_2 > 0$. Since $\lambda_1 \lambda_2 > 0 \Rightarrow \quad \lambda_1$ and λ_2 are of the same sign. Since $\lambda_1 + \lambda_2 < 0 \Rightarrow \quad \lambda_1 < 0 \quad i \quad \lambda_2 < 0$.

For $A \in M_2(\mathbb{R})$, system of differential equations x' = Ax is stable \Leftrightarrow tr A < 0 i det A > 0

Proof.

1. $\lambda_1, \lambda_2 \in \mathbb{R}$. $\lambda_1 < 0, \lambda_2 < 0 \implies \lambda_1 + \lambda_2 < 0 \quad i \quad \lambda_1 \lambda_2 > 0$ \Leftarrow . Let $\lambda_1 + \lambda_2 < 0 \quad i \quad \lambda_1 \lambda_2 > 0$. Since $\lambda_1 \lambda_2 > 0 \implies \lambda_1$ and λ_2 are of the same sign. Since $\lambda_1 + \lambda_2 < 0 \implies \lambda_1 < 0 \quad i \quad \lambda_2 < 0$. 2. $\lambda_1, \lambda_2 \in \mathbb{C} \setminus \mathbb{R}$.

For $A \in M_2(\mathbb{R})$, system of differential equations x' = Ax is stable \Leftrightarrow tr A < 0 i det A > 0

Proof.

1. $\lambda_1, \lambda_2 \in \mathbb{R}$. $\lambda_1 < 0, \lambda_2 < 0 \implies \lambda_1 + \lambda_2 < 0 \quad i \quad \lambda_1 \lambda_2 > 0$ \Leftarrow . Let $\lambda_1 + \lambda_2 < 0 \quad i \quad \lambda_1 \lambda_2 > 0$. Since $\lambda_1 \lambda_2 > 0 \implies \lambda_1$ and λ_2 are of the same sign. Since $\lambda_1 + \lambda_2 < 0 \implies \lambda_1 < 0 \quad i \quad \lambda_2 < 0$. 2. $\lambda_1, \lambda_2 \in \mathbb{C} \setminus \mathbb{R}$. $\Rightarrow \quad \lambda_1 = a + ic, \quad \lambda_2 = a - ic$

For $A \in M_2(\mathbb{R})$, system of differential equations x' = Ax is stable \Leftrightarrow tr A < 0 i det A > 0

Proof.

1. $\lambda_1, \lambda_2 \in \mathbb{R}$. $\lambda_1 < 0, \lambda_2 < 0 \Rightarrow \lambda_1 + \lambda_2 < 0 \quad i \quad \lambda_1 \lambda_2 > 0$ ←. Let $\lambda_1 + \lambda_2 < 0$ i $\lambda_1 \lambda_2 > 0$. Since $\lambda_1 \lambda_2 > 0 \Rightarrow \lambda_1$ and λ_2 are of the same sign. Since $\lambda_1 + \lambda_2 < 0 \Rightarrow \lambda_1 < 0$ i $\lambda_2 < 0$. **2.** $\lambda_1, \lambda_2 \in \mathbb{C} \setminus \mathbb{R}$. $\Rightarrow \lambda_1 = a + ic, \lambda_2 = a - ic \Rightarrow$ $\lambda_1 \lambda_2 = a^2 + b^2 > 0$ $\lambda_1 + \lambda_2 = 2\mathbf{a} = 2\mathbf{R}\mathbf{e}\lambda_i$

For $A \in M_2(\mathbb{R})$, system of differential equations x' = Ax is stable \Leftrightarrow tr A < 0 i det A > 0

Proof.

1. $\lambda_1, \lambda_2 \in \mathbb{R}$. $\lambda_1 < 0, \lambda_2 < 0 \Rightarrow \lambda_1 + \lambda_2 < 0 \quad i \quad \lambda_1 \lambda_2 > 0$ ←. Let $\lambda_1 + \lambda_2 < 0$ i $\lambda_1 \lambda_2 > 0$. Since $\lambda_1 \lambda_2 > 0 \Rightarrow \lambda_1$ and λ_2 are of the same sign. Since $\lambda_1 + \lambda_2 < 0 \Rightarrow \lambda_1 < 0$ i $\lambda_2 < 0$. **2.** $\lambda_1, \lambda_2 \in \mathbb{C} \setminus \mathbb{R}$. $\Rightarrow \quad \lambda_1 = \mathbf{a} + i\mathbf{c}, \lambda_2 = \mathbf{a} - i\mathbf{c} \Rightarrow$ $\lambda_1 \lambda_2 = a^2 + b^2 > 0$ $\lambda_1 + \lambda_2 = 2\mathbf{a} = 2\mathbf{R}\mathbf{e}\lambda_i$

 $\lambda_1 + \lambda_2 < 0 \quad \Leftrightarrow \quad \operatorname{Re}\lambda_1 < 0 \quad \operatorname{and} \quad \operatorname{Re}\lambda_2 < 0 \quad 22/120$

Consider differential equation

$$X(t)' = F(X(t)), \quad X: \mathbb{R} o \mathbb{R}^2$$

Consider differential equation

$$X(t)' = \mathcal{F}(X(t)), \quad X: \mathbb{R} o \mathbb{R}^2$$

Phase portrait - representative set of solutions, plotted as parametric curve (*t* is parameter) on Cartesian plane.

Consider differential equation

$$X(t)' = \mathcal{F}(X(t)), \quad X: \mathbb{R} o \mathbb{R}^2$$

Phase portrait - representative set of solutions, plotted as parametric curve (*t* is parameter) on Cartesian plane.

For given initial condition $X_0 = [x_1^0, x_2^0]^T$ we obtain one curve (trajectory)

イロト 不得 トイヨト イヨト

Consider differential equation

$$X(t)' = \mathcal{F}(X(t)), \quad X: \mathbb{R} o \mathbb{R}^2$$

Phase portrait - representative set of solutions, plotted as parametric curve (*t* is parameter) on Cartesian plane.

For given initial condition $X_0 = [x_1^0, x_2^0]^T$ we obtain one curve (trajectory)

Phase portrait is obtained by displaying trajectories for several initial conditions.

Consider differential equation

$$X(t)' = F(X(t)), \quad X: \mathbb{R} o \mathbb{R}^2$$

Phase portrait - representative set of solutions, plotted as parametric curve (*t* is parameter) on Cartesian plane.

For given initial condition $X_0 = [x_1^0, x_2^0]^T$ we obtain one curve (trajectory)

Phase portrait is obtained by displaying trajectories for several initial conditions.

Cartesian plane containing phase portrait is sometimes named phase plane.

Phase portrait

Example

Sketch phase portrait of differential equation

$$x' = \left[\begin{array}{cc} -1 & 0 \\ 0 & -2 \end{array} \right] x$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Example

Sketch phase portrait of differential equation

$$x' = \left[\begin{array}{cc} -1 & 0 \\ 0 & -2 \end{array} \right] x$$

Solution. Eigenvalues:
$$\lambda_1 = -1, \lambda_2 = -2$$

Eigenvectors:

$$v_1 = \left[egin{array}{c} 1 \\ 0 \end{array}
ight], \quad v_2 = \left[egin{array}{c} 0 \\ 1 \end{array}
ight]$$

・ロト・西・・川・・田・ 日 うくの

Phase portrait

Example

Sketch phase portrait of differential equation

$$x' = \left[\begin{array}{cc} -1 & 0 \\ 0 & -2 \end{array} \right] x$$

Solution. Eigenvalues:
$$\lambda_1 = -1, \lambda_2 = -2$$

Eigenvectors:

$$v_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Solution:

$$x(t) = c_1 e^{-t} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + c_2 e^{-2t} \begin{bmatrix} 0 \\ 1 \end{bmatrix} =$$

24/120

イロト イヨト イヨト イヨト

Phase portrait

Example

Sketch phase portrait of differential equation

$$x' = \left[\begin{array}{cc} -1 & 0 \\ 0 & -2 \end{array} \right] x$$

Solution. Eigenvalues:
$$\lambda_1 = -1, \lambda_2 = -2$$

Eigenvectors:

$$v_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Solution:

$$x(t) = c_1 e^{-t} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + c_2 e^{-2t} \begin{bmatrix} 0 \\ 1 \end{bmatrix} =$$

We have to plot several solutions (with different initial conditions).

ns Phase portrait

Note that

$$x(t) = c_k e^{\lambda_k t} v_k, \quad k = 1, 2$$

are solutions.

$$x(t) = c_k e^{\lambda_k t} v_k, \quad k = 1, 2$$

・ロト ・ 四ト ・ ヨト ・ ヨト

3

25/120

are solutions.

 \Rightarrow Lines defined by eigenvectors are trajectories.

$$x(t) = c_k e^{\lambda_k t} v_k, \quad k = 1, 2$$

are solutions.

 \Rightarrow Lines defined by eigenvectors are trajectories.

Choose some initial condition, for example, $x(0) = [1, 1]^T$.

・ロト・西ト・西ト・日・ のへの

$$x(t) = c_k e^{\lambda_k t} v_k, \quad k = 1, 2$$

are solutions.

 \Rightarrow Lines defined by eigenvectors are trajectories.

Choose some initial condition, for example, $x(0) = [1, 1]^T$.

$$\Rightarrow \quad \mathbf{x}(t) = \left[\begin{array}{c} \mathrm{e}^{-t} \\ \mathrm{e}^{-2t} \end{array} \right]$$

$$x(t) = c_k e^{\lambda_k t} v_k, \quad k = 1, 2$$

are solutions.

 \Rightarrow Lines defined by eigenvectors are trajectories.

Choose some initial condition, for example, $x(0) = [1, 1]^T$.

$$\Rightarrow \quad \mathbf{x}(t) = \left[\begin{array}{c} \mathrm{e}^{-t} \\ \mathrm{e}^{-2t} \end{array} \right]$$

How parametric defined curve $\{(e^{-t}, e^{-2t}) \mid t \in \mathbb{R}\}$ looks like?

$$x(t) = c_k e^{\lambda_k t} v_k, \quad k = 1, 2$$

are solutions.

 \Rightarrow Lines defined by eigenvectors are trajectories.

Choose some initial condition, for example, $x(0) = [1, 1]^T$.

$$\Rightarrow \quad x(t) = \left[\begin{array}{c} \mathrm{e}^{-t} \\ \mathrm{e}^{-2t} \end{array} \right]$$

How parametric defined curve $\{(e^{-t}, e^{-2t}) \mid t \in \mathbb{R}\}$ looks like?

$$\mathrm{e}^{-2t} = \left(\mathrm{e}^{-t}\right)^2$$

$$x(t) = c_k e^{\lambda_k t} v_k, \quad k = 1, 2$$

are solutions.

 \Rightarrow Lines defined by eigenvectors are trajectories.

Choose some initial condition, for example, $x(0) = [1, 1]^T$.

$$\Rightarrow \quad x(t) = \left[\begin{array}{c} \mathrm{e}^{-t} \\ \mathrm{e}^{-2t} \end{array} \right]$$

How parametric defined curve $\{(e^{-t}, e^{-2t}) \mid t \in \mathbb{R}\}$ looks like?

$$\mathrm{e}^{-2t} = \left(\mathrm{e}^{-t}\right)^2 \quad \Rightarrow \quad x_2 = x_1^2$$

Phase portrait

Note that

$$x(t) = c_k e^{\lambda_k t} v_k, \quad k = 1, 2$$

are solutions.

Lines defined by eigenvectors are trajectories. \Rightarrow

Choose some initial condition, for example, $x(0) = [1, 1]^T$.

$$\Rightarrow \quad \mathbf{x}(t) = \left[\begin{array}{c} \mathrm{e}^{-t} \\ \mathrm{e}^{-2t} \end{array} \right]$$

How parametric defined curve $\{(e^{-t}, e^{-2t}) \mid t \in \mathbb{R}\}$ looks like?

$$e^{-2t} = (e^{-t})^2 \Rightarrow x_2 = x_1^2 \rightarrow \text{parabola}$$

$$x(t) = c_k e^{\lambda_k t} v_k, \quad k = 1, 2$$

are solutions.

 \Rightarrow Lines defined by eigenvectors are trajectories.

Choose some initial condition, for example, $x(0) = [1, 1]^T$.

$$\Rightarrow \quad x(t) = \left[\begin{array}{c} \mathrm{e}^{-t} \\ \mathrm{e}^{-2t} \end{array} \right]$$

How parametric defined curve $\{(e^{-t}, e^{-2t}) \mid t \in \mathbb{R}\}$ looks like?

 $e^{-2t} = (e^{-t})^2 \Rightarrow x_2 = x_1^2 \rightarrow \text{parabola}$ In general, $x(0) = [1, \alpha]^T, \ \alpha \in \mathbb{R}$

$$\Rightarrow \quad \mathbf{x}(t) = \begin{bmatrix} \mathrm{e}^{-t} \\ \alpha \, \mathrm{e}^{-2t} \end{bmatrix}$$

$$x(t) = c_k e^{\lambda_k t} v_k, \quad k = 1, 2$$

are solutions.

 \Rightarrow Lines defined by eigenvectors are trajectories.

Choose some initial condition, for example, $x(0) = [1, 1]^T$.

$$\Rightarrow \quad \mathbf{x}(t) = \left[\begin{array}{c} \mathrm{e}^{-t} \\ \mathrm{e}^{-2t} \end{array} \right]$$

How parametric defined curve $\{(e^{-t}, e^{-2t}) \mid t \in \mathbb{R}\}$ looks like?

 $e^{-2t} = (e^{-t})^2 \Rightarrow x_2 = x_1^2 \rightarrow \text{parabola}$ In general, $x(0) = [1, \alpha]^T, \ \alpha \in \mathbb{R}$

$$\Rightarrow \quad x(t) = \begin{bmatrix} e^{-t} \\ \alpha e^{-2t} \end{bmatrix} \quad \Rightarrow \quad x_2 = \alpha x_1^2$$

Trajectory for $x_0 = [1, 1]^T$:

In what direction solution goes?

In what direction solution goes?

Direction in \bar{x} is $A\bar{x}$.

In what direction solution goes?

Direction in \bar{x} is $A\bar{x}$.

Direction in [1, 1] is

$$\left[\begin{array}{cc} -1 & 0 \\ 0 & -2 \end{array}\right] \left[\begin{array}{c} 1 \\ 1 \end{array}\right] = \left[\begin{array}{c} -1 \\ -2 \end{array}\right]$$

Trajectory for $x_0 = [1, 1]^T$:

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ = 臣 = のへで

Immediately, we have another trajectory

and another two

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ の Q @

Phase portrait:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Phase portrait for

$$A = \begin{bmatrix} -1 & 0 \\ 0 & -5 \end{bmatrix}?$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Phase portrait for

$$A = \begin{bmatrix} -1 & 0 \\ 0 & -5 \end{bmatrix}?$$

We obtain solution of differential equation x' = Ax as before:

$$\mathbf{x}(t) = \left[\begin{array}{c} \mathbf{c}_1 \, \mathrm{e}^{-t} \\ \mathbf{c}_2 \, \mathrm{e}^{-5t} \end{array} \right]$$
$$A = \begin{bmatrix} -1 & 0 \\ 0 & -5 \end{bmatrix}?$$

We obtain solution of differential equation x' = Ax as before:

$$\mathbf{x}(t) = \left[\begin{array}{c} \mathbf{c}_1 \, \mathrm{e}^{-t} \\ \mathbf{c}_2 \, \mathrm{e}^{-5t} \end{array} \right]$$

For initial condition $x_0 = [1, 1]^T$ we have

$$\mathbf{x}(t) = \left[\begin{array}{c} \mathrm{e}^{-t} \\ \mathrm{e}^{-5t} \end{array} \right].$$

Trajectory is graph of function:

$$x_2 = x_1^5$$
.

3

Phase portrait for
$$x' = \begin{bmatrix} -1 & 0 \\ 0 & -5 \end{bmatrix} x$$

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへで

$$A = \left[\begin{array}{cc} -2 & 0 \\ 0 & -1 \end{array} \right]?$$

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへぐ

$$A = \left[\begin{array}{cc} -2 & 0 \\ 0 & -1 \end{array} \right]?$$

Solution of differential equation x' = Ax is:

$$x(t) = \left[\begin{array}{c} c_1 e^{-2t} \\ c_2 e^{-t} \end{array} \right]$$

$$A = \left[\begin{array}{cc} -2 & 0 \\ 0 & -1 \end{array} \right]?$$

Solution of differential equation x' = Ax is:

$$\mathbf{x}(t) = \begin{bmatrix} \mathbf{c}_1 \, \mathrm{e}^{-2t} \\ \mathbf{c}_2 \, \mathrm{e}^{-t} \end{bmatrix}$$

For initial condition $x_0 = [1, 1]^T$ we have

$$x(t) = \left[\begin{array}{c} \mathrm{e}^{-2t} \\ \mathrm{e}^{-t} \end{array} \right]$$

.

Trajectory is graph of function:

$$x_2^2 = x_1.$$

i.e.

$$x_2 = \sqrt{x_1}.$$

34/120

Phase portrait for
$$x' = \begin{vmatrix} -2 & 0 \\ 0 & -1 \end{vmatrix} x$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ ○ ○ ○

35/120

Parabola directed toward axis that corresponds to largest eigenvalue.

$$A = \left[\begin{array}{rrr} 1 & 0 \\ 0 & 2 \end{array} \right]?$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

$$A = \left[egin{array}{cc} 1 & 0 \ 0 & 2 \end{array}
ight]?$$

Solution of differential equation x' = Ax is::

$$\mathbf{x}(t) = \left[\begin{array}{c} \mathbf{c}_1 \, \mathrm{e}^t \\ \mathbf{c}_2 \, \mathrm{e}^{2t} \end{array} \right]$$

$$A = \left[\begin{array}{rrr} 1 & 0 \\ 0 & 2 \end{array} \right]?$$

Solution of differential equation x' = Ax is::

$$x(t) = \left[\begin{array}{c} c_1 e^t \\ c_2 e^{2t} \end{array}\right]$$

For initial condition $x_0 = [1, 1]^T$ we have

$$\mathbf{x}(t) = \begin{bmatrix} \mathbf{e}^t \\ \mathbf{e}^{2t} \end{bmatrix}.$$

Trajectory is graph of function:

$$x_2 = x_1^2$$
.

э

Phase portrait for
$$x' = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} x$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

38/120

If eigenvalues are equal:

$$\boldsymbol{A} = \begin{bmatrix} \lambda & \mathbf{0} \\ \mathbf{0} & \lambda \end{bmatrix}?$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

If eigenvalues are equal:

$$A = \left[egin{array}{cc} \lambda & \mathbf{0} \\ \mathbf{0} & \lambda \end{array}
ight]?$$

Solution of differential equation x' = Ax is:

$$\mathbf{x}(t) = \left[\begin{array}{c} \mathbf{c}_1 \, \mathrm{e}^{\lambda \, t} \\ \mathbf{c}_2 \, \mathrm{e}^{\lambda \, t} \end{array} \right]$$

・ロト・日本・日本・日本・日本・日本

If eigenvalues are equal:

$$A = \left[egin{array}{cc} \lambda & \mathbf{0} \\ \mathbf{0} & \lambda \end{array}
ight]?$$

Solution of differential equation x' = Ax is:

$$\mathbf{x}(t) = \left[\begin{array}{c} \mathbf{c}_1 \, \mathrm{e}^{\lambda \, t} \\ \mathbf{c}_2 \, \mathrm{e}^{\lambda \, t} \end{array} \right]$$

For initial condition $x_0 = [1, 1]^T$ we have

$$\mathbf{x}(t) = \left[\begin{array}{c} \mathrm{e}^{\lambda t} \\ \mathrm{e}^{\lambda t} \end{array} \right].$$

Trajectory is graph of function:

$$x_2 = x_1$$

40/120

Phase portrait for
$$x' = \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} x, \quad \lambda < 0$$

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへで

41/120

We consider case when

$$A = \left[\begin{array}{rrr} -1 & 1 \\ 0 & -1 \end{array} \right].$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

We consider case when

$$A = \left[\begin{array}{cc} -1 & 1 \\ 0 & -1 \end{array} \right].$$

Solution of differential equation x' = Ax is:

$$x(t) = \begin{bmatrix} c_1 e^{-t} + c_2 t e^{-t} \\ c_2 e^{-t} \end{bmatrix}$$

・ロト・白子・・山下・ 白 うくの

We consider case when

$$A = \left[\begin{array}{cc} -1 & 1 \\ 0 & -1 \end{array} \right].$$

Solution of differential equation x' = Ax is:

$$\mathbf{x}(t) = \left[\begin{array}{c} \mathbf{c}_1 \, \mathrm{e}^{-t} + \mathbf{c}_2 t \, \mathrm{e}^{-t} \\ \mathbf{c}_2 \, \mathrm{e}^{-t} \end{array} \right]$$

From

$$x_2(t)=c_2\,\mathrm{e}^{-t}$$

it follows that

$$x_1(t) = c_1 e^{-t} + c_2 t e^{-t} = \frac{c_1}{c_2} x_2(t) - x_2(t) \ln \frac{x_2(t)}{c_2}.$$

42/120

э

A D F A B F A B F A B F

We consider case when

$$A = \left[\begin{array}{cc} -1 & 1 \\ 0 & -1 \end{array} \right].$$

Solution of differential equation x' = Ax is:

$$\mathbf{x}(t) = \left[\begin{array}{c} c_1 \, \mathrm{e}^{-t} + c_2 t \, \mathrm{e}^{-t} \\ c_2 \, \mathrm{e}^{-t} \end{array} \right]$$

From

$$x_2(t)=c_2\,\mathrm{e}^{-t}$$

it follows that

$$x_1(t) = c_1 e^{-t} + c_2 t e^{-t} = \frac{c_1}{c_2} x_2(t) - x_2(t) \ln \frac{x_2(t)}{c_2}.$$

For $x_2(t) > 0$:

$$x_{1} = \left(\frac{c_{1}}{c_{2}} - \ln c_{2}\right) x_{2} - x_{2} \ln x_{2} = c x_{2} - x_{2} \ln x_{2}.$$

Trajectory for $x_2 > 0$ and example of another trajectory for $x_2 < 0$:

 $A = \begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix}$ x_1 2

4 日 > 4 日 > 4 目 > 4 目 > 目 の へ で

We consider case when

$$A = \left[\begin{array}{rrr} 1 & 0 \\ 0 & -1 \end{array} \right].$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

We consider case when

$$A = \left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right].$$

Solution of differential equation x' = Ax is:

$$x(t) = \left[\begin{array}{c} c_1 e^t \\ c_2 e^{-t} \end{array}\right]$$

・ロ・・雪・・雪・・雪・・

We consider case when

$$A = \left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right].$$

Solution of differential equation x' = Ax is:

$$\boldsymbol{x}(t) = \left[\begin{array}{c} \boldsymbol{c}_1 \, \mathrm{e}^t \\ \boldsymbol{c}_2 \, \mathrm{e}^{-t} \end{array} \right]$$

Trajectory:

$$x_1x_2=c_1c_2=c$$

(日)

We consider case when

$$A = \left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right].$$

Solution of differential equation x' = Ax is:

$$\mathbf{x}(t) = \left[\begin{array}{c} \mathbf{c}_1 \, \mathrm{e}^t \\ \mathbf{c}_2 \, \mathrm{e}^{-t} \end{array} \right]$$

Trajectory:

$$x_1x_2=c_1c_2=c$$

- hyperbola

45/120

< 日 > < 同 > < 回 > < 回 > < □ > <

In general, for

$$\mathbf{A} = \left[\begin{array}{cc} \lambda_1 & \mathbf{0} \\ \mathbf{0} & -\lambda_2 \end{array} \right],$$

 $\lambda_1, \lambda_2 > 0$, solution of differential equation x' = Ax is:

$$\mathbf{x}(t) = \left[\begin{array}{c} \mathbf{c}_1 \, \mathrm{e}^{\lambda_1} \\ \mathbf{c}_2 \, \mathrm{e}^{-\lambda_2} \end{array} \right]$$

In general, for

$$\mathbf{A} = \left[\begin{array}{cc} \lambda_1 & \mathbf{0} \\ \mathbf{0} & -\lambda_2 \end{array} \right],$$

 $\lambda_1, \lambda_2 > 0$, solution of differential equation x' = Ax is:

$$\mathbf{x}(t) = \left[\begin{array}{c} \mathbf{c}_1 \, \mathrm{e}^{\lambda_1} \\ \mathbf{c}_2 \, \mathrm{e}^{-\lambda_2} \end{array} \right]$$

Trajectory:

$$x_1^{\lambda_2} x_2^{\lambda_1} = c_1 c_2 = c$$
$$x_1 = \alpha x_2^{-\lambda_1/\lambda_2}$$

э

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・

・ロット 4回ッ 4回ッ 4回ッ 4回ッ

 x_1

Phase porteait for x' = A x,

$$A = \begin{bmatrix} -2 & 1 \\ \frac{1}{4} & -1 \end{bmatrix}?$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへの

Phase porteait for x' = A x,

$$A = \begin{bmatrix} -2 & 1 \\ \frac{1}{4} & -1 \end{bmatrix}?$$

Eigenvalues and eigenvectors:

Phase porteait for x' = A x,

$$A = \begin{bmatrix} -2 & 1 \\ \frac{1}{4} & -1 \end{bmatrix}?$$

Eigenvalues and eigenvectors:

Mathematica:

a = {{-2,1},{1/4,-1}};
Eigenvalues[a]

Phase porteait for x' = A x,

$$A = \begin{bmatrix} -2 & 1 \\ \frac{1}{4} & -1 \end{bmatrix}?$$

Eigenvalues and eigenvectors:

Mathematica:

```
a = {{-2,1}, {1/4,-1}};
Eigenvalues[a]
```

```
{1/2(-3-Sqrt[2]),1/2(-3+Sqrt[2])}
```

Phase porteait for x' = Ax,

$$A = \begin{bmatrix} -2 & 1 \\ \frac{1}{4} & -1 \end{bmatrix}?$$

Eigenvalues and eigenvectors:

Mathematica:

```
a = {{-2,1}, {1/4,-1}};
Eigenvalues[a]
```

```
{1/2(-3-Sqrt[2]),1/2(-3+Sqrt[2])}
```

```
Simplify[Eigenvectors[a]]
```

Phase porteait for x' = A x,

$$A = \begin{bmatrix} -2 & 1 \\ \frac{1}{4} & -1 \end{bmatrix}?$$

Eigenvalues and eigenvectors:

Mathematica:

```
a = {{-2,1}, {1/4,-1}};
Eigenvalues[a]
```

```
{1/2(-3-Sqrt[2]),1/2(-3+Sqrt[2])}
```

```
Simplify[Eigenvectors[a]]
```

```
{{-2 (1+Sqrt[2]),1}, {2(-1+Sqrt[2]),1}}
```
What if matrix is not diagonal?

Phase porteait for x' = A x,

$$A = \begin{bmatrix} -2 & 1 \\ \frac{1}{4} & -1 \end{bmatrix}?$$

Eigenvalues and eigenvectors:

Mathematica:

```
a = {{-2,1}, {1/4,-1}};
Eigenvalues[a]
```

```
{1/2(-3-Sqrt[2]),1/2(-3+Sqrt[2])}
```

Simplify[Eigenvectors[a]]

{{-2 (1+Sqrt[2]),1}, {2(-1+Sqrt[2]),1}}

t = Transpose[Simplify[Eigenvectors[a]]]

What if matrix is not diagonal?

Phase porteait for x' = A x,

$$A = \begin{bmatrix} -2 & 1 \\ \frac{1}{4} & -1 \end{bmatrix}?$$

Eigenvalues and eigenvectors:

Mathematica:

a = {{-2,1}, {1/4,-1}}; Eigenvalues[a]

{1/2(-3-Sqrt[2]),1/2(-3+Sqrt[2])}

Simplify[Eigenvectors[a]]

{{-2 (1+Sqrt[2]),1}, {2(-1+Sqrt[2]),1}}

t = Transpose[Simplify[Eigenvectors[a]]]

{ { -2 (1+Sqrt[2]), 2 (-1+Sqrt[2]) }, {1,1} }, (-1,1)

Eigenvalues:

$$\lambda_1 = \frac{-3 - \sqrt{2}}{2}, \quad \lambda_2 = \frac{-3 + \sqrt{2}}{2},$$

and eigenvectors:

$$v_1 = \left[egin{array}{c} -2(1+\sqrt{2}) \\ 1 \end{array}
ight] \quad v_2 = \left[egin{array}{c} 2(-1+\sqrt{2}) \\ 1 \end{array}
ight]$$

Transformation matrix:

$$T = \left[\begin{array}{cc} -2(1+\sqrt{2}) & 2(-1+\sqrt{2}) \\ 1 & 1 \end{array} \right]$$

・ロト・日本・日本・日本・日本・日本

Eigenvalues:

$$\lambda_1 = \frac{-3 - \sqrt{2}}{2}, \quad \lambda_2 = \frac{-3 + \sqrt{2}}{2},$$

and eigenvectors:

$$v_1 = \begin{bmatrix} -2(1+\sqrt{2}) \\ 1 \end{bmatrix} \quad v_2 = \begin{bmatrix} 2(-1+\sqrt{2}) \\ 1 \end{bmatrix}$$

Transformation matrix:

$$T = \left[\begin{array}{cc} -2(1+\sqrt{2}) & 2(-1+\sqrt{2}) \\ 1 & 1 \end{array} \right]$$

Substitution:

$$T^{-1}AT = D = \begin{bmatrix} \lambda_1 & 0\\ 0 & \lambda_2 \end{bmatrix}, \quad y = T^{-1}x$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

49/120

Eigenvalues:

$$\lambda_1 = rac{-3 - \sqrt{2}}{2}, \quad \lambda_2 = rac{-3 + \sqrt{2}}{2},$$

and eigenvectors:

$$v_1 = \begin{bmatrix} -2(1+\sqrt{2}) \\ 1 \end{bmatrix} \quad v_2 = \begin{bmatrix} 2(-1+\sqrt{2}) \\ 1 \end{bmatrix}$$

Transformation matrix:

$$T = \left[\begin{array}{cc} -2(1+\sqrt{2}) & 2(-1+\sqrt{2}) \\ 1 & 1 \end{array} \right]$$

Substitution:

$$T^{-1}AT = D = \begin{bmatrix} \lambda_1 & 0\\ 0 & \lambda_2 \end{bmatrix}, \quad y = T^{-1}x$$

We consider differential equation y' = D y.

э

・ロト ・留 ト ・目 ト ・目 ト

Trajectory for y' = D y:

▲□▶▲□▶▲臣▶▲臣▶ 臣 のへで

50/120

Trajectory for x' = Ax, x = Tx:

Phase portrait for
$$x' = \begin{vmatrix} -2 & 1 \\ \frac{1}{4} & -1 \end{vmatrix} x$$
:

Phase portrait for
$$x' = \begin{bmatrix} -2 & 1 \\ \frac{1}{4} & 1 \end{bmatrix} x$$
:

53/120

Equation:

$$x' = \left[\begin{array}{cc} 0 & 0 \\ 0 & \lambda \end{array} \right] x$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Equation:

$$x' = \left[\begin{array}{cc} 0 & 0 \\ 0 & \lambda \end{array} \right] x$$

System:

$$\begin{array}{rcl} x_1' &=& 0\\ x_2' &=& \lambda \, x_2 \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Equation:

$$\mathbf{x}' = \left[\begin{array}{cc} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \lambda \end{array} \right] \mathbf{x}$$

System:

$$\begin{array}{rcl} x_1' &=& 0\\ x_2' &=& \lambda \, x_2 \end{array}$$

$$x_1(t) = c_1$$

 $x_2(t) = c_2 e^{\lambda t}$

・ロト・西・・川・・田・ 日・ うくの

Equation:

$$\mathbf{x}' = \left[\begin{array}{cc} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \lambda \end{array} \right] \mathbf{x}$$

System:

$$\begin{array}{rcl} x_1' &=& 0\\ x_2' &=& \lambda \, x_2 \end{array}$$

$$\begin{array}{rcl} x_1(t) &=& c_1 \\ x_2(t) &=& c_2 e^{\lambda t} \end{array}$$

Equilibrium: $x_2 = 0 \Rightarrow x^* = (c, 0), c \in \mathbb{R}$

うてん 叫 ふぼくふく むく

54/120

Phase portrait for
$$x' = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} x$$
:

For $x' = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} x$ solution is constant function x(t) = c. Therefore, each point is equilibrium.

For $x' = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} x$ solution is constant function x(t) = c. Therefore, each point is equilibrium.

When dimension of Jordan block is 2×2 :

$$x' = \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right] x$$

system of equation is:

$$\begin{array}{rcl}
x_1' &=& x_2 \\
x_2' &=& 0.
\end{array}$$

For $x' = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} x$ solution is constant function x(t) = c. Therefore, each point is equilibrium.

When dimension of Jordan block is 2×2 :

$$x' = \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right] x$$

system of equation is:

$$x_1' = x_2
 x_2' = 0.$$

Solution:

$$x_2(t) = c_2$$

For $x' = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} x$ solution is constant function x(t) = c. Therefore, each point is equilibrium.

When dimension of Jordan block is 2 \times 2:

$$x' = \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right] x$$

system of equation is:

$$\begin{array}{rcl}
x_1' &=& x_2 \\
x_2' &=& 0.
\end{array}$$

Solution:

$$\begin{array}{rcl} x_2(t) &=& c_2 \\ x_1' &=& c_2 \end{array}$$

For $x' = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} x$ solution is constant function x(t) = c. Therefore, each point is equilibrium.

When dimension of Jordan block is 2 \times 2:

$$x' = \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right] x$$

system of equation is:

$$x_1' = x_2
 x_2' = 0.$$

Solution:

$$x_2(t) = c_2$$

 $x'_1 = c_2$
 $x_1(t) = c_2 t + c_1$

For $x' = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} x$ solution is constant function x(t) = c. Therefore, each point is equilibrium.

When dimension of Jordan block is 2 \times 2:

$$x' = \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right] x$$

system of equation is:

$$x_1' = x_2
 x_2' = 0.$$

Solution:

Equilibr

$$\begin{array}{rcl} x_2(t) &=& c_2 \\ x_1' &=& c_2 \\ x_1(t) &=& c_2t+c_1 \\ \text{ium: } x_2 = 0 &\Rightarrow& x^* = (c,0), \ c \in \mathbb{R} \end{array}$$

Phase portrait for
$$x' = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x$$
:

◆□> ◆□> ◆臣> ◆臣> 「臣」 のへで

 $\mathbf{Re}\lambda \neq \mathbf{0}$

Differential equation

$$x' = \left[\begin{array}{cc} a & b \\ -b & a \end{array} \right] x$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

 $\mathbf{Re}\lambda \neq \mathbf{0}$

Differential equation

$$x' = \left[\begin{array}{cc} a & b \\ -b & a \end{array} \right] x$$

Characteristic polynomial:

$$(a-\lambda)^2+c^2=0$$

・ロト・白子・・山下・ 白 うくの

 $\mathbf{Re}\lambda \neq \mathbf{0}$

Differential equation

$$\mathbf{x}' = \left[\begin{array}{cc} \mathbf{a} & \mathbf{b} \\ -\mathbf{b} & \mathbf{a} \end{array} \right] \mathbf{x}$$

Characteristic polynomial:

$$(a-\lambda)^2+c^2=0$$

$$\lambda_1 = a + i b, \quad \lambda_1 = a - i b$$

・ロト・日本・日本・日本・日本・日本

 $\mathbf{Re}\lambda \neq \mathbf{0}$

. . .

Differential equation

$$\mathbf{x}' = \left[\begin{array}{cc} \mathbf{a} & \mathbf{b} \\ -\mathbf{b} & \mathbf{a} \end{array} \right] \mathbf{x}$$

Characteristic polynomial:

$$(a-\lambda)^2+c^2=0$$

$$\lambda_1 = a + i b, \quad \lambda_1 = a - i b$$

$$e^{\lambda_i t} = e^{(a \pm i b)t} = e^{at} e^{\pm i bt} = e^{at} (\cos b t \pm i \sin b t)$$

Complex eigenvalues and complex eigenvectors, but a solution is real.

Mathematica:

DSolve[{x'[t]==a x[t]+b y[t], y'[t] ==-b x[t]+a y[t]}, {x[t], y[t]},t]

Mathematica:

DSolve[{x'[t]==a x[t]+b y[t], y'[t] ==-b x[t]+a
y[t]},{x[t],y[t]},t]

{{x[t]->E^(a t)C[1]Cos[b t+E^(a t)C[2]Sin[b t], y[t]->E^(a t)C[2]Cos[b t]-E^(a t)C[1]Sin[b t]}}

$$\begin{aligned} x(t) &= \begin{bmatrix} c_1 e^{at} \cos bt + c_2 e^{at} \sin bt \\ c_2 e^{at} \cos bt - c_1 e^{at} \sin bt \end{bmatrix} \\ &= c_1 e^{at} \begin{bmatrix} \cos bt \\ -\sin bt \end{bmatrix} + c_2 e^{at} \begin{bmatrix} \sin bt \\ \cos bt \end{bmatrix} \end{aligned}$$

Trajectory for za
$$c_1 = 1$$
, $c_2 = 1$ and $A = \begin{bmatrix} 0.1 & 1 \\ -1 & 0.1 \end{bmatrix}$

Spiral.

60/120

Phase portrait for

<ロト</l>
(ロト
(日)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)<

 2^{x_1}

$\mathbf{Re}\lambda=\mathbf{0}$

 $\mathbf{Re}\lambda=\mathbf{0}$

 $a = 0 \Rightarrow$

$$x(t) = c_1 \begin{bmatrix} \cos b t \\ -\sin b t \end{bmatrix} + c_2 \begin{bmatrix} \sin b t \\ \cos b t \end{bmatrix}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ ○ ○ ○

 $\mathbf{Re}\lambda = \mathbf{0}$ $a = \mathbf{0} \Rightarrow$

$$x(t) = c_1 \begin{bmatrix} \cos b t \\ -\sin b t \end{bmatrix} + c_2 \begin{bmatrix} \sin b t \\ \cos b t \end{bmatrix}$$

Note,

$$x_1(t)^2 = c_1^2 \cos^2 b t + c_1 c_2 \cos b t \sin b t + c_2^2 \sin 2b t$$

$$x_2(t)^2 = c_1^2 \sin^2 b t - c_1 c_2 \sin b t \cos b t + c_2^2 \cos 2b t$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

 $\mathbf{Re}\lambda = \mathbf{0}$ $a = \mathbf{0} \Rightarrow$

$$x(t) = c_1 \begin{bmatrix} \cos b t \\ -\sin b t \end{bmatrix} + c_2 \begin{bmatrix} \sin b t \\ \cos b t \end{bmatrix}$$

Note,

$$\begin{aligned} x_1(t)^2 &= c_1^2 \cos^2 b \, t + c_1 c_2 \cos b \, t \sin b \, t + c_2^2 \sin 2b \, t \\ x_2(t)^2 &= c_1^2 \sin^2 b \, t - c_1 c_2 \sin b \, t \cos b \, t + c_2^2 \cos 2b \, t \quad \Rightarrow \\ x_1^2 + x_2^2 &= c_1^2 + c_2^2 = r^2 \end{aligned}$$

ヘロト ヘロト ヘヨト ヘヨト

Phase portrait for
$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

◆□> <個> < E> < E> < □> <のQ○</p>

Phase portrait for
$$B = T^{-1}AT = \begin{bmatrix} -\frac{4}{3} & -\frac{5}{3} \\ \frac{5}{3} & \frac{4}{3} \end{bmatrix}$$

 $A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \quad T = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへで

64/120

Phase portrait

 $\text{Re}\lambda_i > 0$

4.2. Linearization

Consider differential equation

$$X' = F(X), \quad F: \mathbb{R}^n \to \mathbb{R}^n.$$

・ロト・西ト・ヨト ・日・ シック

Linearization

4.2. Linearization

Consider differential equation

$$X' = F(X), \quad F: \mathbb{R}^n \to \mathbb{R}^n.$$

Like as in 1-dimensional case, function F may be substituted by Taylor polynomial of 1. degree:

$$F(X) \approx F(X_0) + J(X_0) \cdot (X - X_0)$$

・ロト ・四ト ・ヨト ・ヨト

4.2. Linearization

Consider differential equation

$$X' = F(X), \quad F: \mathbb{R}^n \to \mathbb{R}^n.$$

Linearization

Like as in 1-dimensional case, function F may be substituted by Taylor polynomial of 1. degree:

$$F(X) \approx F(X_0) + J(X_0) \cdot (X - X_0)$$

Note. F, X, X_0 are from \mathbb{R}^n .

< 日 > < 同 > < 回 > < 回 > < 回 > <

Linearization

4.2. Linearization

Consider differential equation

$$X' = F(X), \quad F: \mathbb{R}^n \to \mathbb{R}^n.$$

Like as in 1-dimensional case, function F may be substituted by Taylor polynomial of 1. degree:

$$F(X) \approx F(X_0) + J(X_0) \cdot (X - X_0)$$

Note. F, X, X_0 are from \mathbb{R}^n . What is J'?

< 日 > < 同 > < 回 > < 回 > < 回 > <

4.2. Linearization

Consider differential equation

$$X' = F(X), \quad F: \mathbb{R}^n \to \mathbb{R}^n.$$

Like as in 1-dimensional case, function F may be substituted by Taylor polynomial of 1. degree:

$$F(X) \approx F(X_0) + J(X_0) \cdot (X - X_0)$$

Note. F, X, X_0 are from \mathbb{R}^n . What is J'?

$$J(Y) = \begin{bmatrix} f_1(y_1, \ldots, y_n) \\ \vdots \\ f_n(y_1, \ldots, y_n) \end{bmatrix},$$

< 日 > < 同 > < 回 > < 回 > < 回 > <

4.2. Linearization

Consider differential equation

$$X' = F(X), \quad F: \mathbb{R}^n \to \mathbb{R}^n.$$

Like as in 1-dimensional case, function F may be substituted by Taylor polynomial of 1. degree:

$$F(X) \approx F(X_0) + J(X_0) \cdot (X - X_0)$$

Note. F, X, X_0 are from \mathbb{R}^n . What is J'?

$$J(Y) = \begin{bmatrix} f_1(y_1, \dots, y_n) \\ \vdots \\ f_n(y_1, \dots, y_n) \end{bmatrix}, \quad F'(Y) = \begin{bmatrix} \frac{\partial f_i}{\partial y_j} \end{bmatrix}$$

 $J = J_F$ is Jacobian matrix

ヘロト ヘロト ヘヨト ヘヨト

Example

Determine Jacobian matrix for function *F* from chemostat model.

Example

Determine Jacobian matrix for function *F* from chemostat model.

Solution.

$$F(S, P) = \begin{bmatrix} -V \frac{S}{K+S} \frac{P}{Y} + \omega S_0 - \omega S \\ V \frac{S}{K+S} P - \omega P \end{bmatrix}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 - のへで

Example

Determine Jacobian matrix for function *F* from chemostat model.

Solution.

$$F(S, P) = \left[egin{array}{c} -V rac{S}{K+S} rac{P}{Y} + \omega S_0 - \omega S \ V rac{S}{K+S} P - \omega P \end{array}
ight]$$

$$f_1(S,P) = -V \frac{S}{K+S} \frac{P}{Y} + \omega S_0 - \omega S$$

$$f_2(S,P) = V \frac{S}{K+S} P - \omega P$$

|▲□▶ ▲圖▶ ▲国▶ ▲国▶ | 国 | のへで

$$\frac{\partial f_1}{\partial S} = \frac{\partial}{\partial S} \left[-V \frac{S}{K+S} \frac{P}{Y} + \omega S_0 - \omega S \right]$$

$$\frac{\partial f_1}{\partial S} = \frac{\partial}{\partial S} \left[-V \frac{S}{K+S} \frac{P}{Y} + \omega S_0 - \omega S \right]$$
$$= -\frac{V K}{(K+S)^2} \frac{P}{Y} - \omega$$

$$\frac{\partial f_1}{\partial S} = \frac{\partial}{\partial S} \left[-V \frac{S}{K+S} \frac{P}{Y} + \omega S_0 - \omega S \right]$$
$$= -\frac{V K}{(K+S)^2} \frac{P}{Y} - \omega$$

$$\frac{\partial f_1}{\partial P} = \frac{\partial}{\partial P} \left[-V \frac{S}{K+S} \frac{P}{Y} + \omega S_0 - \omega S \right]$$

$$\frac{\partial f_1}{\partial S} = \frac{\partial}{\partial S} \left[-V \frac{S}{K+S} \frac{P}{Y} + \omega S_0 - \omega S \right]$$
$$= -\frac{V K}{(K+S)^2} \frac{P}{Y} - \omega$$

$$\frac{\partial f_1}{\partial P} = \frac{\partial}{\partial P} \left[-V \frac{S}{K+S} \frac{P}{Y} + \omega S_0 - \omega S \right]$$
$$= -V \frac{S}{K+S} \frac{1}{Y}$$

・・

$$\frac{\partial f_1}{\partial S} = \frac{\partial}{\partial S} \left[-V \frac{S}{K+S} \frac{P}{Y} + \omega S_0 - \omega S \right]$$
$$= -\frac{V K}{(K+S)^2} \frac{P}{Y} - \omega$$

$$\frac{\partial f_1}{\partial P} = \frac{\partial}{\partial P} \left[-V \frac{S}{K+S} \frac{P}{Y} + \omega S_0 - \omega S \right]$$

$$= -V \frac{S}{K+S} \frac{1}{Y}$$

$$\frac{\partial f_2}{\partial S} = \frac{\partial}{\partial S} \left[V \frac{S}{K+S} P - \omega P \right]$$

69/120

$$\frac{\partial f_1}{\partial S} = \frac{\partial}{\partial S} \left[-V \frac{S}{K+S} \frac{P}{Y} + \omega S_0 - \omega S \right]$$
$$= -\frac{V K}{(K+S)^2} \frac{P}{Y} - \omega$$

$$\frac{\partial f_1}{\partial P} = \frac{\partial}{\partial P} \left[-V \frac{S}{K+S} \frac{P}{Y} + \omega S_0 - \omega S \right]$$

$$= -V \frac{S}{K+S} \frac{1}{Y}$$

$$\frac{\partial f_2}{\partial S} = \frac{\partial}{\partial S} \left[V \frac{S}{K+S} P - \omega P \right] = \frac{V K}{(K+S)^2} P$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 − のへで

$$\frac{\partial f_1}{\partial S} = \frac{\partial}{\partial S} \left[-V \frac{S}{K+S} \frac{P}{Y} + \omega S_0 - \omega S \right]$$
$$= -\frac{V K}{(K+S)^2} \frac{P}{Y} - \omega$$

$$\frac{\partial f_1}{\partial P} = \frac{\partial}{\partial P} \left[-V \frac{S}{K+S} \frac{P}{Y} + \omega S_0 - \omega S \right]$$

$$= -V \frac{S}{K+S} \frac{1}{Y}$$

$$\frac{\partial f_2}{\partial S} = \frac{\partial}{\partial S} \left[V \frac{S}{K+S} P - \omega P \right] = \frac{V K}{(K+S)^2} P$$

$$\frac{\partial f_2}{\partial P} = \frac{\partial}{\partial P} \left[V \frac{S}{K+S} P - \omega P \right]$$

69/120

$$\frac{\partial f_1}{\partial S} = \frac{\partial}{\partial S} \left[-V \frac{S}{K+S} \frac{P}{Y} + \omega S_0 - \omega S \right]$$
$$= -\frac{V K}{(K+S)^2} \frac{P}{Y} - \omega$$

$$\frac{\partial f_1}{\partial P} = \frac{\partial}{\partial P} \left[-V \frac{S}{K+S} \frac{P}{Y} + \omega S_0 - \omega S \right]$$

$$= -V \frac{S}{K+S} \frac{1}{Y}$$

$$\frac{\partial f_2}{\partial S} = \frac{\partial}{\partial S} \left[V \frac{S}{K+S} P - \omega P \right] = \frac{V K}{(K+S)^2} P$$

$$\frac{\partial f_2}{\partial P} = \frac{\partial}{\partial P} \left[V \frac{S}{K+S} P - \omega P \right] = V \frac{S}{K+S} - \omega$$

≣ ∽ < (~ 69/120

$$J_{F}(S,P) = \begin{bmatrix} \frac{\partial f_{1}}{\partial S} & \frac{\partial f_{1}}{\partial P} \\ \frac{\partial f_{2}}{\partial S} & \frac{\partial f_{2}}{\partial P} \end{bmatrix}$$

$$J_{F}(S,P) = \begin{bmatrix} \frac{\partial f_{1}}{\partial S} & \frac{\partial f_{1}}{\partial P} \\ \frac{\partial f_{2}}{\partial S} & \frac{\partial f_{2}}{\partial P} \end{bmatrix} = \begin{bmatrix} -\frac{VK}{(K+S)^{2}}\frac{P}{Y} - \omega & -V\frac{S}{K+S}\frac{1}{Y} \\ \frac{VK}{(K+S)^{2}}P & V\frac{S}{K+S} - \omega \end{bmatrix}$$

As in 1-d case, equilibrium point X^* is a zero of function F:

 $F(X^*)=0.$

As in 1-d case, equilibrium point X^* is a zero of function F:

$$F(X^*)=0.$$

If we substitute F by Taylor polynomial of 1. degree around X^* :

$$F(X) pprox F(X^*) + J_F(X^*) \cdot (X - X^*) = J_F(X^*) \cdot (X - X^*)$$

As in 1-d case, equilibrium point X^* is a zero of function F:

 $F(X^{*}) = 0.$

If we substitute F by Taylor polynomial of 1. degree around X^* :

$$F(X) pprox F(X^*) + J_F(X^*) \cdot (X - X^*) = J_F(X^*) \cdot (X - X^*)$$

Now we consider differential equation

$$X' = J_F(X^*) \cdot (X - X^*).$$

イロト 不得 トイヨト イヨト 二日

As in 1-d case, equilibrium point X^* is a zero of function F:

 $F(X^{*}) = 0.$

If we substitute F by Taylor polynomial of 1. degree around X^* :

$$F(X) pprox F(X^*) + J_F(X^*) \cdot (X - X^*) = J_F(X^*) \cdot (X - X^*)$$

Now we consider differential equation

$$X' = J_F(X^*) \cdot (X - X^*).$$

By substitution $Y = X - X^*$ we obtain \Rightarrow

イロト 不得 トイヨト イヨト 二日

As in 1-d case, equilibrium point X^* is a zero of function F:

 $F(X^{*}) = 0.$

If we substitute F by Taylor polynomial of 1. degree around X^* :

$$F(X) pprox F(X^*) + J_F(X^*) \cdot (X - X^*) = J_F(X^*) \cdot (X - X^*)$$

Now we consider differential equation

$$X' = J_F(X^*) \cdot (X - X^*).$$

By substitution $Y = X - X^*$ we obtain \Rightarrow

$$Y' = J_F(X^*) \cdot Y$$

イロト 不得 トイヨト イヨト 二日

As in 1-d case, **equilibrium point** X^* is a zero of function F:

 $F(X^*) = 0.$

If we substitute F by Taylor polynomial of 1. degree around X^* :

$$F(X) pprox F(X^*) + J_F(X^*) \cdot (X - X^*) = J_F(X^*) \cdot (X - X^*)$$

Now we consider differential equation

$$X' = J_F(X^*) \cdot (X - X^*).$$

By substitution $Y = X - X^*$ we obtain \Rightarrow

$$Y' = J_F(X^*) \cdot Y$$

Differential equation is similar to the equation for exponential model, only, $J_f(X^*)$ is (constant) matrix.

Note. Hartman-Grobman theorem justifies linearization. Theorem shows that a solution of nonlinear differential equation

$$X'=F(X)$$

in the neighborhood of equilibrium point X^* qualitatively behaves as a solution of linear differential equation

$$X' = F'(X^*)X$$

in the neighborhood of point X = 0.

(日)

Hartman-Grobman theorem.

Theorem (Hartman-Grobman Theorem)

If x^* is a hyperbolic equilibrium of x' = f(x), $x \in \mathbb{R}^n$, then there exists a homeomorphism z = h(x) defined in a neighborhood of x^* that maps trajectories of x' = f(x) to those of z' = Az where $A = J_f(x^*)$.

イロト イポト イヨト イヨト

Hartman-Grobman theorem.

Theorem (Hartman-Grobman Theorem)

If x^* is a hyperbolic equilibrium of x' = f(x), $x \in \mathbb{R}^n$, then there exists a homeomorphism z = h(x) defined in a neighborhood of x^* that maps trajectories of x' = f(x) to those of z' = Az where $A = J_f(x^*)$.

hyperbolic equilibrium - Jacobian matrix at equilibrium point has all eigenvalues with nonzero real part

イロト イポト イヨト イヨト

Hartman-Grobman theorem.

Theorem (Hartman-Grobman Theorem)

If x^* is a hyperbolic equilibrium of x' = f(x), $x \in \mathbb{R}^n$, then there exists a homeomorphism z = h(x) defined in a neighborhood of x^* that maps trajectories of x' = f(x) to those of z' = Az where $A = J_f(x^*)$.

hyperbolic equilibrium - Jacobian matrix at equilibrium point has all eigenvalues with nonzero real part

homeomorphism - a continuous map with a continuous inverse

Let X^* is an equilibrium point of the system X' = F(X) and all eigenvalues of $J_F(X^*)$ have nonzero real parts. Then, X^* is locally stable equilibrium if and only if all real parts of eigenvalues of the Jacobian matrix $J_F(X^*)$ are negative.

Let X^* is an equilibrium point of the system X' = F(X) and all eigenvalues of $J_F(X^*)$ have nonzero real parts. Then, X^* is locally stable equilibrium if and only if all real parts of eigenvalues of the Jacobian matrix $J_F(X^*)$ are negative.

Algorithm.

• For any equilibrium X^* calculate Jacobian matrix of F at equilibrium X^* ($J_F(X^*)$) and check eigenvalues.

Let X^* is an equilibrium point of the system X' = F(X) and all eigenvalues of $J_F(X^*)$ have nonzero real parts. Then, X^* is locally stable equilibrium if and only if all real parts of eigenvalues of the Jacobian matrix $J_F(X^*)$ are negative.

Algorithm.

- For any equilibrium X^* calculate Jacobian matrix of F at equilibrium X^* ($J_F(X^*)$) and check eigenvalues.
- If real parts of all eigenvalues are negative then equilibrium is locally stable.

Let X^* is an equilibrium point of the system X' = F(X) and all eigenvalues of $J_F(X^*)$ have nonzero real parts. Then, X^* is locally stable equilibrium if and only if all real parts of eigenvalues of the Jacobian matrix $J_F(X^*)$ are negative.

Algorithm.

- For any equilibrium X^* calculate Jacobian matrix of F at equilibrium X^* ($J_F(X^*)$) and check eigenvalues.
- If real parts of all eigenvalues are negative then equilibrium is locally stable.
- If there is at least one eigenvalue with positive real part then equilibrium is not locally stable.

(日)

Let X^* is an equilibrium point of the system X' = F(X) and all eigenvalues of $J_F(X^*)$ have nonzero real parts. Then, X^* is locally stable equilibrium if and only if all real parts of eigenvalues of the Jacobian matrix $J_F(X^*)$ are negative.

Algorithm.

- For any equilibrium X^* calculate Jacobian matrix of F at equilibrium X^* ($J_F(X^*)$) and check eigenvalues.
- If real parts of all eigenvalues are negative then equilibrium is locally stable.
- If there is at least one eigenvalue with positive real part then equilibrium is not locally stable.

Note. Case $\text{Re}\lambda_k = 0$ is complex and should be analyzed using some other approach.

Linearization

Note. Hartman-Grobman Theorem says nothing about global stability.
$$x' = -x - x^3$$
 i $x' = -x + x^2$.

$$x' = -x - x^3$$
 i $x' = -x + x^2$.

In both cases linearization at $x^* = 0$ yields

$$x'=-x,$$

and $x^* = 0$ is locally stable equilibrium.

$$x' = -x - x^3$$
 i $x' = -x + x^2$.

In both cases linearization at $x^* = 0$ yields

$$\mathbf{x}' = -\mathbf{x},$$

and $x^* = 0$ is locally stable equilibrium.

In the first case, all solutions converge toward 0 (unique equilibrium).

< 日 > < 同 > < 回 > < 回 > < □ > <

$$x' = -x - x^3$$
 i $x' = -x + x^2$.

In both cases linearization at $x^* = 0$ yields

$$\mathbf{x}' = -\mathbf{x},$$

and $x^* = 0$ is locally stable equilibrium.

In the first case, all solutions converge toward 0 (unique equilibrium).

In the second case, 1 is another equilibrium and for $x_0 > 1$ solution will not converge toward 0 (it will diverge to $+\infty$).

A D A A B A A B A A B A B B

$$\begin{array}{rcl} X' &=& -(X+Y) - (X-Y) \cdot (X^2+Y^2) \\ Y' &=& -(X+Y) + (X-Y) \cdot (X^2+Y^2) \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

$$\begin{array}{rcl} X' &=& -(X+Y) - (X-Y) \cdot (X^2+Y^2) \\ Y' &=& -(X+Y) + (X-Y) \cdot (X^2+Y^2) \end{array}$$

Jacobian matrix at (0,0):

$$J_F = \left[\begin{array}{rrr} -1 & -1 \\ -1 & -1 \end{array} \right]$$

・ロ・・聞・・思・・思・ しゅうくの

$$\begin{array}{rcl} X' &=& -(X+Y) - (X-Y) \cdot (X^2+Y^2) \\ Y' &=& -(X+Y) + (X-Y) \cdot (X^2+Y^2) \end{array}$$

Jacobian matrix at (0, 0):

$$J_F = \left[\begin{array}{rrr} -1 & -1 \\ -1 & -1 \end{array} \right]$$

Eigenvalues: -2 an 0.

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

Linearization

Phase portrait.

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ の Q @

Phase portrait.

<ロ> < 団> < 団> < 豆> < 豆> < 豆> < 豆</p>

$$\begin{array}{rcl} X' &=& -(X+Y) + (X-Y) \cdot (X^2+Y^2) \\ Y' &=& -(X+Y) - (X-Y) \cdot (X^2+Y^2) \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

$$\begin{array}{rcl} X' &=& -(X+Y) + (X-Y) \cdot (X^2+Y^2) \\ Y' &=& -(X+Y) - (X-Y) \cdot (X^2+Y^2) \end{array}$$

Jacobian matrix at (0,0):

$$J_F = \left[\begin{array}{rrr} -1 & -1 \\ -1 & -1 \end{array} \right]$$

・ロ・・聞・・ヨ・・ヨ・ ヨー うへで

$$\begin{array}{rcl} X' &=& -(X+Y) + (X-Y) \cdot (X^2+Y^2) \\ Y' &=& -(X+Y) - (X-Y) \cdot (X^2+Y^2) \end{array}$$

Jacobian matrix at (0, 0):

$$J_F = \left[\begin{array}{rrr} -1 & -1 \\ -1 & -1 \end{array} \right]$$

Eigenvalues: -2 an 0.

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

Linearization

Phase portrait.

<□▶ <□▶ < 三▶ < 三▶ < 三▶ 三三 - のへぐ

Phase portrait.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへの

$$\begin{array}{rcl} X' &=& (X+Y) + (X-Y) \cdot (X^2+Y^2) \\ Y' &=& (X+Y) - (X-Y) \cdot (X^2+Y^2) \end{array}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

$$\begin{array}{rcl} X' &=& (X+Y) + (X-Y) \cdot (X^2+Y^2) \\ Y' &=& (X+Y) - (X-Y) \cdot (X^2+Y^2) \end{array}$$

Jacobian matrix at (0,0):

$$J_{\mathcal{F}} = \left[\begin{array}{rrr} 1 & 1 \\ 1 & 1 \end{array} \right]$$

$$\begin{array}{rcl} X' &=& (X+Y) + (X-Y) \cdot (X^2+Y^2) \\ Y' &=& (X+Y) - (X-Y) \cdot (X^2+Y^2) \end{array}$$

Jacobian matrix at (0,0):

$$J_F = \left[\begin{array}{rrr} 1 & 1 \\ 1 & 1 \end{array} \right]$$

Eigenvalues: 2 an 0.

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

Phase portrait.

Phase portrait.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへで

$$\begin{array}{rcl} X' &=& -Y - X^3 - X Y^2 \\ Y' &=& X - X^2 Y - Y^3 \end{array}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

Linearization

The hyperbolicity condition can't be removed.

$$\begin{array}{rcl} X' &=& -Y - X^3 - X Y^2 \\ Y' &=& X - X^2 Y - Y^3 \end{array}$$

Jacobian matrix at (0,0):

$$J_F = \left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right]$$

・ロト・国・・ヨト・ヨー シック

$$\begin{array}{rcl} X' &=& -Y - X^3 - X Y^2 \\ Y' &=& X - X^2 Y - Y^3 \end{array}$$

Jacobian matrix at (0,0):

$$J_F = \left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right]$$

Eigenvalues: $\pm i$.

(日)

Phase portrait.

Phase portrait.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへの

EXERCISES

$$S' = -V \frac{S}{K+S} \frac{P}{Y} + \omega S_0 - \omega S,$$

$$P' = V \frac{S}{K+S} P - \omega P$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

$$S' = -V \frac{S}{K+S} \frac{P}{Y} + \omega S_0 - \omega S,$$

$$P' = V \frac{S}{K+S} P - \omega P$$

Model has 5 parameters: V, K, Y, ω, S_0

$$S' = -V \frac{S}{K+S} \frac{P}{Y} + \omega S_0 - \omega S,$$

$$P' = V \frac{S}{K+S} P - \omega P$$

Model has 5 parameters: V, K, Y, ω, S_0

To make computation easier, we will use dedimensionalized model.

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

$$S' = -V \frac{S}{K+S} \frac{P}{Y} + \omega S_0 - \omega S,$$

$$P' = V \frac{S}{K+S} P - \omega P$$

Model has 5 parameters: V, K, Y, ω, S_0

To make computation easier, we will use dedimensionalized model. So,

A D > A B > A B > A B >

$$S' = -V \frac{S}{K+S} \frac{P}{Y} + \omega S_0 - \omega S,$$

$$P' = V \frac{S}{K+S} P - \omega P$$

Model has 5 parameters: V, K, Y, ω, S_0

To make computation easier, we will use dedimensionalized model.

So,

Problem

Dedimensionalize chemostat model.

Hint. Introduce new variables:

$$P(t) = P^*N(\tau), \quad S(t) = S^*C(\tau), \quad t = t^*\tau$$

Constants P^* , S^* , t^* determine in the way to simplify the model (to reduce a number of parameters).

Solution.

Solution.

$$P'(t) = \frac{d}{dt}P(t) = \frac{d}{dt}P^*N(\tau)$$

<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回> < 回</p>
$$P'(t) = \frac{d}{dt}P(t) = \frac{d}{dt}P^*N(\tau)$$
$$= P^*\frac{d}{dt}N\left(\frac{t}{t^*}\right)$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

86/120

=

Solution.

$$P'(t) = \frac{d}{dt}P(t) = \frac{d}{dt}P^*N(\tau)$$
$$= P^*\frac{d}{dt}N\left(\frac{t}{t^*}\right) = \frac{P^*}{t^*}N'\left(\frac{t}{t^*}\right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

$$P'(t) = \frac{d}{dt}P(t) = \frac{d}{dt}P^*N(\tau)$$
$$= P^*\frac{d}{dt}N\left(\frac{t}{t^*}\right) = \frac{P^*}{t^*}N'\left(\frac{t}{t^*}\right)$$
$$= \frac{P^*}{t^*}N'(\tau)$$

$$P'(t) = \frac{d}{dt}P(t) = \frac{d}{dt}P^*N(\tau)$$
$$= P^*\frac{d}{dt}N\left(\frac{t}{t^*}\right) = \frac{P^*}{t^*}N'\left(\frac{t}{t^*}\right)$$
$$= \frac{P^*}{t^*}N'(\tau)$$

S'(t) =

<□> <回> <回> <回> <回> <回> <回> <0< 0

$$P'(t) = \frac{d}{dt}P(t) = \frac{d}{dt}P^*N(\tau)$$
$$= P^*\frac{d}{dt}N\left(\frac{t}{t^*}\right) = \frac{P^*}{t^*}N'\left(\frac{t}{t^*}\right)$$
$$= \frac{P^*}{t^*}N'(\tau)$$
$$S'(t) = \frac{S^*}{t^*}C'(\tau)$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ の々ぐ

Model is of the form

$$\frac{S^*}{t^*}C' = -\frac{V S^*C}{K+S^*C}\frac{P^*N}{Y} + \omega S_0 - \omega S^*C$$
$$\frac{P^*}{t^*}N' = \frac{V S^*C}{K+S^*C}P^*N - \omega P^*N$$

Model is of the form

$$\frac{S^*}{t^*}C' = -\frac{VS^*C}{K+S^*C}\frac{P^*N}{Y} + \omega S_0 - \omega S^*C$$
$$\frac{P^*}{t^*}N' = \frac{VS^*C}{K+S^*C}P^*N - \omega P^*N$$

$$C' = -t^* \frac{VC}{K+S^*C} \frac{P^*N}{Y} + \frac{t^*\omega S_0}{S^*} - t^*\omega C$$

$$N' = t^* \frac{V S^* C}{K + S^* C} N - t^* \omega N$$

・ロ・・聞・・思・・思・・ しゃくの

Model is of the form

 \Rightarrow

$$\frac{S^*}{t^*}C' = -\frac{VS^*C}{K+S^*C}\frac{P^*N}{Y} + \omega S_0 - \omega S^*C$$
$$\frac{P^*}{t^*}N' = \frac{VS^*C}{K+S^*C}P^*N - \omega P^*N$$

$$C' = -t^* \frac{VC}{K + S^*C} \frac{P^*N}{Y} + \frac{t^*\omega S_0}{S^*} - t^*\omega C$$

$$N' = t^* \frac{V S^* C}{K + S^* C} N - t^* \omega N$$

・ロ・・聞・・ヨ・・ヨ・ シック

87/120

$$C' \quad = \quad -\frac{t^* V \mathcal{P}^*}{S^* Y} \frac{C}{\frac{K}{S^*} + C} \mathcal{N} + \frac{t^* \omega S_0}{S^*} - t^* \omega C$$

$$N' = t^* V \frac{C}{\frac{K}{S^*} + C} N - t^* \omega N$$

$$C' = -\frac{t^* V P^*}{S^* Y} \frac{C}{\frac{K}{S^*} + C} N + \frac{t^* \omega S_0}{S^*} - t^* \omega C$$

$$N' = t^* V rac{C}{rac{K}{S^*} + C} N - t^* \omega N$$

$$C' = -\frac{t^* V P^*}{S^* Y} \frac{C}{\frac{K}{S^*} + C} N + \frac{t^* \omega S_0}{S^*} - t^* \omega C$$

$$N' = t^* V rac{C}{rac{K}{S^*} + C} N - t^* \omega N$$

$$rac{K}{S^*}=1, \quad t^*\omega=1, \quad rac{t^*VP^*}{S^*Y}=1$$

æ

イロト イポト イヨト イヨト

$$C' = -\frac{t^* V P^*}{S^* Y} \frac{C}{\frac{K}{S^*} + C} N + \frac{t^* \omega S_0}{S^*} - t^* \omega C$$

$$N' = t^* V \frac{C}{\frac{K}{S^*} + C} N - t^* \omega N$$

$$\frac{K}{S^*} = 1, \quad t^*\omega = 1, \quad \frac{t^*VP^*}{S^*Y} = 1$$
$$\Rightarrow \quad S^* = K, \quad t^* = \frac{1}{\omega}, \quad P^* = \frac{S^*Y}{t^*V} = \frac{YK\omega}{V}$$

・ロト・日本・日本・日本・日本 うんの

88/120

$$C' = -\frac{t^* V P^*}{S^* Y} \frac{C}{\frac{K}{S^*} + C} N + \frac{t^* \omega S_0}{S^*} - t^* \omega C$$

$$N' = t^* V \frac{C}{\frac{K}{S^*} + C} N - t^* \omega N$$

$$\frac{K}{S^*} = 1, \quad t^*\omega = 1, \quad \frac{t^*VP^*}{S^*Y} = 1$$
$$\Rightarrow \quad S^* = K, \quad t^* = \frac{1}{\omega}, \quad P^* = \frac{S^*Y}{t^*V} = \frac{YK\omega}{V}$$

Define new parameters:

$$\alpha_1 = t^* V = \frac{V}{\omega}, \quad \alpha_2 = \frac{t^* \omega S_0}{S^*} = \frac{S_0}{K}$$

88/120

Dedimensionalized chemostat model:

$$C' = -\frac{C}{1+C}N + \alpha_2 - C$$
$$N' = \alpha_1 \frac{C}{1+C}N - N$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Dedimensionalized chemostat model:

$$C' = -\frac{C}{1+C}N + \alpha_2 - C$$
$$N' = \alpha_1 \frac{C}{1+C}N - N$$

Note. Only two parameters remain in analysis. Note that $\alpha_1, \alpha_2 > 0$

ヘロト ヘロト ヘヨト ヘヨト

Dedimensionalized chemostat model:

$$C' = -\frac{C}{1+C}N + \alpha_2 - C$$
$$N' = \alpha_1 \frac{C}{1+C}N - N$$

Note. Only two parameters remain in analysis. Note that $\alpha_1, \alpha_2 > 0$

Note. Substitution

$$\Rightarrow \quad t^* = \frac{1}{V}, \quad S^* = t^* \omega \, S_0 P^* = \frac{Y \, K \, \omega}{V}$$

also reduces number of parameters on 2.

89/120

(日)

Determine equilibrium points of chemostat model. (Use dedimensionalized model.)

Determine equilibrium points of chemostat model. (Use dedimensionalized model.)

Solution. Dedimensionalized chemostat model:

$$C' = -\frac{C}{1+C}N + \alpha_2 - C$$
$$N' = \alpha_1 \frac{C}{1+C}N - N$$

Determine equilibrium points of chemostat model. (Use dedimensionalized model.)

Solution. Dedimensionalized chemostat model:

$$C' = -\frac{C}{1+C}N + \alpha_2 - C$$
$$N' = \alpha_1 \frac{C}{1+C}N - N$$

Differential equation

X' = F(X)

・ロ・・四・・川・・日・ 山・ シック

Phase portrait for chemostat model

Problem

Determine equilibrium points of chemostat model. (Use dedimensionalized model.)

Solution. Dedimensionalized chemostat model:

$$C' = -\frac{C}{1+C}N + \alpha_2 - C$$
$$N' = \alpha_1 \frac{C}{1+C}N - N$$

Differential equation

X' = F(X)

$$X = \left[\begin{array}{c} C \\ N \end{array} \right]$$

Determine equilibrium points of chemostat model. (Use dedimensionalized model.)

Solution. Dedimensionalized chemostat model:

$$C' = -\frac{C}{1+C}N + \alpha_2 - C$$
$$N' = \alpha_1 \frac{C}{1+C}N - N$$

Differential equation

$$X'=F(X)$$

$$X = \begin{bmatrix} C \\ N \end{bmatrix} \text{ and } F(X) = F(C, N) = \begin{bmatrix} -\frac{C}{1+C}N + \alpha_2 - C \\ \alpha_1 \frac{C}{1+C}N - N \end{bmatrix}$$

From F(C, N) = 0 it follows

$$0 = -\frac{C}{1+C}N + \alpha_2 - C$$
$$0 = \alpha_1 \frac{C}{1+C}N - N$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

From F(C, N) = 0 it follows

$$0 = -\frac{C}{1+C}N + \alpha_2 - C$$
$$0 = \alpha_1 \frac{C}{1+C}N - N$$

Second equation yields:

$$\left(\alpha_1 \frac{C}{1+C} - 1\right) N = 0$$

From F(C, N) = 0 it follows

$$0 = -\frac{C}{1+C}N + \alpha_2 - C$$
$$0 = \alpha_1 \frac{C}{1+C}N - N$$

Second equation yields:

$$\left(\alpha_1 \frac{C}{1+C} - 1\right) N = 0$$

$$N = 0$$
 or $\alpha_1 \frac{C}{1+C} = 0$

First equation yields

$$\mathbf{0} = -\frac{C}{1+C}\mathbf{N} + \alpha_2 - C =$$

First equation yields

$$\mathbf{0} = -\frac{C}{1+C}\mathbf{N} + \alpha_2 - C = \alpha_2 - C$$

First equation yields

$$\mathbf{0} = -\frac{C}{1+C}\mathbf{N} + \alpha_2 - C = \alpha_2 - C$$

$$\Rightarrow C = \alpha_2$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへ⊙

First equation yields

$$\mathbf{0} = -\frac{C}{1+C}\mathbf{N} + \alpha_2 - C = \alpha_2 - C$$

$$\Rightarrow$$
 $C = \alpha_2$

Equilibrium:

$$X_1 = (\alpha_2, 0)$$

・ロ・・母・・ヨ・・日・ うへぐ

First equation yields

$$\mathbf{0} = -\frac{C}{1+C}\mathbf{N} + \alpha_2 - C = \alpha_2 - C$$

$$\Rightarrow$$
 $C = \alpha_2$

Equilibrium:

$$X_1 = (\alpha_2, 0)$$

Trivial equilibrium - no population.

2

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・

First equation yields

$$\mathbf{0} = -\frac{C}{1+C}\mathbf{N} + \alpha_2 - C = \alpha_2 - C$$

$$\Rightarrow$$
 $C = \alpha_2$

Equilibrium:

$$X_1 = (\alpha_2, 0)$$

Trivial equilibrium - no population.

$$C = \alpha_2 \quad \Rightarrow \quad S = S_0.$$

92/120

2

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・

2.
$$\alpha_1 \frac{C}{1+C} - 1 = 0$$

Phase portrait for chemostat model

2.
$$\alpha_1 \frac{C}{1+C} - 1 = 0 \quad \Rightarrow \quad C = \frac{1}{\alpha_1 - 1}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目: のへぐ

Phase portrait for chemostat model

2.
$$\alpha_1 \frac{C}{1+C} - 1 = 0 \quad \Rightarrow \quad C = \frac{1}{\alpha_1 - 1}$$

Substitute into 1. equation:

$$\mathbf{0} = -\frac{C}{1+C}\mathbf{N} + \alpha_2 - C$$

Phase portrait for chemostat model

2.
$$\alpha_1 \frac{C}{1+C} - 1 = 0 \quad \Rightarrow \quad C = \frac{1}{\alpha_1 - 1}$$

Substitute into 1. equation:

$$0 = -\frac{C}{1+C}N + \alpha_2 - C = -\frac{1}{\alpha_1}N + \alpha_2 - \frac{1}{\alpha_1 - 1}$$

Phase portrait for chemostat model

2.
$$\alpha_1 \frac{C}{1+C} - 1 = 0 \quad \Rightarrow \quad C = \frac{1}{\alpha_1 - 1}$$

Substitute into 1. equation:

$$0 = -\frac{C}{1+C}N + \alpha_2 - C = -\frac{1}{\alpha_1}N + \alpha_2 - \frac{1}{\alpha_1 - 1}$$

$$\Rightarrow \quad \mathbf{N} = \alpha_1 \left(\alpha_2 - \frac{1}{\alpha_1 - 1} \right)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●
Analysis of systems of differential equations

Phase portrait for chemostat model

2.
$$\alpha_1 \frac{C}{1+C} - 1 = 0 \quad \Rightarrow \quad C = \frac{1}{\alpha_1 - 1}$$

Substitute into 1. equation:

$$0 = -\frac{C}{1+C}N + \alpha_2 - C = -\frac{1}{\alpha_1}N + \alpha_2 - \frac{1}{\alpha_1 - 1}$$

$$\Rightarrow \quad \mathbf{N} = \alpha_1 \left(\alpha_2 - \frac{1}{\alpha_1 - 1} \right)$$

Equilibrium:

$$X_2 = \left(\frac{1}{\alpha_1 - 1}, \alpha_1\left(\alpha_2 - \frac{1}{\alpha_1 - 1}\right)\right)$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQで

Analysis of systems of differential equations

Phase portrait for chemostat model

2.
$$\alpha_1 \frac{C}{1+C} - 1 = 0 \quad \Rightarrow \quad C = \frac{1}{\alpha_1 - 1}$$

Substitute into 1. equation:

~

$$0 = -\frac{C}{1+C}N + \alpha_2 - C = -\frac{1}{\alpha_1}N + \alpha_2 - \frac{1}{\alpha_1 - 1}$$

.

$$\Rightarrow \quad \mathbf{N} = \alpha_1 \left(\alpha_2 - \frac{1}{\alpha_1 - 1} \right)$$

Equilibrium:

$$X_2 = \left(\frac{1}{\alpha_1 - 1}, \alpha_1\left(\alpha_2 - \frac{1}{\alpha_1 - 1}\right)\right)$$

C and *N* are positive. What are conditions for the existence of positive equilibrium?

$$X_{2} = \left(\frac{1}{\alpha_{1}-1}, \alpha_{1}\left(\alpha_{2}-\frac{1}{\alpha_{1}-1}\right)\right)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

$$X_{2} = \left(\frac{1}{\alpha_{1}-1}, \alpha_{1}\left(\alpha_{2}-\frac{1}{\alpha_{1}-1}\right)\right)$$

$$\alpha_1 - 1 > 0$$

$$\alpha_2 - \frac{1}{\alpha_1 - 1} > 0$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = 釣�?

$$X_2 = \left(\frac{1}{\alpha_1 - 1}, \alpha_1 \left(\alpha_2 - \frac{1}{\alpha_1 - 1}\right)\right)$$

$$\alpha_1 - 1 > 0$$

$$\alpha_2 - \frac{1}{\alpha_1 - 1} > 0$$

Interpretation:

$$\alpha_1 - 1 > 0 \quad \Rightarrow \quad \frac{V}{\omega} > 1 \quad \Rightarrow \quad V > \omega$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

$$X_{2} = \left(\frac{1}{\alpha_{1}-1}, \alpha_{1}\left(\alpha_{2}-\frac{1}{\alpha_{1}-1}\right)\right)$$

$$\alpha_1 - 1 > 0$$

$$\alpha_2 - \frac{1}{\alpha_1 - 1} > 0$$

Interpretation:

$$\alpha_1 - 1 > 0 \quad \Rightarrow \quad \frac{V}{\omega} > 1 \quad \Rightarrow \quad V > \omega$$

Maximal growth rate should be larger then washout rate.

If washout rate is to high, loss of cells is greater then growth rate.

・ ロ ト ・ 同 ト ・ ヨ ト ・ 日 ト

$$\alpha_2 - \frac{1}{\alpha_1 - 1} > 0$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ の Q @

$$\alpha_2 - \frac{1}{\alpha_1 - 1} > 0$$

Substrate concentration in the equilibrium:

$$C^* = \frac{1}{\alpha_1 - 1}$$

$$\alpha_2 - \frac{1}{\alpha_1 - 1} > 0$$

Substrate concentration in the equilibrium:

$$C^* = \frac{1}{\alpha_1 - 1}$$

$$\Rightarrow \quad \alpha_2 > C^* \quad \Rightarrow \quad \frac{S_0}{K} > \frac{S^*}{K} \quad \Rightarrow \quad S_0 > S^* = \frac{K}{\frac{V}{\omega} - 1}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

$$\alpha_2 - \frac{1}{\alpha_1 - 1} > 0$$

Substrate concentration in the equilibrium:

$$C^* = \frac{1}{\alpha_1 - 1}$$

$$\Rightarrow \quad \alpha_2 > C^* \quad \Rightarrow \quad \frac{S_0}{K} > \frac{S^*}{K} \quad \Rightarrow \quad S_0 > S^* = \frac{K}{\frac{V}{\omega} - 1}$$

Substrate concentration in the equilibrium have to be smaller then inflowing substrate concentration.

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Example

Stability of equilibrium points in chemostat model.

Example

Stability of equilibrium points in chemostat model.

$$X' = F(X) = F(C, N)$$
$$F(C, N) = \begin{bmatrix} f_1(C, N) \\ f_2(C, N) \end{bmatrix} = \begin{bmatrix} -\frac{C}{1+C}N + \alpha_2 - C \\ \alpha_1 \frac{C}{1+C}N - N \end{bmatrix}$$

・ロト・雪・・雪・・雪・・ 白・ 今日・

Example

Stability of equilibrium points in chemostat model.

$$X' = F(X) = F(C, N)$$

$$F(C, N) = \begin{bmatrix} f_1(C, N) \\ f_2(C, N) \end{bmatrix} = \begin{bmatrix} -\frac{C}{1+C}N + \alpha_2 - C \\ \alpha_1 \frac{C}{1+C}N - N \end{bmatrix}$$

$$\frac{\partial f_1}{\partial C} = -N\frac{1}{(1+C)^2} - 1$$

$$\frac{\partial f_1}{\partial N} = -\frac{C}{1+C}$$

$$\frac{\partial f_2}{\partial C} = \alpha_1 N \frac{1}{(1+C)^2}$$

$$\frac{\partial f_2}{\partial N} = \alpha_1 \frac{C}{1+C} - 1$$

$$J_{F} = \begin{bmatrix} \frac{\partial f_{1}}{\partial C} & \frac{\partial f_{1}}{\partial N} \\ \frac{\partial f_{2}}{\partial C} & \frac{\partial f_{2}}{\partial N} \end{bmatrix} = \begin{bmatrix} -N\frac{1}{(1+C)^{2}} - 1 & -\frac{C}{1+C} \\ \alpha_{1}N\frac{1}{(1+C)^{2}} & \alpha_{1}\frac{C}{1+C} - 1 \end{bmatrix}$$

◆□>
◆□>
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

$$J_F = \begin{bmatrix} \frac{\partial f_1}{\partial C} & \frac{\partial f_1}{\partial N} \\ \frac{\partial f_2}{\partial C} & \frac{\partial f_2}{\partial N} \end{bmatrix} = \begin{bmatrix} -N\frac{1}{(1+C)^2} - 1 & -\frac{C}{1+C} \\ \alpha_1 N\frac{1}{(1+C)^2} & \alpha_1 \frac{C}{1+C} - 1 \end{bmatrix}$$

1.ekvilibrum $X_1 = (\alpha_2, 0)$

$$J_{\mathcal{F}}(X_1) = J_{\mathcal{F}}(\alpha_2, 0) = \begin{bmatrix} -1 & -\frac{\alpha_2}{1+\alpha_2} \\ 0 & \alpha_1 \frac{\alpha_2}{1+\alpha_2} - 1 \end{bmatrix}$$

2

イロト イポト イヨト イヨト

$$J_{F} = \begin{bmatrix} \frac{\partial f_{1}}{\partial C} & \frac{\partial f_{1}}{\partial N} \\ \frac{\partial f_{2}}{\partial C} & \frac{\partial f_{2}}{\partial N} \end{bmatrix} = \begin{bmatrix} -N\frac{1}{(1+C)^{2}} - 1 & -\frac{C}{1+C} \\ \alpha_{1}N\frac{1}{(1+C)^{2}} & \alpha_{1}\frac{C}{1+C} - 1 \end{bmatrix}$$

1.ekvilibrum $X_1 = (\alpha_2, 0)$

$$J_{\mathcal{F}}(X_1) = J_{\mathcal{F}}(\alpha_2, 0) = \begin{bmatrix} -1 & -\frac{\alpha_2}{1+\alpha_2} \\ 0 & \alpha_1 \frac{\alpha_2}{1+\alpha_2} - 1 \end{bmatrix}$$

Eigenvalues are on the diagonal! (Upper triangular matrix.)

$$\lambda_1 = -1 < 0$$

$$\lambda_2 = \alpha_1 \frac{\alpha_2}{1 + \alpha_2} - 1$$

・ロト・西ト・ヨト・ヨー シック・

$$\lambda_2 = \alpha_1 \frac{\alpha_2}{1 + \alpha_2} - 1$$

$$= \frac{\alpha_1 \alpha_2 - 1 - \alpha_2}{1 + \alpha_2}$$

$$= \frac{\alpha_2 (\alpha_1 - 1) - 1}{1 + \alpha_2}$$

$$= \frac{\alpha_1 - 1}{1 + \alpha_2} \left(\alpha_2 - \frac{1}{\alpha_1 - 1} \right)$$

▲□▶▲圖▶▲≣▶▲≣▶ ■ の々で

$$\lambda_2 = \alpha_1 \frac{\alpha_2}{1 + \alpha_2} - 1$$

$$= \frac{\alpha_1 \alpha_2 - 1 - \alpha_2}{1 + \alpha_2}$$

$$= \frac{\alpha_2 (\alpha_1 - 1) - 1}{1 + \alpha_2}$$

$$= \frac{\alpha_1 - 1}{1 + \alpha_2} \left(\alpha_2 - \frac{1}{\alpha_1 - 1} \right)$$

If exists positive second equilibrium (X_2) :

$$\alpha_1 - 1$$
 i $\alpha_2 - \frac{1}{\alpha_1 - 1} > 0$

then

$$\lambda_2 > 0$$

and X_1 is not locally stable equilibrium.

98/120

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

$$X_{2} = \left(\frac{1}{\alpha_{1}-1}, \alpha_{1}\left(\alpha_{2}-\frac{1}{\alpha_{1}-1}\right)\right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへの

$$X_{2} = \left(\frac{1}{\alpha_{1}-1}, \alpha_{1}\left(\alpha_{2}-\frac{1}{\alpha_{1}-1}\right)\right)$$

Denote: $\beta = \alpha_2(\alpha_1 - 1)$

Existence of positive equilibrium \Rightarrow

$$\alpha_1 > \mathbf{1}, \quad \beta > \mathbf{1}$$

3

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

$$X_2 = \left(\frac{1}{\alpha_1 - 1}, \alpha_1 \left(\alpha_2 - \frac{1}{\alpha_1 - 1}\right)\right)$$

Denote: $\beta = \alpha_2(\alpha_1 - 1)$

Existence of positive equilibrium \Rightarrow

$$\alpha_1 > \mathbf{1}, \quad \beta > \mathbf{1}$$

IFrom the condition for equilibrium:

$$\alpha_1 \frac{C}{1+C} - 1 = 0$$

$$X_2 = \left(\frac{1}{\alpha_1 - 1}, \alpha_1 \left(\alpha_2 - \frac{1}{\alpha_1 - 1}\right)\right)$$

Denote: $\beta = \alpha_2(\alpha_1 - 1)$

Existence of positive equilibrium \Rightarrow

$$\alpha_1 > \mathbf{1}, \quad \beta > \mathbf{1}$$

IFrom the condition for equilibrium:

$$\alpha_1 \frac{C}{1+C} - 1 = 0$$

$$J_F(X_2) = \begin{bmatrix} -N \frac{1}{(1+C)^2} - 1 & -\frac{C}{1+C} \\ \alpha_1 N \frac{1}{(1+C)^2} & \alpha_1 \frac{C}{1+C} - 1 \end{bmatrix}$$

$$J_{F}(X_{2}) = \begin{bmatrix} -\left(N^{*}\frac{1}{(1+C^{*})^{2}}+1\right) & -\frac{C^{*}}{1+C^{*}} \\ \alpha_{1}N^{*}\frac{1}{(1+C^{*})^{2}} & 0 \end{bmatrix}$$

$$J_{F}(X_{2}) = \begin{bmatrix} -\left(N^{*}\frac{1}{(1+C^{*})^{2}}+1\right) & -\frac{C^{*}}{1+C^{*}} \\ \alpha_{1}N^{*}\frac{1}{(1+C^{*})^{2}} & 0 \end{bmatrix}$$

$$\mathrm{tr} J_F(X_2) = -\left(N^* \frac{1}{(1+C^*)^2} + 1\right) < 0$$

$$J_{F}(X_{2}) = \begin{bmatrix} -\left(N^{*}\frac{1}{(1+C^{*})^{2}}+1\right) & -\frac{C^{*}}{1+C^{*}} \\ \alpha_{1}N^{*}\frac{1}{(1+C^{*})^{2}} & 0 \end{bmatrix}$$

$$\mathrm{tr} J_F(X_2) = -\left(N^* \frac{1}{(1+C^*)^2} + 1\right) < 0$$

$$\det J_{\mathcal{F}}(X_2) = \frac{C^*}{1+C^*} \alpha_1 N^* \frac{1}{(1+C^*)^2} > 0$$

$$J_{F}(X_{2}) = \begin{bmatrix} -\left(N^{*}\frac{1}{(1+C^{*})^{2}}+1\right) & -\frac{C^{*}}{1+C^{*}} \\ \alpha_{1}N^{*}\frac{1}{(1+C^{*})^{2}} & 0 \end{bmatrix}$$

$$\mathrm{tr} J_F(X_2) = -\left(N^* \frac{1}{(1+C^*)^2} + 1\right) < 0$$

$$\det J_{F}(X_{2}) = \frac{C^{*}}{1+C^{*}}\alpha_{1}N^{*}\frac{1}{(1+C^{*})^{2}} > 0$$

 X_2 is locally stable equilibrium.

・ロト・西・・川・・田・ 日 うくの

4.6. Phase portrait for chemostat model

4.6. Phase portrait for chemostat model

Dedimensionalized chemostat model:

$$C' = -\frac{C}{1+C}N + \alpha_2 - C$$
$$N' = \alpha_1 \frac{C}{1+C}N - N$$

Equilibriums:

$$X_1 = (\alpha_2, 0), \quad X_2 = \left(\frac{1}{\alpha_1 - 1}, \alpha_1 \left(\alpha_2 - \frac{1}{\alpha_1 - 1}\right)\right)$$
$$J_F(X_1) = J_F(\alpha_2, 0) = \begin{bmatrix} -1 & -\frac{\alpha_2}{1 + \alpha_2}\\ 0 & \alpha_1 \frac{\alpha_2}{1 + \alpha_2} - 1 \end{bmatrix}$$

・ロト・4回ト・モート・モー・シーマー
のへで

1. One positive equilibrium

$$\alpha_1 - 1 < 0 \quad \text{or} \quad \alpha_2 - \frac{1}{\alpha_1 - 1} < 0$$

Example: $\alpha_1 = \frac{1}{2}, \ \alpha_2 = 2$: $J_F(X_1) = \begin{bmatrix} -1 & -\frac{2}{3} \\ 0 & -\frac{2}{3} \end{bmatrix}$

Phase portrait of the linearized differential equatione:

Phase portrait

Chemostat model

2. Two positive equilibriums

$$\alpha_1 - 1 > 0$$
 and $\alpha_2 - \frac{1}{\alpha_1 - 1} > 0$

$$X_2 = \left(\frac{1}{\alpha_1 - 1}, \alpha_1 \left(\alpha_2 - \frac{1}{\alpha_1 - 1}\right)\right)$$

$$J_{\mathcal{F}}(X_2) = \begin{bmatrix} -\left(N^* \frac{1}{(1+C^*)^2} + 1\right) & -\frac{C^*}{1+C^*} \\ \alpha_1 N^* \frac{1}{(1+C^*)^2} & 0 \end{bmatrix}$$

104/120

ヘロン 人間 とくほどう ほどう

2. Two positive equilibriums

$$\alpha_1 - 1 > 0$$
 and $\alpha_2 - \frac{1}{\alpha_1 - 1} > 0$

$$X_2 = \left(\frac{1}{\alpha_1 - 1}, \alpha_1 \left(\alpha_2 - \frac{1}{\alpha_1 - 1}\right)\right)$$

$$J_F(X_2) = \begin{bmatrix} -\left(N^* \frac{1}{(1+C^*)^2} + 1\right) & -\frac{C^*}{1+C^*} \\ \alpha_1 N^* \frac{1}{(1+C^*)^2} & 0 \end{bmatrix}$$

Example: $\alpha_1 = 2$, $\alpha_2 = 2$

104/120

3

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

1. equilibrium:
$$X_1 = (2,0), J_F(X_1) = \begin{bmatrix} -1 & -\frac{2}{3} \\ 0 & \frac{1}{3} \end{bmatrix}$$

Phase portrait of the linearized differential equatione:

▲□▶▲□▶▲□▶▲□▶ ■ のへで

2. equilibrium:
$$X_2 = (1,2), F'(X_2) = \begin{bmatrix} -\frac{3}{2} & -\frac{1}{2} \\ 1 & 0 \end{bmatrix}$$

Phase portrait of the linearized differential equatione:

2. equilibrium

▲□▶▲□▶▲□▶▲□▶ □ ○ ○ ○ ○
Phase portrait of the chemostat model:

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Phase portrait of the chemostat model:

Problem

Dinamics of two populations is described by the system of differential equations:

$$\begin{array}{rcl} x' &=& x\,y-2x-2y+4,\\ y' &=& 4y-y^2-x-1. \end{array}$$

Sketch the phase portrait of the given differential equation.

Equilibriums:

x y - 2x - 2y + 4 = 0

Equilibriums:

$$xy-2x-2y+4=0 \Rightarrow x(y-2)-2(y-2)=(x-2)(y-2)=0$$

Equilibriums:

$$xy-2x-2y+4=0$$
 \Rightarrow $x(y-2)-2(y-2)=(x-2)(y-2)=0$ \Rightarrow

x = 2 or y = 2.

Equilibriums:

$$xy-2x-2y+4=0$$
 \Rightarrow $x(y-2)-2(y-2)=(x-2)(y-2)=0$ \Rightarrow

$$x = 2$$
 or $y = 2$.

1.
$$y = 2$$

 $0 = 4y - y^2 - x - 1 = 3 - x$

・ロ・・聞・・聞・・聞・ 聞 うへの

Equilibriums:

$$xy-2x-2y+4=0$$
 \Rightarrow $x(y-2)-2(y-2)=(x-2)(y-2)=0$ \Rightarrow

$$x = 2$$
 or $y = 2$.

1.
$$y = 2$$

 $0 = 4y - y^2 - x - 1 = 3 - x \Rightarrow x = 3$

・ロ・・日・・ヨ・・ヨ・ ・ ヨ・ うへぐ

Equilibriums:

$$xy-2x-2y+4=0$$
 \Rightarrow $x(y-2)-2(y-2)=(x-2)(y-2)=0$ \Rightarrow

$$x = 2$$
 or $y = 2$.

1. y = 2 $0 = 4y - y^2 - x - 1 = 3 - x \Rightarrow x = 3$

Equilibrium: $E_1 = (3, 2)$

Equilibriums:

$$xy-2x-2y+4=0$$
 \Rightarrow $x(y-2)-2(y-2)=(x-2)(y-2)=0$ \Rightarrow

$$x = 2$$
 or $y = 2$.

1.
$$y = 2$$

 $0 = 4y - y^2 - x - 1 = 3 - x \Rightarrow x = 3$

Equilibrium: $E_1 = (3, 2)$

2. *x* = 2

$$0 = 4y - y^2 - x - 1 = -y^2 + 4y - 3$$

ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Equilibriums:

$$xy-2x-2y+4=0$$
 \Rightarrow $x(y-2)-2(y-2)=(x-2)(y-2)=0$ \Rightarrow

$$x = 2$$
 or $y = 2$.

1.
$$y = 2$$

 $0 = 4y - y^2 - x - 1 = 3 - x \Rightarrow x = 3$

Equilibrium: $E_1 = (3, 2)$

2. *x* = 2

$$0 = 4y - y^2 - x - 1 = -y^2 + 4y - 3 \quad \Rightarrow \quad y_1 = 1, \quad y_2 = 3.$$

もってい 聞 ふぼやふぼやふしゃ

Equilibriums:

$$xy-2x-2y+4=0$$
 \Rightarrow $x(y-2)-2(y-2)=(x-2)(y-2)=0$ \Rightarrow

$$x = 2$$
 or $y = 2$.

1.
$$y = 2$$

 $0 = 4y - y^2 - x - 1 = 3 - x \Rightarrow x = 3$

Equilibrium: $E_1 = (3, 2)$

2. *x* = 2

$$0 = 4y - y^2 - x - 1 = -y^2 + 4y - 3 \quad \Rightarrow \quad y_1 = 1, \quad y_2 = 3.$$

Equilibrium: $E_2 = (2, 1), E_3 = (2, 3).$

<ロト</l>
(ロト
(日)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)<

$$F(x,y) = \left[\begin{array}{c} x \ y - 2x - 2y + 4, \\ 4y - y^2 - x - 1. \end{array}\right]$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへで

$$F(x,y) = \begin{bmatrix} xy - 2x - 2y + 4, \\ 4y - y^2 - x - 1. \end{bmatrix}$$
$$J_F(x,y) = \begin{bmatrix} y - 2 & x - 2 \\ -1 & 4 - 2y. \end{bmatrix}$$

$$F(x,y) = \begin{bmatrix} xy - 2x - 2y + 4, \\ 4y - y^2 - x - 1. \end{bmatrix}$$
$$J_F(x,y) = \begin{bmatrix} y - 2 & x - 2 \\ -1 & 4 - 2y. \end{bmatrix}$$

1. Equilibrium

$$J_F(E_1)=J_F(3,2)=\left[egin{array}{cc} 0&1\ -1&0.\end{array}
ight]$$

113/120

2

イロト イポト イヨト イヨト

$$F(x,y) = \begin{bmatrix} xy - 2x - 2y + 4, \\ 4y - y^2 - x - 1. \end{bmatrix}$$
$$J_F(x,y) = \begin{bmatrix} y - 2 & x - 2 \\ -1 & 4 - 2y. \end{bmatrix}$$

1. Equilibrium

$$J_F(E_1) = J_F(3,2) = \begin{bmatrix} 0 & 1 \\ -1 & 0. \end{bmatrix}$$

Circle!

113/120

2

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

$$J_F(x,y) = \begin{bmatrix} y-2 & x-2\\ -1 & 4-2y \end{bmatrix}$$
$$J_F(E_2) = J_F(2,3) = \begin{bmatrix} 1 & 0\\ -1 & -2 \end{bmatrix}$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

$$J_F(x,y) = \begin{bmatrix} y-2 & x-2\\ -1 & 4-2y \end{bmatrix}$$
$$J_F(E_2) = J_F(2,3) = \begin{bmatrix} 1 & 0\\ -1 & -2 \end{bmatrix}$$

Saddle.

・ロト・日本・日本・日本・日本・日本

$$J_F(x,y) = \begin{bmatrix} y-2 & x-2\\ -1 & 4-2y \end{bmatrix}$$
$$J_F(E_2) = J_F(2,3) = \begin{bmatrix} 1 & 0\\ -1 & -2 \end{bmatrix}$$

Saddle.

$$\lambda_2 = -2, \quad v_2 = e_2$$

・ロト <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
日 > <
の へ の
</p>

$$J_F(x,y) = \begin{bmatrix} y-2 & x-2\\ -1 & 4-2y \end{bmatrix}$$
$$J_F(E_2) = J_F(2,3) = \begin{bmatrix} 1 & 0\\ -1 & -2 \end{bmatrix}$$

Saddle.

$$\lambda_2 = -2, \quad v_2 = e_2$$

$$J_F - \lambda_1 I = \begin{bmatrix} 0 & 0 \\ -1 & -3 \end{bmatrix}$$

≣ ▶ ≣ ৩৭ে 115/120

ヘロト ヘ回ト ヘヨト ヘヨト

$$J_F(x,y) = \begin{bmatrix} y-2 & x-2\\ -1 & 4-2y \end{bmatrix}$$
$$J_F(E_2) = J_F(2,3) = \begin{bmatrix} 1 & 0\\ -1 & -2 \end{bmatrix}$$

Saddle.

$$\lambda_2 = -2, \quad v_2 = e_2$$

$$J_F - \lambda_1 I = \begin{bmatrix} 0 & 0 \\ -1 & -3 \end{bmatrix} \Rightarrow x - 1 = -3x_2$$

・ロト・日本・日本・日本・日本・日本

$$J_F(x,y) = \begin{bmatrix} y-2 & x-2\\ -1 & 4-2y \end{bmatrix}$$
$$J_F(E_2) = J_F(2,3) = \begin{bmatrix} 1 & 0\\ -1 & -2 \end{bmatrix}$$

Saddle.

$$\lambda_2 = -2, \quad v_2 = e_2$$

$$J_F - \lambda_1 I = \begin{bmatrix} 0 & 0 \\ -1 & -3 \end{bmatrix} \quad \Rightarrow \quad x - 1 = -3x_2 \quad \Rightarrow \quad v_1 = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$$

・ロ・・聞・・思・・思・ 思 うへの

$$J_F(x,y) = \begin{bmatrix} y-2 & x-2\\ -1 & 4-2y \end{bmatrix}$$
$$J_F(E_2) = J_F(2,3) = \begin{bmatrix} 1 & 0\\ -1 & -2 \end{bmatrix}$$

Saddle.

$$\lambda_2 = -2, \quad v_2 = e_2$$

$$J_F - \lambda_1 I = \begin{bmatrix} 0 & 0 \\ -1 & -3 \end{bmatrix} \quad \Rightarrow \quad x - 1 = -3x_2 \quad \Rightarrow \quad v_1 = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$$

・ロ・・聞・・思・・思・ 思 うへの

$$J_F(x,y) = \begin{bmatrix} y-2 & x-2\\ -1 & 4-2y \end{bmatrix}$$
$$J_F(E_3) = J_F(2,1) = \begin{bmatrix} -1 & 0\\ -1 & 2 \end{bmatrix}$$

・ロト・(型)・(E)・(E)・ E のQで

$$J_F(x,y) = \begin{bmatrix} y-2 & x-2\\ -1 & 4-2y \end{bmatrix}$$
$$J_F(E_3) = J_F(2,1) = \begin{bmatrix} -1 & 0\\ -1 & 2 \end{bmatrix}$$

Saddle.

・ロト・西ト・ヨト・ヨー うへぐ

$$J_F(x,y) = \begin{bmatrix} y-2 & x-2\\ -1 & 4-2y \end{bmatrix}$$
$$J_F(E_3) = J_F(2,1) = \begin{bmatrix} -1 & 0\\ -1 & 2 \end{bmatrix}$$

Saddle.

$$\lambda_2 = 2, \quad v_2 = e_2$$

$$J_F(x,y) = \begin{bmatrix} y-2 & x-2\\ -1 & 4-2y \end{bmatrix}$$
$$J_F(E_3) = J_F(2,1) = \begin{bmatrix} -1 & 0\\ -1 & 2 \end{bmatrix}$$

Saddle.

$$\lambda_2 = 2, \quad v_2 = e_2$$

$$J_F - \lambda_1 I = \begin{bmatrix} 0 & 0 \\ -1 & 3 \end{bmatrix}$$

<ロト</l>
(ロト
(日)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)<

$$J_F(x,y) = \begin{bmatrix} y-2 & x-2\\ -1 & 4-2y \end{bmatrix}$$
$$J_F(E_3) = J_F(2,1) = \begin{bmatrix} -1 & 0\\ -1 & 2 \end{bmatrix}$$

Saddle.

$$\lambda_2 = 2, \quad v_2 = e_2$$
$$J_F - \lambda_1 I = \begin{bmatrix} 0 & 0 \\ -1 & 3 \end{bmatrix} \Rightarrow x - 1 = 3x_2$$

<ロト</l>
(ロト
(目)
(目)
(目)
(日)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)<

$$J_F(x,y) = \begin{bmatrix} y-2 & x-2\\ -1 & 4-2y \end{bmatrix}$$
$$J_F(E_3) = J_F(2,1) = \begin{bmatrix} -1 & 0\\ -1 & 2 \end{bmatrix}$$

Saddle.

$$\lambda_2 = 2, \quad v_2 = e_2$$

$$J_F - \lambda_1 I = \begin{bmatrix} 0 & 0 \\ -1 & 3 \end{bmatrix} \quad \Rightarrow \quad x - 1 = 3x_2 \quad \Rightarrow \quad v_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

< □ ▶ < @ ▶ < 注 ▶ < 注 ▶ 注 の Q @ 117/120

Sketch of the phase portrait

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ・豆・ 釣々ぐ

Phase portrait

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへ⊙