Analysis of systems of differential equations

PRINCIPLES OF MATHEMATICAL MODELLING

4. ANALYSIS OF SYSTEMS OF DIFFERENTIAL
EQUATIONS
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4.1. System of differential equations

Chemostat model is an example for system of differential equations:

S P
/ J— _ - — g
S = VK+SY+OUSQ wS, §(0)=sp
P - v_S _p_up P(0) =
- 'kys YD = FPo

—  Two differential equations with two unknown functions.
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Chemostat model is an example for system of differential equations:

S P
/ — _ — — =
S = VK+SY+OUSQ wS, §(0)=sp
Po— v _p_up P(0) =
- YKystTYn = FPo

—  Two differential equations with two unknown functions.

System of differential equations may be written in a vector form.
Define

X(t) = [ gg” X:R — R2

X - vector function
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Derivative of vector function:

- (59
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Derivative of vector function:

X'(t) = [ ,§i§g ] :

— derivative by components
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Derivative of vector function:

- (59

— derivative by components

For
—VKiSC+wSO—OJS s
F(X) = S and Xp = [ p° ] ,
0
—— P—wP
VK+S w
vector function s
t
X = [ (1 }

is a solution of the differential equation
X'(t) = F(X(1), X(0) = X.
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Generally, system of differential equations

i = 04 yn), yi(0) =2
¥oo= bW, yn), ye(0) =2

Yo = fn(}’h---:J/n), Yn(o):yg
may be written in a vector form.

Y(t) = F(Y(1)), Y(0)=Yo,

where
» f1(.y17"'7yf7) y‘?
Y=1| |, FY)= : i Yo=1| |,
Yn fa(Y1, .-, ¥n) yr(w)
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4.3. Linear system of differential equations
Diiferential equation
X'(t) = AX(t).

for A € Mp(R) is called a linear system of differential equations.
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Linear system of differential equations
4.3. Linear system of differential equations

Diiferential equation
X'(t) = AX(1).

for A € Mp(R) is called a linear system of differential equations.

-X' = F(X) and F is a linear function.

-Otherwise, nonlinear system of differential equations.

X1/(t) = a11x1(t)+a12x2(t)+...+a1,,x,,(t)
Xé(t) = 321X1(t)+822X2(t)+...—i—aann(t)
Xp(t) = amxi(t) + amXe(t) + ... + annXn(t)
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Definition
Scalar ) is an eigenvalue of matrix A € M,(R) if there exists x # 0

such that
AXx = )\X.

Vector x is called eigenvector of matrix A.
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Eigenvalue

Definition
Scalar ) is an eigenvalue of matrix A € M,(R) if there exists x # 0

such that
AXx = )\X.

Vector x is called eigenvector of matrix A.

Theorem
A is eigenvalue of matrix A € Mp(R) < det(A—A/)=0. J

—  \is zero (root) of characteristic polynomial (characteristic root).
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a-2]
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Example
Find eigenvalues and eigenvectors of matrix

a-2]

Solution.

pm:‘ 14— ‘2(3—A)(4—A)—1 — N2 72411
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Solution.
o) =370 T o @ — 1 =271
1 4 — )\
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Example
Find eigenvalues and eigenvectors of matrix
3 1
L
Solution.
o) =370 T o @ — 1 =271
1 4 — )\
p(A)=0 =
7+vV49-4.11 7+.5
M2 = 2 T2
7+5 75
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Eigenvectors.
Solve the system:

Ax=Mx < (A-X\Nx=0
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Eigenvectors.
Solve the system:

Ax=Mx < (A-X\Nx=0

3\ 1
14—

Augmented matrix (last column i a zero-vector and we omitted it):

[x=0

1 4_7+27\/5
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Eigenvectors.
Solve the system:

Ax=Mx < (A-X\Nx=0

3\ 1
14—

Augmented matrix (last column i a zero-vector and we omitted it):
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1 1= |7
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Analysis of systems of differential equations Linear system of differential equations

Eigenvectors.
Solve the system:

Ax=Mx < (A-X\Nx=0

3\ 1
14—

Augmented matrix (last column i a zero-vector and we omitted it):

3 oS
1 1= |7

[x=0

1 4_7+27\/5

_1

+

1

5]”
4

1

£
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Eigenvectors.

Solve the system:

Ax=Mx < (A-X\Nx=0

3-N 1 -
[ 1 4—/\1])(_0

Augmented matrix (last column i a zero-vector and we omitted it):

3—7+T\/§ 1 *1%\/5 1
1 4 T8/ 1=v6 |

2

1
_1+2\/51 1+ 1
Tl o1vE 15 | T | 1By
2 4

£k
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1 1 5
—L\/EM—G—XZ:O = X2=+2\/>

X
D) 1
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1+5 14+6

————— X1+ X =0 = Xo= X
5 1+ X2 2 5 1
and
X X !
1= =X 145
71+2ﬁX1 +2
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1+5 14+6

——5 XI+Xx=0 = x= 5 X4
and
X X !
1= =X1 | 145
—1+2ﬁx1 2
1
X1 = 145
2

A little bit faster.
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1 1 5
- Jr\/5x1+x2:0 = Xo= +\FX1
2 2
and
1= =X
1_;'_2\5)(1 1+2\/§
1
Xt = 1+2¢5

A little bit faster. Note that matrix

3-% 1 -
{ 1 4—M]X_°

is singular.
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and
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{ 1 4—M]X_O

is singular. = rows are dependent = rows are proportional
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1+5 1++5

_ 5 X{ + Xo = 0 = Xo = 5 X4
and
1= =X | 145
1+2\/5x1 2
1
Xt = 1+2¢5

A little bit faster. Note that matrix

3— 1 B
{ 1 4—M]X_O

is singular. = rows are dependent = rows are proportional

7-%?
> |

B—A)Xy+x2=0 = xo=—(3— X)X :—<3—
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1-V6

Xo = 5

X1
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Xq = X2 = 1-/5 Xq
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Xo = 5 X1 = ng 1-/5 X1
2
1
o= | s
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1- V5 1
Xo = 5 X1 = ng 1-/5 X1
2

Checking the result:

3 1 1
AXy = [1 4}[12\/5]

10/120



Analysis of systems of differential equations Linear system of differential equations

15 1
Xo = 5 X1 = ng 1_2\/5 X1
1
Xo = 1¢5]
2
Checking the result:

3 1 1 3+1+\/§
AXi = — 2
N ER A I o+
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1-/5 1
Xo = 5 X1 = ng 1_2\/5 X1
1
Xo = 1¢5]
2
Checking the result:
3 1 1 34 146 7+V5
AX = {1 4} 1+¢5]: 15V | = | erdvs
5 1+4-5= 5
7+5 1
)\1 )(i = 22 1 *_x/g ]
1445
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-5 R
Xq = Xg— 1-/5 Xq

Xo = 5 ;
"
e s |
2
Checking the result:
Ax, = |31 L I R N s
L 1 4 7”2\/5 - 1_|_41+2\/5 ] - 6—5—4;\/5
x 7++5 1 B 1445 | TS
M= ) 1+2x@ - 7+\/§t‘7\/§+5 - 12+f\/§

10/120



Analysis of systems of differential equations Linear system of differential equations

_1-5 B 1
Xo = 5 Xq = Xg— 1-/5 Xq
2
"
Xo = %]
2
Checking the result:
ax, = [3 V]| N oS | L] B8
L 1 4 7”2\/5 - 1_|_41+2\/5_ - 6—5—4;\/5
x 7++5 1 B 1445 | TS
AT 2 L5 | 7| TEETYE5 | | 1248V6
= AXi=\MXi
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Solution of differemtial equation x’ = Ax

Example
Solve differential equation x’ = Ax, x(0) = xp where

o[48] ee[1]
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Solution of differemtial equation x’ = Ax

Example
Solve differential equation x’ = Ax, x(0) = xp where

o[48] ee[1]

Solution.

. x| [ 10 X1 | | X
X =Ax & {xé]_[02 Xo | | 2x
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Solution of differemtial equation x’ = Ax

Example
Solve differential equation x’ = Ax, x(0) = xp where

10 . 1
-[38] n-[i]
Solution.

. x| [ 10 X1 | | X
X =Ax < {xé]_[02 Xo | | 2x

System:
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Solution of differemtial equation x’ = Ax

Example
Solve differential equation x’ = Ax, x(0) = xp where

10 . 1
-[38] n-[i]
Solution.

. x| [ 10 X1 | | X
X =Ax < {xé]_[02 Xo | | 2x

System:

X; = X
/
X = 2Xo

Each equation can be solved separatelly.
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X{ = xg = x(t)=ce
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Constants ¢; i ¢, are determined from the initial condition
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Theorem

Let matrix A € Mu(R) is similar to diagonal matrix. then a general
solution of differential equation x’(t) = Ax is given by

Zcf

where \; are eigenvalues and v; correspond/ng eigenvectors of matrix
A (Av; = \jv;). Constants c; are determined from initial conditions.
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Let matrix A € Mu(R) is similar to diagonal matrix. then a general
solution of differential equation x’(t) = Ax is given by

-3 o

where \; are eigenvalues and v; correspond/ng eigenvectors of matrix
A (Av; = \jv;). Constants c; are determined from initial conditions.

v

Note. Matrix A is similar to diagonal matrix if there exist regular matrix
T and diagonal matrix D satisfying

A=TDT "
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where \; are eigenvalues and v; correspond/ng eigenvectors of matrix
A (Av; = \jv;). Constants c; are determined from initial conditions.

v

Note. Matrix A is similar to diagonal matrix if there exist regular matrix
T and diagonal matrix D satisfying
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On the diagonal of D are eigenvalues of matrix A and columns of
matrix T are eigenvectors:
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Theorem

Let matrix A € Mu(R) is similar to diagonal matrix. then a general
solution of differential equation x’(t) = Ax is given by

-3 o

where \; are eigenvalues and v; correspond/ng eigenvectors of matrix
A (Av; = \jv;). Constants c; are determined from initial conditions.

v

Note. Matrix A is similar to diagonal matrix if there exist regular matrix
T and diagonal matrix D satisfying

A=TDT .
On the diagonal of D are eigenvalues of matrix A and columns of
matrix T are eigenvectors:
= AT=TD = ATe =TDe¢
= ATe=Tdijes = A(Te)=2d;(Te))

g; - vector of canonical basis
13/120
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A=TDT', Avi=\yv, D=diag(\,....\), Te=y
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Analysis of systems of differential equations Linear system of differential equations

Proof.

A=TDT', Avi=\yv, D=diag(\,....\), Te=y

= X =Ax=TDT'x = T 'X=DT'x
Make substitution
)/ — 7-——1 X = J/, — 7‘——1 )(/

Equation:
= y' =Dy
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Proof.

A=TDT', Avi=\yv, D=diag(\,....\), Te=y

= X =Ax=TDT'x = T 'X=DT'x
Make substitution

y=T""x = y =T

Equation:
= y =Dy
D is a diagonal matrix and a system is of the form:

!

Yi=Ayi, I=1,....n
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Analysis of systems of differential equations Linear system of differential equations

Proof.

A=TDT', Avi=\yv, D=diag(\,....\), Te=y

= X =Ax=TDT'x = T 'X=DT'x
Make substitution

y=T""x = y =T

Equation:
= y =Dy
D is a diagonal matrix and a system is of the form:

!

Yi=Ayi, I=1,....n

Solution
yvi()=¢ceN, i=1,....n
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yi(t)

Yn-(t)
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yi(t) cy et
y(t) = : = : =
Ya(t) cp et
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yi(t) creM! n
yiy=1 ++ | = : = ceMle
Yn(t) Ch eAnt i=1
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(1) cr ettt n
yity=1 : | = : = > ceMle
i—

Ya(t) cp et

yt)=T"x(t) = x(t)=Ty()
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(1) cr ettt n
yity=1 : | = : = > ceMle
i—

Ya(t) c,,ém
y(ty=T'x(t) = x(t)=Ty(t)

n

n
= x()=T) ceMe=> ceMTe=
i i
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yi(t) cieMt 5
y(t) = = : = ZC,'G)"'te,'
i=1

) | | anet
y(t) =T 'x(t) = x(t)=Ty(t)

n

n n
= x()=TY ceMe =S ceMTe =3 ety
i=1 i=1

i=1
Q.E.D.
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Analysis of systems of differential equations Linear system of differential equations

Why is similarity to oa diagonal matrix imortant?

Example
Solve differential equation x’ = Ax, x(0) = xo where

1 1 . 1
ARt
Solution.

W Ax o xi [ 1][x1}:[x1+x2]
X5 0 1 X2 X2
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Solve differential equation x’ = Ax, x(0) = xo where
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Analysis of systems of differential equations Linear system of differential equations

Why is similarity to oa diagonal matrix imortant?

Example
Solve differential equation x’ = Ax, x(0) = xo where

o[41] ee[1]

Solution.
X Ax o X4 _ 1 1 X\ | _ | x1+x
X5 0 1 Xo Xo
System:
X = X+ X
Xy = Xo

Each equation may be solved separately (first solve second equation
and after that solve first equation).
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Xb=x3, X(0)=1 = xp=c¢
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Xb=x3, X(0)=1 = xp=c¢

= X1/:X1+X2, X1(0):1 = X1/:X1+et, X1(0):1

(e! is not a solution!)

Mathematica:

DSolve[y’ [t] == yI[t] + Exp[t], yI[t], t]
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Xb=x3, X(0)=1 = xp=c¢

= X1/:X1+X2, X1(0):1 = X1/:X1+et, X1(0):1
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Mathematica:
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Xb=x3, X(0)=1 = xp=c¢

= X1/:X1+X2, X1(0):1 = X1/:X1+et, X1(0):1

(e! is not a solution!)

Mathematica:
DSolvel[y’ [t] == y[t] + Exp[t], y[t], t]
{({y[t] -=> E"t t + E"t C[1]}}
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Analysis of systems of differential equations Linear system of differential equations

Xb =X, x(0)=1 = xp=¢

= X=x1+%, x0)=1 = xi=x+e, x(0)=1
(e! is not a solution!)
Mathematica:

DSolvel[y’ [t] == y[t] + Exp[t], y[t], t]
{{y[t] —> E"t t + E°t C[1]}}

xi(t) =ciel +te! = xq(t)=e' +tel

Note. In the case of multiple eigenvalues,

we obtain terms et t eMit 2 et in the solution.
b b b
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Stability of the linear system of differential
equations

Definition
Linear system of differential equations
X =AX
where A € M,(R), is said to be stable if any solution X(t) satisfies

lim X(t) = 0.

t—o0

18/120



Linear system of differential equations
Stability of the linear system of differential
equations

Definition
Linear system of differential equations
X =AX
where A € M,(R), is said to be stable if any solution X(t) satisfies

lim X(t) = 0.

t—o0

Theorem

A linear system with constant coefficients X' = A X is stable if and only
if all eigenvalues of A have negative real parts. je
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Analysis of systems of differential equations Linear system of differential equations
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Proof. (Only for case when A is similar to diagonal matrix).
Solution of differential equation is given by

n
X(t) = Z Ck e’\"t V.
k=1

Generally, A\ € C, \x = ax + i bk, ak, by € R.
et = (@Dt — el (cos byt + i sin byt)

and

‘eAkt _ et

ime*'=0 < a<0 < Rel<O0

t—o0

lim X(t)=0 < lime%*!=0, Vk

t—o00 t—o0

Q.E.D.
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Eigenvalues of 2 x 2 matrix

For 2 x 2 matrices we do not have to calculate eigenvalues explicitly.

Transform matrix A to Jordan form:

A1 %
A — [O )\2]

A1 and \; are eigenvalues of matrix A € Ma(R).
Determinant and trace do not depend on the choices of the basis.

= Similar matrices have same trace and determinant.

trA= M\ + Ao, detA= A\,
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More elementary argumentation.

Characteristic polynomial of matrix A is

ka(\) =X —bX+c, b=1trA c=detA

N b++vb?—4ac ) b—vb?—-4ac
1= ) 2 —
2 2

Viete’s formulae =

M+ = b=trA
AMA2 = c=detA
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For A € Mx(R), system of differential equations x' = Ax is stable <
frA<0idetA>0

Proof.
1. M, 0 € R

AM<0, <0 = A+X<0 i MA>0
<. Let
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Phase portrait - representative set of solutions, plotted as parametric

curve (t is parameter) on Cartesian plane.

For given initial condition X = [x?, xg]T we obtain one curve
(trajectory)

Phase portrait is obtained by displaying trajectories for several initial
conditions.

Cartesian plane containing phase portrait is sometimes named phase
plane.
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Analysis of systems of differential equations Phase portrait

Example
Sketch phase portrait of differential equation

¥=| 1 00y
1 0 -2
Solution. Eigenvalues: A\{ = —1, )\, = -2

SHESH

X(t):C1e_t|::)}+Cge_2t|:?:|:

We have to plot several solutions (with different initial conditions).

Eigenvectors:

Solution:
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Note that
X(t):Cke/\kth, k=12

are solutions.
= Lines defined by eigenvectors are trajectories.
Choose some initial condition, for example, x(0) = [1,1]".
e—t
= x| Jar |
How parametric defined curve {(e~!,e=2!) | t € R} looks like?

e 2 = (e—t)2 = Xo=x?

25/120



Note that
X(t):Cke/\kth, k=12

are solutions.
= Lines defined by eigenvectors are trajectories.
Choose some initial condition, for example, x(0) = [1,1]".
e—t
= x| Jar |
How parametric defined curve {(e~!,e=2!) | t € R} looks like?

2
e =(e")" = xp=x2 — parabola

25/120



Note that
X(t):Cke/\kth, k=12

are solutions.
= Lines defined by eigenvectors are trajectories.

Choose some initial condition, for example, x(0) = [1,1]".
e—t
= x| Jar |

How parametric defined curve {(e~!,e=2!) | t € R} looks like?

-2t

2
e =(e")" = xp=x2 — parabola

In general, x(0) = [1,0]”, a € R

= x-S

ae

25/120



Note that
X(t):Cke/\kth, k=12

are solutions.
= Lines defined by eigenvectors are trajectories.

Choose some initial condition, for example, x(0) = [1,1]".
e—t
= x| Jar |

How parametric defined curve {(e~!,e=2!) | t € R} looks like?

-2t

2
e =(e")" = xp=x2 — parabola

In general, x(0) = [1,0]”, a € R

—t
= x(t):[ eg,] - Xp=ax?

ac

25/120



Analysis of systems of differential equations Phase portrait

Trajectory for xo = [1,1]":

26/120



Analysis of systems of differential equations Phase portrait

In what direction solution goes?

27/120



Analysis of systems of differential equations Phase portrait

In what direction solution goes?

Direction in X is AX.

27/120



Analysis of systems of differential equations Phase portrait

In what direction solution goes?
Direction in x is AX.

Direction in [1,1] is
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Immediately, we have another trajectory

%
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= ?
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We obtain solution of differential equation x’ = A x as before:

Cq e !
Co e ot

x(t) = [
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Phase portrait for
A= [ U }?

0 -5
We obtain solution of differential equation x’ = A x as before:
B Cq e !
Xt =| 25

For initial condition xo = [1,1]" we have
ot
X0 =| S |

Trajectory is graph of function:

X2 = X3

32/120



Analysis of systems of differential equations Phase portrait

. , [ =1 0 ]
Phase portrait for x [ 0 -5 X
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Phase portrait for
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0 -1
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Phase portrait for
A= [ —2 0 }?

0o -1
Solution of differential equation x’ = Ax is:

xo=| %]

Coe

For initial condition xo = [1, 1] we have

x(t) = [ ee_ztt } .
Trajectory is graph of function:
X2 = xq
ie.
Xo = \/X1.
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Phase portrait for

Parabola directed toward axis that corresponds to largest eigenvalue.
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Phase portrait for
10
= ?
A [0 2].

Solution of differential equation x’ = Ax is::

X(t):[ cel ]

Co ezt

For initial condition xo = [1, 1] we have

Trajectory is graph of function:

Xo = X2,
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. , |10
Phase portrait for x’ = [ 0 2 } X
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If eigenvalues are equal:
A0
= ?
A [ )0 } _
Solution of differential equation x’ = Ax is:

X(f) = { i et ]

Co e“

For initial condition xo = [1,1]" we have
Y
x(t) = [ BY; ] :
Trajectory is graph of function:

Xo = Xq.
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Phase portrait for x’ = [ g 2 ] X, A<0
X2
VA
VT
\1r
. \ / -
— \ —— —
-2 oL ¢
- M T
J1f |
4
/
£t
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Case when dimension of Jordan blok is 2 x 2

A:[‘O1 _11]

Solution of differential equation x’ = Ax is:

cre l+optet
Xt = [ 1 Czej ]

We consider case when

From
Xg(t) =Co e !

it follows that

C Xo(t
x1(t) = ¢ e_t+Cgte_t = C—;Xg(t) — X2(t)In 20(2)

For xo(t) > 0O:

c

Xy = <C1 — Incg> Xo —XoINXo = CXo — X IN Xo.
2
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Trajectory for x» > 0 and example of another trajectory for xo < 0:

X1

~ Xo
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Case when eigenvalues are of oposite sign

We consider case when
1 0
a[3 0],

Solution of differential equation x’ = Ax is:

X(t):[ cyel ]

Co et

Trajectory:
X{Xo = CiCo = C

- hyperbola
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In general, for
A Ao O
L0 =X |

A, Ao > 0, solution of differential equation x’ = Ax is:

Cq eM
Co e N2

x(t) = [
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In general, for

A O
A=y )
A, Ao > 0, solution of differential equation x’ = Ax is:
. Cq eM
X0 =| 25 |
Trajectory:
Ao A1 _
Xi°X =CiG=¢C
Xy = aX{M /A2
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Phase portrait for
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=
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Phase portrait
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What if matrix is not diagonal?

Phase porteait for x’ = Ax,

Eigenvalues and eigenvectors:
Mathematica:

a = {{-2,1},{1/4,-1}};
Eigenvalues[a]

{1/2(-3-Sgrt[2]),1/2(-3+Sgrt[2])}
Simplify[Eigenvectors[a]]

{{-2 (1+Sgrt[2]),1},{2(-1+Sgrt[2]),1}}
t = Transpose[Simplify[Eigenvectors[all]l

{{-2(1+Sqrt[2]),2(-1+Sqrt[2])}, {1,1}L}
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Eigenvalues:
-3-V2 -3+v2
M=—p de=—p
and eigenvectors:

V1_[—2(11+\@)] VZ_[Z(—11+\/§)}

Transformation matrix:

_ [ —2(11+\/§) 2(—11+\@)}
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Eigenvalues:
-3-v2 -3+v2
M= T

and eigenvectors:

V1_[—2(11+\@)] VZ_{z(—11+x/§)}

Transformation matrix:

T [ —2(11+\/§) 2(—11+\@)}

Substitution:

T1AT:D:H1 fz], y =T 'x
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Eigenvalues:
-3-V2 -3+v2
M=—p de=—p
and eigenvectors:

V1_[—2(11+\@)] VZ_{z(—11+x/§)}

Transformation matrix:

T [ —2(11+\/§) 2(—11+\@)}

Substitution:

T1AT:D:H1 AOZ], y =T 'x

We consider differential equation y’ = D y.
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Trajectory for y’ = Dy:

! X
21
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Trajectory for x’ = Ax,

Xo X2
2r 2¢
Vo
1.
/
- ! X b L ! X
-1 27 -2 -1 27
\ .~ Vi
—1} _1t
_oL _aL
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[_2 1

Phase portrait for x' = |
z |

X1

g
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Phase portrait for x’ = [ 21 ] X:

T
//2// k\
ﬁ";:;xl

‘ /’/ .

A
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Analysis of systems of differential equations Phase portrait
M =0, Ao #£0

Equation:
p [ 00 }
X' = X
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A =0, A #0

Equation:
X = 00 X
0 A
System:
x; = 0
X = AXo
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Analysis of systems of differential equations Phase portrait

A =0, A #0

Equation:
=10 3]
X=109 X
System:
x; = 0
X = AXo
X1(t) =
X(f) = cpeM
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Analysis of systems of differential equations Phase portrait

M =0, Ao #£0
Equation:
p [ 00 }
X=109 X
System:
x; = 0
X = AXo
X1(t) =
x(t) = cpet

Equilibrium: o =0 = x*=(c,0), ceR
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Phase portrait for x’ = [ 8 (1) } X:
2¢
1}
-2 11 ] 2%
—1}
_oL
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Analysis of systems of differential equations Phase portrait

AM=0,202=0
For x' = { 8 8 } X solution is constant function x(t) = c. Therefore,

each point is equilibrium.
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AM=0,202=0
For x' = { 8 8 } X solution is constant function x(t) = c. Therefore,

each point is equilibrium.
When dimension of Jordan block is 2 x 2:

x’—01x
100

system of equation is:

Xy = Xo
x; = 0.
Solution:
X(t) = ¢
X1, = 0

xi(t) = cat+ ¢
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AM=0,202=0
For x' = { 8 8 } X solution is constant function x(t) = c. Therefore,

each point is equilibrium.
When dimension of Jordan block is 2 x 2:

x' = [ 8 (1) ] X
system of equation is:
X = Xo
x; = 0.
Solution:
x(t) = @
X; = &
xi(t) = cat+ ¢
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1
0

i
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Complex eigenvalues.

Re) £ 0

Differential equation

Characteristic polynomial:

(@-XN?+c*=0

AM=a+ib, N =a-ib

et = e(aHb)t — gl /bt _ eal(cos bt + jsinbt)

Complex eigenvalues and complex eigenvectors, but a solution is real.
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Analysis of systems of differential equations Phase portrait

Mathematica:

DSolve [{x’' [t]= x[t]l+b yI[t], vy’ [t] ==-b x[t]+a
yltl}, {x[t],ylt ]} t]
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Analysis of systems of differential equations Phase portrait

Mathematica:

DSolve[{x' [t]==a x[t]+b y[t], y'[t] ==-b x[t]+a
yltl}, {x[t],ylt]},t]

{{x[t]->E"(a t)C[1l]Cos[b t+E7(a t)C[2]Sin[b t],
y[t]->E"(a t)C[2]Cos[b t]-E7(a t)C[1]Sin[b t]}}

x(t) = cie?lcosbt+ credlsinbt
~ | coe?lcosbt—ciedlsinbt

_ o eat cosbt 4 oredt sinbt
- —sinbt 2 cosbt
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Trajectory forzaci =1, co=1and A= { (1} 011 ]

7
I~
NN

")

S

Spiral.
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Phase portrait for

Al e al

-1 0.1 1 01
22 2
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ReX =0
a=0 = _
x(t) = ¢ cosbt sinbt
— | —sinbt 2| cosbt
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Analysis of systems of differential equations Phase portrait

Re\ =0
a=0 =
x(t) = ¢ cosbt sinbt
~ 1| —sinbt 2| cosbt
Note,
xi()2 = c?cos®bt+ cicpcosbtsinbt+ c5sin2bt
x2(t)2 = c?sin?bt—cycasinbtcosbt+ c2cos2bt
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Analysis of systems of differential equations Phase portrait

ReA =0
a=0 = _
x(t) = ¢ cosbt sinbt
~ 1| —sinbt 2| cosbt
Note,
xi()2 = c?cos®bt+ cicpcosbtsinbt+ c5sin2bt
x2(t)? = c?sin?bt—cycasinbtcosbt+ cicos2bt =
X2 +x3 = 2+ca=r?
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Phase portrait for A = [ _01 3) }
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4
3

Phase portraitfor B= T 'AT = {

A:{—O1 H T:[ ﬂ

wlo
[eSIE
N = —
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Analysis of systems of differential equations Phase portrait

Real eigenvalues Jordan
block 2 x 2

Ao <A <0 AM<A<O0 AM=X<0 AM=X<0

ok B

X > A >0 AM>X>0 AM=X>0 AM=X>0

wt
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4.2. Linearization

Consider differential equation

X = F(X), F:R"—>R"
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4.2. Linearization

Consider differential equation
X =F(X), F:R"—=R"

Like as in 1-dimensional case, function F may be substituted by Taylor
polynomial of 1. degree:

F(X) = F(Xo) + J(Xo) - (X = Xo)

Note. F, X, Xy are from R".
What is J'?

f1(}’1a-~7}/n)
J(Y) = ; , F'(Y)z[

)
fn(}’h---a}/n)

9y

J = Jr is Jacobian matrix
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Analysis of systems of differential equations Linearization

Example
Determine Jacobian matrix for function F from chemostat model. J
Solution. s p
—Ve———+wS—wS
F(S,P) = K+ ‘ZY
VRIgP—wP
S P

(S, P) = VK SY-I—LUSo—wS

L(S,P) = V S P—wP

2 Y - i( +_ E;

68/120



Analysis of systems of differential equations Linearization

ofi 0 S P
95 ~ 28| VkysytwSo—wS
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ofi 0 S P

98 = as| Vkrsy twS-wS
_ __VK P
- T(Kt9RYy “
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o D S P

E§E§ = E§E§ [ \/ f( T f; »/ +w E;O w E;]
_ __VK P
- (K+98)2Y

o 9 S P

oP = 8P[_VK gy twS—w S]
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o D S P

E§E§ = E§E§ [ \/ f( %_ f; »/ —+ w E;O w E;]
_ __VK P_
- (K+98)2Y

o 9 S P

oP = 8P[_VK gy twS—w S}
_ S 1
N K+SY
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ofy

0S

ofy
oP

on
05

o[, S P
0S K+SY
VK P,
(K+8)?2Y

o[, S P
oP K+SY

+w80—w8]

+CUSO S:|
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ofp 0 S P
E§E§ = E§E§ [ \/ f( T f; »/ —+ w E;O w E;]
_ __VK P_
- (K+98)2Y
ofp 0 S P
P = W[_VK+SY+“S° 3}
S 1
= VYk1s
oh 0 S VK
as ~— 28|"k+s" ™ “P] (K + S)2
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ofy

0S

ofy
oP

on
05

o0h
oP

9 [—V S P—HuSo—wS]

0S| K+SY

__VK P |

(K+8)?2Y

) S P

aP[ K+SY+W%_W4
S 1

7VK+SV

0 S VK

M sP_“P] (K + S)?
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JE(S, P) =
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95
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28
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oP
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oP
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JE(S, P) =

of
95
ot

28

of
oP
b

oP

VK P
(K+8)2Y
VK

(K + S)?

w

-V

S 1
K+SY
S

K+s
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Equilibrium.
As in 1-d case, equilibrium point X* is a zero of function F:

F(X*) = 0.
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Equilibrium.
As in 1-d case, equilibrium point X* is a zero of function F:
F(X*)=0.

If we substitute F by Taylor polynomial of 1. degree around X*:

F(X) = F(X*) + Je(X) - (X = X*) = Je(X") - (X — X*)
Now we consider differential equation

X' = Je(X*) - (X — X*).
By substitution Y = X — X* we obtain =
Y = Jp(X*)- Y

Differential equation is similar to the equation for exponential model,
only, J¢(X*) is (constant) matrix.
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Analysis of systems of differential equations Linearization

Note. Hartman-Grobman theorem justifies linearization.
Theorem shows that a solution of nonlinear differential equation

X' = F(X)

in the neighborhood of equilibrium point X* qualitatively behaves as a
solution of linear differential equation

X' = F/(X*)X

in the neighborhood of point X = 0.
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Hartman-Grobman theorem.

Theorem (Hartman-Grobman Theorem)

If x* is a hyperbolic equilibrium of X' = f(x), x € R", then there exists
a homeomorphism z = h(x) defined in a neighborhood of x* that
maps trajectories of x' = f(x) to those of 2’ = Az where A = J¢(x*).
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Hartman-Grobman theorem.

Theorem (Hartman-Grobman Theorem)

If x* is a hyperbolic equilibrium of X' = f(x), x € R", then there exists
a homeomorphism z = h(x) defined in a neighborhood of x* that
maps trajectories of x' = f(x) to those of 2’ = Az where A = J¢(x*).

hyperbolic equilibrium - Jacobian matrix at equilibrium point has all
eigenvalues with nonzero real part

homeomorphism - a continuous map with a continuous inverse
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Analysis of systems of differential equations Linearization

Theorem

Let X* is an equilibrium point of the system X' = F(X) and all
eigenvalues of Jg(X*) have nonzero real parts. Then, X* is locally
stable equilibrium if and only if all real parts of eigenvalues of the
Jacobian matrix Je(X*) are negative.
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Analysis of systems of differential equations Linearization

Theorem

Let X* is an equilibrium point of the system X' = F(X) and all
eigenvalues of Jg(X*) have nonzero real parts. Then, X* is locally
stable equilibrium if and only if all real parts of eigenvalues of the
Jacobian matrix Je(X*) are negative.

Algorithm.
@ For any equilibrium X* calculate Jacobian matrix of F at
equilibrium X* (Jg(X*)) and check eigenvalues.

@ If real parts of all eigenvalues are negative then equilibrium is
locally stable.

© Ifthere is at least one eigenvalue with positive real part then
equilibrium is not locally stable.

Note. Case Re)x = 0 is complex and should be analyzed using

some other approach.
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Analysis of systems of differential equations Linearization

Note. Hartman-Grobman Theorem says nothing about global stability.
For example, compare two equations:

i X = —x+x2
In both cases linearization at x* = 0 yields

x' = —x,

and x* = 0 is locally stable equilibrium.
In the first case, all solutions converge toward 0 (unique equilibrium).

In the second case, 1 is another equilibrium and for xg > 1 solution wil
not converge toward O (it will diverge to +o0).
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The hyperbolicity condition can’t be removed.
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Analysis of systems of differential equations Linearization

The hyperbolicity condition can’t be removed.

X = —(X+Y)=(X=Y)-(X2+Y?
Y = —(X+Y)+(X-Y)-(X?+Y?)

~—

Jacobian matrix at (0, 0):
-1 -1
Jr = [ -1 -1 ]

Eigenvalues: -2 an0.
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Phase portrait.
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Analysis of systems of differential equations Linearization

The hyperbolicity condition can’t be removed.

X = X+Y)+(X-Y)-(X2+Y?
Y = (X+Y)—(X-Y)-(X?>+Y?

~—

Jacobian matrix at (0, 0):

Eigenvalues: 2 anO0.
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The hyperbolicity condition can’t be removed.
X = -Y-X-XVY?

Y = X-X3y_Y®

Jacobian matrix at (0, 0):
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Analysis of systems of differential equations Linearization

The hyperbolicity condition can’t be removed.

X = —Y-_X3_XY?
Y = X-X3y_Y®

Jacobian matrix at (0, 0):

Eigenvalues:  +i.
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Phase portrait.
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Phase portrait.
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Analysis of systems of differential equations Phase portrait for chemostat model

We will use chemostat model in our examples:

S P
/ _ _ - _
S = VK+SY+wSO wS,
S
P= V-2 P wP
K+ S “

Model has 5 parameters: V., K, Y,w, Sy
To make computation easier, we will use dedimensionalized model.
So,

Problem
Dedimensionalize chemostat model. J

Introduce new variables:
P(t) = P*N(1), S(t)=S*C(r), t=tr

Constants P*, S*, t* determine in the way to simplify the model (to
reduce a number of parameters).
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Solution.
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Analysis of systems of differential equations Phase portrait for chemostat model

Solution.

P(t)

d
o/

E3

P =

d
dt

d

= P*N

dt

t

dy <t

*

)

(7)
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Solution.

P() = SR = 2P NG)

— p*gN t :iN' t
dt t* t* t*
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Solution.

P(1) =
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Analysis of systems of differential equations Phase portrait for chemostat model

Model is of the form

S*

- C/
t*

P
t*

VSC P*N

“KigcC y TwS-wSC
vs<Cc _, .
KiggP N-wPN
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Analysis of systems of differential equations Phase portrait for chemostat model

Model is of the form

s,  VS&C PN .
+¢ = "kKiscy twSHh-wSC
P* VS*C

wN = kyscl N-wFN

VC PN twS

/o *

© = Tkyscvy Ts twC
Vsc

o o

N = tiK—l—S*CN trwN
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Analysis of systems of differential equations Phase portrait for chemostat model

Model is of the form

s,  VS&C PN .
+C T kiscy TwhowSC
P VSC . .
+N = kyscPN-wPN
=
VC PN t'wS
/ _ X x
© = Tkyscvy Ts twC
VS*C
/- * X
N = tiK—l—S*CN FwN
=
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, tVPE C o twSy
_ N ~twC
¢ SYEic s ¢
pd/ == t* \/47(4524447fv - t*LU N
£ic

88/120



Analysis of systems of differential equations Phase portrait for chemostat model
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_ N —PwC
¢ SY Kyc' s ¢
pd/ == t* \/47(4524447fv - t*Ld N
Eic

Choose P*, S§*, t* to remove 3 parameters:
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s+
Choose P*, S§*, t* to remove 3 parameters:
K . t* VP*
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Analysis of systems of differential equations Phase portrait for chemostat model

, tvP* C FwSy .
= — N —twC
¢ SY Kyc' s ¢
pd/ = t* \/47(4524447fv — t*Ld pd
s+
Choose P*, S§*, t* to remove 3 parameters:
K . t* VP*
§—1, t(./J—1, S*Y_1
. o 1 . SY YKuw
#SfK,tfa,Pft*vf %
Define new parameters:
N tw S S
(Y1ITVI;, Qo = 8*0:?0
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Dedimensionalized chemostat model:

C
ro_ _
c = 1+CN+042 C
C
[ —
= o1y CN N
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Dedimensionalized chemostat model:

C
o _
c = 1+CN+a2 C
C
[— —
= o1y CN N

Note. Only two parameters remain in analysis. Note that a.y,a2 > 0
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Dedimensionalized chemostat model:

C
ro_ _
c = 1+CN+a2 C
C
[ —
= o1y CN N

Note. Only two parameters remain in analysis. Note that a.y,a2 > 0

Note. Substitution

1 . N . YKuw
=V S* = t'wSP* = v

=

also reduces number of parameters on 2.
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Problem

Determine equilibrium points of chemostat model.
(Use dedimensionalized model.)
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C
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c = ] CN+a2 C

C

N-N
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Differential equation
X' = F(X)
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C
/ _ _
c = ] CN+a2 C

C

N-N
14+C

= (y1

Differential equation
X' = F(X)
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Analysis of systems of differential equations Phase portrait for chemostat model

Problem
Determine equilibrium points of chemostat model.
(Use dedimensionalized model.)

Solution. Dedimensionalized chemostat model:

C

/ —_— N — —

c = 1+CN+a2 C

C

! — J—

= a11 —I—CN N
Differential equation
X' = F(X)
C —LN—F(XQ— C
X = [ N] and F(X)=F(CN)=| 1+C
ar—=N-N
1+C

90/120



Analysis of systems of differential equations Phase portrait for chemostat model

From F(C, N) = 0 it follows

C
C
= a11+CN7N
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From F(C, N) = 0 it follows

Second equation yields:

C
<0411+C—1>N—0

C
N=0 or a11+C_0
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1.N=0
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First equation yields
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Trivial equilibrium - no population.
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Analysis of systems of differential equations Phase portrait for chemostat model

First equation yields

C
OZ—WN‘FOZZ—C—O[Q—C
= C= (%)
Equilibrium:
Xy = (2,0)

Trivial equilibrium - no population.

C=a = S:SQ.
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C 1
2. a0 —1= DL
“ive 170 T CE
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C 1
a11+C 0 = ¢ oy — 1

Substitute into 1. equation:

C
0=- 1+CN—|—O¢2—C
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C 1
2. a1—— —1= —
“TiC 0 = =7
Substitute into 1. equation:
C 1 1
0=-— 1+CN+O¢2—C——*N—}—O£2—OZ1_1
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C 1
2. a1—— —1= —
“TiC 0 = =7
Substitute into 1. equation:
C 1 1
0=-— 1+CN—|—O¢2—C _7N+a2_a1—1

1
= N:a1<a2— >
Ck1—1
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C 1
a11+C 0 = ¢ oy — 1

Substitute into 1. equation:

C 1 1
— _ __7/\/ _
0 1+CN+a2 C + a2 o

1
= N:a1<a2— >
Ck1—1
1 1
X2:<a11,a1 (az_m‘l))

Equilibrium:
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C 1
2. 0p———1= —
“TiC 0 = =7
Substitute into 1. equation:
C 1 1
-~ N —_C=-—— _
0=—qgNtae-C=-Nha =

1
= N:a1<a2— >
Ck1—1

Equilibrium:

C and N are positive. What are conditions for the existence of positive
equilibrium?
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Positivity of equilibrium

1 1
= (e (e )
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Positivity of equilibrium
1 1
X = <a1 —1 (az_m 1))

ar—1 > 0
1

oy — 1

> 0

Qo —
Interpretation:

4
ar—1>0 = ;>1 = V>uw
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Positivity of equilibrium
1 1
X = <a1 —1 <a2_a1 1))

ar—1 > 0

Interpretation:

%
ar—1>0 = ;>1 = V>uw

Maximal growth rate should be larger then washout rate.
If washout rate is to high, loss of cells is greater then growth rate.
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1
ap——— >0
051—1
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1

T

e%)
Substrate concentration in the equilibrium:

1

041—1

C"=
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Substrate concentration in the equilibrium:

. 1
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Analysis of systems of differential equations Phase portrait for chemostat model

Substrate concentration in the equilibrium:

. 1
_a1—1
* SO S " K
= >C = 2> = So>3=?

Substrate concentration in the equilibrium have to be smaller then
inflowing substrate concentration.
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Example
Stability of equilibrium points in chemostat model. J
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Example
Stability of equilibrium points in chemostat model. }

X' = F(X) = F(C,N)

C
_ 1+CN+O¢2—C

F(C,N) = [ h(C.N) ]
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Example

Stability of equilibrium points in chemostat model.

X' = F(X) = F(C,N)

C
f1(CN):|: 1+CN+Q2_C
(C,N)

a1y eN N
ofp 1
aCc _N(1+C)2
oh  C
oN ~ 1+C
ofh 1
ac — “Nazop
b _ c |
oN — “'11cC
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Jr

af;
aC
A
aC

1 _C
(1+C)? 1+C
1 c
“Nayer “iic
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Nty __C
b % m] (1+C)2 1+C
Fol o on |~ N c_
C N
e “NTareoe “i+c
1.ekvilibrum X; = (a2, 0)
1 __*
1
Jr(X1) = Jr(az,0) = a+ "2
0 aj—2 -
1+ as
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Ny C
b % m] (1+C)2 1+C
Fol o on |~ N c_
C N
e “NTareoe “i+c
1.ekvilibrum X; = (a2, 0)
1 __*
3
Jr(X1) = Jr(az,0) = a;L "2
0 (0% -
14+ an

Eigenvalues are on the diagonal! (Upper triangular matrix.)

A= —1<0

(0%}
Ao = 1
2 LT

97/120



Analysis of systems of differential equations Phase portrait for chemostat model

a2

o = M

1

a1a2—1 — Qo
1+

as(ay —1) —1
1—}-042

oy —1 1
= _— oo — ———
14+ ap 2 o — 1
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A2

a11—|—a2

a2

a1a2—1 — Qo

1+

as(ay —1) —1

14+ an

oy —1 1
o —
1+ as 2 o1 — 1

If exists positive second equilibrium (X5):

oy —1

then

y
oy —1

i an— >0

Ao >0

and X; is not locally stable equilibrium.
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2. equilibrium
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2. equilibrium

1 1
%= (e (e 7))

Denote: 8 = ag(aq — 1)
Existence of positive equilibrium=-

ag > 1, ﬁ>1
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2. equilibrium

1 1
%= (e (e 7))

Denote: 8 = ag(aq — 1)

Existence of positive equilibrium=-
ar>1, >1
IFrom the condition for equilibrium:

C

¥ _q-0
Y1
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2. equilibrium

1 1
X = —— _
2 <a1—1’a1 (a2 a1—1))

Denote: 8 = ag(aq — 1)

Existence of positive equilibrium=-
ar>1, >1

IFrom the condition for equilibrium:

C
vy, 170
1 C
N— 1 2
(1+ C)2 1+C
Jr(Xe) = 1 C
041N 1

d+ce “1+c
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Jr(X2) =
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detJr(Xe) = 1 &

Xo is locally stable equilibrium.
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4.6. Phase portrait for chemostat model
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4.6. Phase portrait for chemostat model

Dedimensionalized chemostat model:

C
o _
c = 1+CN—f—ozz C
C
/ — — —
N = a11+CN N
Equilibriums:
Xi = (a2,0), Xo= T o
1 _1jj2
[0
Jr(X1) = Jr(az,0) = ap 2
0 (0% -1
1+ an
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1. One positive equilibrium

a1 —1<0 or as— <0
o — 1
1 2
-l 73
Example: = %, as = 2: JF(X1) =
0o -
Phase portrait of the linearized differential equatione:
N
3.0r

2.5j
20
15
1.0

05

0.0
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Phase portrait

Linearized equationea

N

3.0

25

20

15

10

05F—

0.0

— N

S i C
15 20 25 30

3.0k

2.5

2.0k

15

1.0

0.5

0.0

Chemostat model

—

e ﬁ/ ]

05 10

g = C
15 20 25 30
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2. Two positive equilibriums

ag—1>0 and ap— >0

o1 — 1
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2. Two positive equilibriums

ag—1>0 and ap— >0

o1 — 1

Example: a1 =2, ap =2
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-1 _%
1. equilibrium: Xy = (2,0), Jr(X1) = 1
0 3

Phase portrait of the linearized differential equatione:

L L 71 @ L L C
05 10 15 20 25 30
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_3 _
2

N[ —

2. equilibrium: Xo = (1,2), F'(X2) =
1 0

Phase portrait of the linearized differential equatione:
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1. equilibrium 2. equilibrium

/

0.0

L & L L C
05 10 15 20 25 30
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3.0
25
20
15
1.0

0.5¢<

0.0 - C
05 10 15 20 25 30
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Phase portrait of the chemostat model:

30 \
25

20
15
1.0

05

0.0

n n n & L L c
05 10 15 20 25 30
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Phase portrait of the chemostat model:

30 \
25

20
15

1.0

05

0.0

n n n ® L L C
05 10 15 20 25 30

110/120



Analysis of systems of differential equations Phase portrait for chemostat model

Problem

Dinamics of two populations is described by the system of differential
equations:

/

X = xy—2x-2y+4,

/

y = 4y—y?—x—1.

Sketch the phase portrait of the given differential equation.
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Solution.
Equilibriums:

xXy—2x—2y+4=0
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Solution.
Equilibriums:

xy—-2x-2y+4=0 = x(y—-2)-2(y-2)=(x-2)(y—-2)=0
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Solution.
Equilibriums:
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XxX=2 o y=2.
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Solution.
Equilibriums:
xy—-2x-2y+4=0 = x(y-2)-2(y-2)=(x-2)(y—-2)=0 =

XxX=2 o y=2.

1.y=2

112/120



Analysis of systems of differential equations Phase portrait for chemostat model

Solution.
Equilibriums:
xy—-2x-2y+4=0 = x(y-2)-2(y-2)=(x-2)(y—-2)=0 =

XxX=2 o y=2.

1.y=2
0=4y—y?—-x—-1=3-x = x=3

Equilibrium: £, = (3,2)
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Solution.
Equilibriums:
xy—-2x-2y+4=0 = x(y-2)-2(y-2)=(x-2)(y—-2)=0 =

XxX=2 o y=2.

1.y=2
0=4y—y?—-x—-1=3-x = x=3

Equilibrium: E; = (3,2)
2. x =2

0=4y—y? —x—1=—y?+4y-3
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Solution.
Equilibriums:
xy—-2x-2y+4=0 = x(y-2)-2(y-2)=(x-2)(y—-2)=0 =

XxX=2 o y=2.

1.y=2
0=4y—y?—-x—-1=3-x = x=3

Equilibrium: E; = (3,2)
2. x =2

0=4y—y?—x—-1=—y?+4y—-3 = y =1, y=3.
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Solution.
Equilibriums:
xy—-2x-2y+4=0 = x(y-2)-2(y-2)=(x-2)(y—-2)=0 =

XxX=2 o y=2.

1.y=2
0=4y—y?—-x—-1=3-x = x=3

Equilibrium: E; = (3,2)
2. x =2

0=4y—y?—x—-1=—y?+4y—-3 = y =1, y=3.

Equilibrium: E, = (2,1), E5 = (2,3).
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Jacobian matrix.

Xy—2x—-2y+4,

F(Xay): 4y_y2_X_1‘
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Jacobian matrix.

Xy—2x—2y+4,
F(x,y>=[ / y ]

4y —y? —x —1.

-2 x-2
JF(X’y): |:y1 4—2y. :|
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Jacobian matrix.

4y —y? —x —1.

Xy—2x—2y+4,
F(x,y>=[ / y ]

o

-2
JF(X’y): |:y1 4—2y.

1. Equilibrium
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Jacobian matrix.

4y —y? —x —1.

Xy—2x—2y+4,
F(x,y>=[ / y ]

-2 x-2
JF(X’y): |:y1 4—2y. :|

1. Equilibrium

Circle!
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©
Z
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2. Equilibrium

-2 x-2
J,:(X,y): I:y_-‘ 4—2}/]

Jr(Ez2) = JF(2,3) = [ _11 _02 ]
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2. Equilibrium

-2 x-2
J,:(X,y): I:y_-‘ 4—2}/]

Jr(Ez2) = JF(2,3) = [ _11 _02 ]

Saddle.
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2. Equilibrium

y—2 x—Z]
J =
F(X,}/) I: -1 4—2}/
1 0
JF(EZ) :JF(273) = |: 1 -2 ]
Saddle.

Ao=-2, Vo=6
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w
T

%
N
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3. Equilibrium
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3. Equilibrium

Saddle.
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Phase portrait for chemostat model
Sketch of the phase portrait
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Phase portrait
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