PRINCIPLES OF MATHEMATICAL MODELLING

4. ANALYSIS OF SYSTEMS OF DIFFERENTIAL EQUATIONS

イロト イ押 トイラト イラト Ω

1 / 120

イロト イ団 トイモト イモト в 299

2 / 120

Chemostat model is an example for system of differential equations:

$$
S' = -V \frac{S}{K+S} \frac{P}{Y} + \omega S_0 - \omega S, \quad S(0) = s_0
$$

$$
P' = V \frac{S}{K+S} P - \omega P, \qquad P(0) = p_0
$$

 \rightarrow Two differential equations with two unknown functions.

 $(0.12 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

Chemostat model is an example for system of differential equations:

$$
S' = -V \frac{S}{K+S} \frac{P}{Y} + \omega S_0 - \omega S, \quad S(0) = s_0
$$

$$
P' = V \frac{S}{K+S} P - \omega P, \qquad P(0) = p_0
$$

 \rightarrow Two differential equations with two unknown functions.

System of differential equations may be written in a vector form.

 $(0.125 \times 10^{-14} \text{ m})$

Chemostat model is an example for system of differential equations:

$$
S' = -V \frac{S}{K+S} \frac{P}{Y} + \omega S_0 - \omega S, \quad S(0) = s_0
$$

$$
P' = V \frac{S}{K+S} P - \omega P, \qquad P(0) = p_0
$$

 \rightarrow Two differential equations with two unknown functions.

System of differential equations may be written in a vector form. Define

$$
X(t)=\left[\begin{array}{c} S(t) \\ P(t) \end{array}\right], \quad X:\mathbb{R}\to\mathbb{R}^2
$$

CONVIRTING A REPORT OF

Chemostat model is an example for system of differential equations:

$$
S' = -V \frac{S}{K+S} \frac{P}{Y} + \omega S_0 - \omega S, \quad S(0) = s_0
$$

$$
P' = V \frac{S}{K+S} P - \omega P, \qquad P(0) = p_0
$$

 \rightarrow Two differential equations with two unknown functions.

System of differential equations may be written in a vector form. Define

$$
X(t)=\left[\begin{array}{c} S(t) \\ P(t) \end{array}\right], \quad X:\mathbb{R}\to\mathbb{R}^2
$$

X - vector function

CONVIRTING A REPORT OF

Derivative of vector function:

$$
X'(t) = \left[\begin{array}{c} S'(t) \\ P'(t) \end{array} \right],
$$

イロト 不優 トイミト 不思 トー 重 299

Derivative of vector function:

$$
X'(t) = \left[\begin{array}{c} S'(t) \\ P'(t) \end{array} \right],
$$

 \rightarrow derivative by components

イロト イ団 トイミト イミト \Rightarrow 299

Derivative of vector function:

$$
X'(t)=\left[\begin{array}{c} S'(t) \\ P'(t) \end{array}\right],
$$

\rightarrow derivative by components

For

$$
F(X) = \begin{bmatrix} -V\frac{S}{K+S}\frac{P}{Y} + \omega S_0 - \omega S \\ V\frac{S}{K+S}P - \omega P \end{bmatrix} \text{ and } X_0 = \begin{bmatrix} S_0 \\ p_0 \end{bmatrix},
$$

vector function

$$
X(t) = \left[\begin{array}{c} S(t) \\ P(t) \end{array} \right]
$$

is a solution of the differential equation

$$
X'(t) = F(X(t)), \quad X(0) = X_0.
$$

3 / 120

Generally, system of differential equations

$$
y'_1 = f_1(y_1, ..., y_n), y_1(0) = y_1^0
$$

\n
$$
y'_2 = f_2(y_1, ..., y_n), y_2(0) = y_2^0
$$

\n:
\n:
\n
$$
y'_n = f_n(y_1, ..., y_n), y_n(0) = y_n^0
$$

may be written in a vector form.

$$
Y'(t) = F(Y(t)), \quad Y(0) = Y_0,
$$

where

$$
Y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}, \quad F(Y) = \begin{bmatrix} f_1(y_1, \ldots, y_n) \\ \vdots \\ f_n(y_1, \ldots, y_n) \end{bmatrix} \quad \text{i} \quad Y_0 = \begin{bmatrix} y_1^0 \\ \vdots \\ y_n^0 \end{bmatrix},
$$

4.3. Linear system of differential equations

Diiferential equation

$$
X'(t)=A X(t).
$$

for $A \in M_n(\mathbb{R})$ is called a linear system of differential equations.

4.3. Linear system of differential equations

Diiferential equation

$$
X'(t)=A X(t).
$$

for $A \in M_n(\mathbb{R})$ is called a linear system of differential equations.

 $-X' = F(X)$ and F is a linear function.

イロトメ 御 トメ 君 トメ 君 トー 君

4.3. Linear system of differential equations

Diiferential equation

$$
X'(t)=A X(t).
$$

for $A \in M_n(\mathbb{R})$ is called a linear system of differential equations.

 $-X' = F(X)$ and F is a linear function.

-Otherwise, nonlinear system of differential equations.

$$
x'_1(t) = a_{11}x_1(t) + a_{12}x_2(t) + \ldots + a_{1n}x_n(t)
$$

\n
$$
x'_2(t) = a_{21}x_1(t) + a_{22}x_2(t) + \ldots + a_{2n}x_n(t)
$$

\n
$$
\vdots \qquad \vdots
$$

\n
$$
x'_n(t) = a_{n1}x_1(t) + a_{n2}x_2(t) + \ldots + a_{nn}x_n(t)
$$

K ロ ▶ K 御 ▶ K 重 ▶ K 重 ▶ │ 重

Definition

Scalar λ is an eigenvalue of matrix $A \in M_n(\mathbb{R})$ if there exists $x \neq 0$ such that

$$
Ax=\lambda x.
$$

Vector *x* is called eigenvector of matrix *A*.

(ロトイ部)→(差)→(差)→

Definition

Scalar λ is an eigenvalue of matrix $A \in M_n(\mathbb{R})$ if there exists $x \neq 0$ such that

$$
Ax=\lambda x.
$$

Vector *x* is called eigenvector of matrix *A*.

Theorem

 λ *is eigenvalue of matrix* $A \in M_n(\mathbb{R}) \iff \det(A - \lambda I) = 0$.

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1)$ $(1,1)$ $(1,1)$

Definition

Scalar λ is an eigenvalue of matrix $A \in M_n(\mathbb{R})$ if there exists $x \neq 0$ such that

$$
Ax=\lambda x.
$$

Vector *x* is called eigenvector of matrix *A*.

Theorem

 λ *is eigenvalue of matrix A* \in *M_n*(\mathbb{R}) \iff det($A - \lambda I$) = 0*.*

 λ is zero (root) of characteristic polynomial (characteristic root).

 Ω 6 / 120

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1$

Find eigenvalues and eigenvectors of matrix

$$
A = \left[\begin{array}{rr} 3 & 1 \\ 1 & 4 \end{array} \right].
$$

7 / 120

 299

イロト イ部 トイ磨 トイ磨 ト

Find eigenvalues and eigenvectors of matrix

$$
A = \left[\begin{array}{rr} 3 & 1 \\ 1 & 4 \end{array} \right].
$$

Solution.

$$
p(\lambda) = \begin{vmatrix} 3-\lambda & 1 \\ 1 & 4-\lambda \end{vmatrix} = (3-\lambda)(4-\lambda) - 1 = \lambda^2 - 7\lambda + 11
$$

Þ

メロトメ 御 トメ 君 トメ 君 ト

Find eigenvalues and eigenvectors of matrix

$$
A = \left[\begin{array}{rr} 3 & 1 \\ 1 & 4 \end{array} \right].
$$

Solution.

$$
p(\lambda) = \begin{vmatrix} 3 - \lambda & 1 \\ 1 & 4 - \lambda \end{vmatrix} = (3 - \lambda)(4 - \lambda) - 1 = \lambda^2 - 7\lambda + 11
$$

$$
p(\lambda) = 0 \Rightarrow
$$

Þ

メロトメ 御 トメ 君 トメ 君 ト

Find eigenvalues and eigenvectors of matrix

$$
A = \left[\begin{array}{rr} 3 & 1 \\ 1 & 4 \end{array} \right].
$$

Solution.

$$
p(\lambda) = \begin{vmatrix} 3 - \lambda & 1 \\ 1 & 4 - \lambda \end{vmatrix} = (3 - \lambda)(4 - \lambda) - 1 = \lambda^2 - 7\lambda + 11
$$

$$
p(\lambda) = 0 \implies
$$

$$
\lambda_{1,2} = \frac{7 \pm \sqrt{49 - 4 \cdot 11}}{2} = \frac{7 \pm \sqrt{5}}{2}
$$

 299 7 / 120

Þ

(ロトイ部)→(差)→(差)→

Find eigenvalues and eigenvectors of matrix

$$
A = \left[\begin{array}{rr} 3 & 1 \\ 1 & 4 \end{array} \right].
$$

Solution.

$$
p(\lambda) = \begin{vmatrix} 3 - \lambda & 1 \\ 1 & 4 - \lambda \end{vmatrix} = (3 - \lambda)(4 - \lambda) - 1 = \lambda^2 - 7\lambda + 11
$$

$$
p(\lambda) = 0 \Rightarrow
$$

$$
\lambda_{1,2} = \frac{7 \pm \sqrt{49 - 4 \cdot 11}}{2} = \frac{7 \pm \sqrt{5}}{2}
$$

$$
\lambda_1 = \frac{7 + \sqrt{5}}{2}, \quad \lambda_2 = \frac{7 - \sqrt{5}}{2}
$$

Solve the system:

$$
Ax = \lambda_1 x \Leftrightarrow (A - \lambda_1 I)x = 0
$$

Solve the system:

$$
Ax = \lambda_1 x \Leftrightarrow (A - \lambda_1 I)x = 0
$$

$$
\left[\begin{array}{cc}3-\lambda_1&1\\1&4-\lambda_1\end{array}\right]x=0
$$

重

K ロ ト K 個 ト K 重 ト K 重 ト …

Solve the system:

$$
Ax = \lambda_1 x \Leftrightarrow (A - \lambda_1 I)x = 0
$$

$$
\left[\begin{array}{cc}3-\lambda_1&1\\1&4-\lambda_1\end{array}\right]x=0
$$

Augmented matrix (last column i a zero-vector and we omitted it):

$$
\left[\begin{array}{cc}3-\frac{7+\sqrt{5}}{2}&1\\1&4-\frac{7+\sqrt{5}}{2}\end{array}\right]\quad \sim
$$

E

K ロ ▶ K 個 ▶ K 君 ▶ K 君 ▶ ..

Solve the system:

$$
Ax = \lambda_1 x \Leftrightarrow (A - \lambda_1 I)x = 0
$$

$$
\left[\begin{array}{cc}3-\lambda_1&1\\1&4-\lambda_1\end{array}\right]x=0
$$

Augmented matrix (last column i a zero-vector and we omitted it):

$$
\left[\begin{array}{cc}3-\frac{7+\sqrt{5}}{2} & 1 \\ 1 & 4-\frac{7+\sqrt{5}}{2}\end{array}\right] \ \sim \ \left[\begin{array}{cc}\frac{-1-\sqrt{5}}{2} & 1 \\ 1 & \frac{1-\sqrt{5}}{2}\end{array}\right]\sim
$$

 QQ 8 / 120

E

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ ...

Solve the system:

$$
Ax = \lambda_1 x \Leftrightarrow (A - \lambda_1 I)x = 0
$$

$$
\left[\begin{array}{cc}3-\lambda_1&1\\1&4-\lambda_1\end{array}\right]x=0
$$

Augmented matrix (last column i a zero-vector and we omitted it):

$$
\begin{bmatrix} 3 - \frac{7 + \sqrt{5}}{2} & 1 \\ 1 & 4 - \frac{7 + \sqrt{5}}{2} \end{bmatrix} \sim \begin{bmatrix} \frac{-1 - \sqrt{5}}{2} & 1 \\ 1 & \frac{1 - \sqrt{5}}{2} \end{bmatrix} \sim \sim \begin{bmatrix} \frac{-1 + \sqrt{5}}{2} & 1 \\ \frac{1 + \sqrt{5}}{2} & \frac{1 - 5}{4} \end{bmatrix}
$$

 QQ 8 / 120

E

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ ...

Solve the system:

$$
Ax = \lambda_1 x \Leftrightarrow (A - \lambda_1 I)x = 0
$$

$$
\left[\begin{array}{cc}3-\lambda_1&1\\1&4-\lambda_1\end{array}\right]x=0
$$

Augmented matrix (last column i a zero-vector and we omitted it):

$$
\begin{bmatrix} 3 - \frac{7 + \sqrt{5}}{2} & 1 \\ 1 & 4 - \frac{7 + \sqrt{5}}{2} \end{bmatrix} \sim \begin{bmatrix} \frac{-1 - \sqrt{5}}{2} & 1 \\ 1 & \frac{1 - \sqrt{5}}{2} \end{bmatrix} \sim \\ \sim \begin{bmatrix} -\frac{1 + \sqrt{5}}{2} & 1 \\ \frac{1 + \sqrt{5}}{2} & \frac{1 - 5}{4} \end{bmatrix} \sim \begin{bmatrix} -\frac{1 + \sqrt{5}}{2} & 1 \\ -\frac{1 + \sqrt{5}}{2} & 1 \end{bmatrix}
$$

E

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ ...

$$
-\frac{1+\sqrt{5}}{2}x_1+x_2=0\quad\Rightarrow\quad x_2=\frac{1+\sqrt{5}}{2}x_1
$$

メロトメ 御 トメ 君 トメ 君 トー 君 299

$$
-\frac{1+\sqrt{5}}{2}x_1 + x_2 = 0 \Rightarrow x_2 = \frac{1+\sqrt{5}}{2}x_1
$$

$$
X_1 = \begin{bmatrix} x_1 \\ \frac{1+\sqrt{5}}{2}x_1 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ \frac{1+\sqrt{5}}{2} \end{bmatrix}
$$

and

$$
-\frac{1+\sqrt{5}}{2}x_1 + x_2 = 0 \quad \Rightarrow \quad x_2 = \frac{1+\sqrt{5}}{2}x_1
$$

$$
X_1 = \begin{bmatrix} x_1 \\ \frac{1+\sqrt{5}}{2}x_1 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ \frac{1+\sqrt{5}}{2} \end{bmatrix}
$$

$$
X_1 = \begin{bmatrix} 1 \\ \frac{1+\sqrt{5}}{2} \end{bmatrix}
$$

and

$$
-\frac{1+\sqrt{5}}{2}x_1 + x_2 = 0 \quad \Rightarrow \quad x_2 = \frac{1+\sqrt{5}}{2}x_1
$$

$$
X_1 = \begin{bmatrix} x_1 \\ \frac{1+\sqrt{5}}{2}x_1 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ \frac{1+\sqrt{5}}{2} \end{bmatrix}
$$

$$
X_1 = \begin{bmatrix} 1 \\ \frac{1+\sqrt{5}}{2} \end{bmatrix}
$$

A little bit faster.

and

重

メロトメ 御 トメ ミトメ ミト

$$
-\frac{1+\sqrt{5}}{2}x_1 + x_2 = 0 \quad \Rightarrow \quad x_2 = \frac{1+\sqrt{5}}{2}x_1
$$

$$
X_1 = \begin{bmatrix} x_1 \\ \frac{1+\sqrt{5}}{2}x_1 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ \frac{1+\sqrt{5}}{2} \end{bmatrix}
$$

$$
X_1 = \begin{bmatrix} 1 \\ \frac{1+\sqrt{5}}{2} \end{bmatrix}
$$

$$
\left[\begin{array}{cc}3-\lambda_2&1\\1&4-\lambda_2\end{array}\right]x=0
$$

is singular.

and

重

イロト イ団 トイミト イミト

$$
-\frac{1+\sqrt{5}}{2}x_1 + x_2 = 0 \quad \Rightarrow \quad x_2 = \frac{1+\sqrt{5}}{2}x_1
$$

$$
X_1 = \begin{bmatrix} x_1 \\ \frac{1+\sqrt{5}}{2}x_1 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ \frac{1+\sqrt{5}}{2} \end{bmatrix}
$$

$$
X_1 = \begin{bmatrix} 1 \\ \frac{1+\sqrt{5}}{2} \end{bmatrix}
$$

and

$$
\left[\begin{array}{cc}3-\lambda_2&1\\1&4-\lambda_2\end{array}\right]x=0
$$

is singular. \Rightarrow rows are dependent

イロトメ 御 トメ 君 トメ 君 トー 君

$$
-\frac{1+\sqrt{5}}{2}x_1 + x_2 = 0 \quad \Rightarrow \quad x_2 = \frac{1+\sqrt{5}}{2}x_1
$$

$$
X_1 = \begin{bmatrix} x_1 \\ \frac{1+\sqrt{5}}{2}x_1 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ \frac{1+\sqrt{5}}{2} \end{bmatrix}
$$

$$
X_1 = \begin{bmatrix} 1 \\ \frac{1+\sqrt{5}}{2} \end{bmatrix}
$$

and

$$
\left[\begin{array}{cc}3-\lambda_2&1\\1&4-\lambda_2\end{array}\right]x=0
$$

is singular. \Rightarrow rows are dependent \Rightarrow rows are proportional

 \Rightarrow

イロト イ団 トイミト イミト

$$
-\frac{1+\sqrt{5}}{2}x_1 + x_2 = 0 \quad \Rightarrow \quad x_2 = \frac{1+\sqrt{5}}{2}x_1
$$

$$
X_1 = \begin{bmatrix} x_1 \\ \frac{1+\sqrt{5}}{2}x_1 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ \frac{1+\sqrt{5}}{2} \end{bmatrix}
$$

$$
X_1 = \begin{bmatrix} 1 \\ \frac{1+\sqrt{5}}{2} \end{bmatrix}
$$

$$
\left[\begin{array}{cc}3-\lambda_2&1\\1&4-\lambda_2\end{array}\right]x=0
$$

is singular. \Rightarrow rows are dependent \Rightarrow rows are proportional

$$
(3-\lambda_2)x_1+x_2=0
$$

and

 \Rightarrow

イロト イ団 トイミト イミト
$$
-\frac{1+\sqrt{5}}{2}x_1 + x_2 = 0 \quad \Rightarrow \quad x_2 = \frac{1+\sqrt{5}}{2}x_1
$$

$$
X_1 = \begin{bmatrix} x_1 \\ \frac{1+\sqrt{5}}{2}x_1 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ \frac{1+\sqrt{5}}{2} \end{bmatrix}
$$

$$
X_1 = \begin{bmatrix} 1 \\ \frac{1+\sqrt{5}}{2} \end{bmatrix}
$$

A little bit faster. Note that matrix

and

$$
\left[\begin{array}{cc}3-\lambda_2&1\\1&4-\lambda_2\end{array}\right]x=0
$$

is singular. \Rightarrow rows are dependent \Rightarrow rows are proportional

$$
(3 - \lambda_2)x_1 + x_2 = 0 \Rightarrow x_2 = -(3 - \lambda_2)x_1 = -\left(3 - \frac{7 - \sqrt{5}}{2}\right)x_1
$$

9 / 120

$$
x_2=\frac{1-\sqrt{5}}{2}\,x_1
$$

$$
x_2=\frac{1-\sqrt{5}}{2}\,x_1\quad\Rightarrow\quad X_2=\left[\begin{array}{c}1\\ \frac{1-\sqrt{5}}{2}\end{array}\right]x_1
$$

$$
x_2 = \frac{1 - \sqrt{5}}{2} x_1 \Rightarrow X_2 = \begin{bmatrix} \frac{1}{1 - \sqrt{5}} \\ \frac{1 - \sqrt{5}}{2} \end{bmatrix} x_1
$$

$$
X_2 = \begin{bmatrix} \frac{1}{1 - \sqrt{5}} \\ \frac{1 - \sqrt{5}}{2} \end{bmatrix}
$$

$$
x_2 = \frac{1 - \sqrt{5}}{2} x_1 \Rightarrow X_2 = \begin{bmatrix} \frac{1}{1 - \sqrt{5}} \\ \frac{1 - \sqrt{5}}{2} \end{bmatrix} x_1
$$

$$
X_2 = \begin{bmatrix} \frac{1}{1 - \sqrt{5}} \\ \frac{1 - \sqrt{5}}{2} \end{bmatrix}
$$

$$
AX_1 = \begin{bmatrix} 3 & 1 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ \frac{1+\sqrt{5}}{2} \end{bmatrix}
$$

重

メロトメ 御 トメ ミトメ ミト

$$
x_2 = \frac{1 - \sqrt{5}}{2} x_1 \Rightarrow X_2 = \begin{bmatrix} \frac{1}{1 - \sqrt{5}} \\ \frac{1 - \sqrt{5}}{2} \end{bmatrix} x_1
$$

$$
X_2 = \begin{bmatrix} \frac{1}{1 - \sqrt{5}} \\ \frac{1 - \sqrt{5}}{2} \end{bmatrix}
$$

$$
AX_1 = \begin{bmatrix} 3 & 1 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ \frac{1+\sqrt{5}}{2} \end{bmatrix} = \begin{bmatrix} 3 + \frac{1+\sqrt{5}}{2} \\ 1 + 4\frac{1+\sqrt{5}}{2} \end{bmatrix}
$$

 299 10 / 120

重

メロトメ 御 トメ 君 トメ 君 トー

$$
x_2 = \frac{1 - \sqrt{5}}{2} x_1 \quad \Rightarrow \quad X_2 = \begin{bmatrix} 1 \\ \frac{1 - \sqrt{5}}{2} \end{bmatrix} x_1
$$

$$
X_2 = \begin{bmatrix} 1 \\ \frac{1 - \sqrt{5}}{2} \end{bmatrix}
$$

$$
AX_1 = \begin{bmatrix} 3 & 1 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ \frac{1+\sqrt{5}}{2} \end{bmatrix} = \begin{bmatrix} 3 + \frac{1+\sqrt{5}}{2} \\ 1 + 4\frac{1+\sqrt{5}}{2} \end{bmatrix} = \begin{bmatrix} \frac{7+\sqrt{5}}{2} \\ \frac{6+4\sqrt{5}}{2} \end{bmatrix}
$$

$$
\lambda_1 X_1 = \frac{7+\sqrt{5}}{2} \begin{bmatrix} 1 \\ \frac{1+\sqrt{5}}{2} \end{bmatrix}
$$

 299 10 / 120

重

メロトメ 御 トメ 君 トメ 君 トー

$$
x_2 = \frac{1 - \sqrt{5}}{2} x_1 \quad \Rightarrow \quad X_2 = \begin{bmatrix} 1 \\ \frac{1 - \sqrt{5}}{2} \end{bmatrix} x_1
$$

$$
X_2 = \begin{bmatrix} 1 \\ \frac{1 - \sqrt{5}}{2} \end{bmatrix}
$$

$$
AX_1 = \begin{bmatrix} 3 & 1 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ \frac{1+\sqrt{5}}{2} \end{bmatrix} = \begin{bmatrix} 3 + \frac{1+\sqrt{5}}{2} \\ 1+4\frac{1+\sqrt{5}}{2} \end{bmatrix} = \begin{bmatrix} \frac{7+\sqrt{5}}{2} \\ \frac{6+4\sqrt{5}}{2} \end{bmatrix}
$$

$$
\lambda_1 X_1 = \frac{7+\sqrt{5}}{2} \begin{bmatrix} 1 \\ \frac{1+\sqrt{5}}{2} \end{bmatrix} = \begin{bmatrix} \frac{7+\sqrt{5}}{2} \\ \frac{7+\sqrt{5}+7\sqrt{5}+5}{4} \end{bmatrix} = \begin{bmatrix} \frac{7+\sqrt{5}}{2} \\ \frac{12+8\sqrt{5}}{4} \end{bmatrix}
$$

 299 10 / 120

重

メロトメ 御 トメ 君 トメ 君 トー

$$
x_2 = \frac{1 - \sqrt{5}}{2} x_1 \quad \Rightarrow \quad X_2 = \begin{bmatrix} 1 \\ \frac{1 - \sqrt{5}}{2} \end{bmatrix} x_1
$$

$$
X_2 = \begin{bmatrix} 1 \\ \frac{1 - \sqrt{5}}{2} \end{bmatrix}
$$

$$
AX_1 = \begin{bmatrix} 3 & 1 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ \frac{1+\sqrt{5}}{2} \end{bmatrix} = \begin{bmatrix} 3 + \frac{1+\sqrt{5}}{2} \\ 1+4\frac{1+\sqrt{5}}{2} \end{bmatrix} = \begin{bmatrix} \frac{7+\sqrt{5}}{2} \\ \frac{6+4\sqrt{5}}{2} \end{bmatrix}
$$

$$
\lambda_1 X_1 = \frac{7+\sqrt{5}}{2} \begin{bmatrix} 1 \\ \frac{1+\sqrt{5}}{2} \end{bmatrix} = \begin{bmatrix} \frac{7+\sqrt{5}}{2} \\ \frac{7+\sqrt{5}+7\sqrt{5}+5}{4} \end{bmatrix} = \begin{bmatrix} \frac{7+\sqrt{5}}{2} \\ \frac{12+8\sqrt{5}}{4} \end{bmatrix}
$$

 \Rightarrow $AX_1 = \lambda_1 X_1$

 299

重

メロトメ 伊 トメ 君 トメ 君 トー

Example

Solve differential equation $x' = Ax$, $x(0) = x_0$ where

$$
A = \left[\begin{array}{cc} 1 & 0 \\ 0 & 2 \end{array} \right] \quad \text{i} \quad x_0 = \left[\begin{array}{c} 1 \\ 1 \end{array} \right].
$$

Example

Solve differential equation $x' = Ax$, $x(0) = x_0$ where

$$
A = \left[\begin{array}{cc} 1 & 0 \\ 0 & 2 \end{array} \right] \quad \text{i} \quad x_0 = \left[\begin{array}{c} 1 \\ 1 \end{array} \right].
$$

Solution.

$$
x' = Ax \Leftrightarrow \begin{bmatrix} x'_1 \\ x'_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}
$$

Example

Solve differential equation $x' = Ax$, $x(0) = x_0$ where

$$
A = \left[\begin{array}{cc} 1 & 0 \\ 0 & 2 \end{array} \right] \quad \text{if} \quad x_0 = \left[\begin{array}{c} 1 \\ 1 \end{array} \right].
$$

Solution.

$$
x' = Ax \Leftrightarrow \begin{bmatrix} x'_1 \\ x'_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ 2x_2 \end{bmatrix}
$$

(ロトイ部)→(理)→(理)→

Example

Solve differential equation $x' = Ax$, $x(0) = x_0$ where

$$
A = \left[\begin{array}{cc} 1 & 0 \\ 0 & 2 \end{array} \right] \quad \text{if} \quad x_0 = \left[\begin{array}{c} 1 \\ 1 \end{array} \right].
$$

Solution.

$$
x' = Ax \Leftrightarrow \begin{bmatrix} x'_1 \\ x'_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ 2x_2 \end{bmatrix}
$$

System:

$$
x'_1 = x_1
$$

$$
x'_2 = 2x_2
$$

(ロトイ部)→(理)→(理)→

Example

Solve differential equation $x' = Ax$, $x(0) = x_0$ where

$$
A = \left[\begin{array}{cc} 1 & 0 \\ 0 & 2 \end{array} \right] \quad \text{if} \quad x_0 = \left[\begin{array}{c} 1 \\ 1 \end{array} \right].
$$

Solution.

$$
x' = Ax \Leftrightarrow \begin{bmatrix} x'_1 \\ x'_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ 2x_2 \end{bmatrix}
$$

System:

$$
x'_1 = x_1
$$

$$
x'_2 = 2x_2
$$

Each equation can be solved separatelly.

イロト イ団 トイモト イモト

$$
x'_1 = x_1 \Rightarrow x_1(t) = c_1 e^t
$$

$$
x'_1 = x_1 \Rightarrow x_1(t) = c_1 e^t
$$

$$
x'_2 = x_2 \Rightarrow x_2(t) = c_2 e^{2t}
$$

メロトメ 御 メメ 君 メメ 君 メー 君一 299

$$
x'_1 = x_1 \Rightarrow x_1(t) = c_1 e^t
$$

$$
x'_2 = x_2 \Rightarrow x_2(t) = c_2 e^{2t}
$$

$$
x(t) = \left[\begin{array}{c} c_1 e^t \\ c_2 e^{2t} \end{array} \right]
$$

メロトメ 御 メメ 君 メメ 君 メー 君一 299

$$
x'_1 = x_1 \Rightarrow x_1(t) = c_1 e^t
$$

$$
x'_2 = x_2 \Rightarrow x_2(t) = c_2 e^{2t}
$$

$$
x(t) = \left[\begin{array}{c} c_1 e^t \\ c_2 e^{2t} \end{array} \right]
$$

Constants c_1 i c_2 are determined from the initial condition

$$
\left[\begin{array}{c}1\\1\end{array}\right]=x(0)=\left[\begin{array}{c}c_1\\c_2\end{array}\right]
$$

イロトメ 御 トメ 君 トメ 君 トー 君

$$
x'_1 = x_1 \Rightarrow x_1(t) = c_1 e^t
$$

$$
x'_2 = x_2 \Rightarrow x_2(t) = c_2 e^{2t}
$$

$$
x(t) = \left[\begin{array}{c} c_1 e^t \\ c_2 e^{2t} \end{array} \right]
$$

Constants c_1 i c_2 are determined from the initial condition

$$
\begin{bmatrix} 1 \\ 1 \end{bmatrix} = x(0) = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}
$$

$$
x(t) = \begin{bmatrix} e^t \\ e^{2t} \end{bmatrix}
$$

12 / 120

 299

в

イロト イ団 トイモト イモト

Let matrix A \in *M*_n(\mathbb{R}) *is similar to diagonal matrix. then a general solution of differential equation x*⁰ (*t*) = *A x is given by*

$$
x(t)=\sum_{i=1}^n c_i e^{\lambda_i t} v_i
$$

where λ*ⁱ are eigenvalues and vⁱ corresponding eigenvectors of matrix A (A* $v_i = \lambda_i v_i$ *). Constants* c_i *are determined from initial conditions.*

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1$

Let matrix $A \in M_n(\mathbb{R})$ *is similar to diagonal matrix. then a general solution of differential equation x*⁰ (*t*) = *A x is given by*

$$
x(t)=\sum_{i=1}^n c_i e^{\lambda_i t} v_i
$$

where λ*ⁱ are eigenvalues and vⁱ corresponding eigenvectors of matrix A (A* $v_i = \lambda_i v_i$ *). Constants* c_i *are determined from initial conditions.*

Note. Matrix *A* is similar to diagonal matrix if there exist regular matrix *T* and diagonal matrix *D* satisfying

$$
A = T D T^{-1}.
$$

4 (D) 3 (F) 3 (F) 3 (F) 3

Let matrix $A \in M_n(\mathbb{R})$ *is similar to diagonal matrix. then a general solution of differential equation x*⁰ (*t*) = *A x is given by*

$$
x(t)=\sum_{i=1}^n c_i e^{\lambda_i t} v_i
$$

where λ*ⁱ are eigenvalues and vⁱ corresponding eigenvectors of matrix A (A* $v_i = \lambda_i v_i$ *). Constants* c_i *are determined from initial conditions.*

Note. Matrix *A* is similar to diagonal matrix if there exist regular matrix *T* and diagonal matrix *D* satisfying

$$
A = T D T^{-1}.
$$

On the diagonal of *D* are eigenvalues of matrix *A* and columns of matrix *T* are eigenvectors:

$$
\Rightarrow \quad AT = TD \quad \Rightarrow \quad AT \, e_i = TD \, e_i
$$

 Ω 13 / 120

4 0 8 4 5 8 4 5 8 4 5 8 1

ei

Let matrix $A \in M_n(\mathbb{R})$ *is similar to diagonal matrix. then a general solution of differential equation x*⁰ (*t*) = *A x is given by*

$$
x(t)=\sum_{i=1}^n c_i e^{\lambda_i t} v_i
$$

where λ*ⁱ are eigenvalues and vⁱ corresponding eigenvectors of matrix A (A* $v_i = \lambda_i v_i$ *). Constants* c_i *are determined from initial conditions.*

Note. Matrix *A* is similar to diagonal matrix if there exist regular matrix *T* and diagonal matrix *D* satisfying

$$
A = T D T^{-1}.
$$

On the diagonal of *D* are eigenvalues of matrix *A* and columns of matrix *T* are eigenvectors:

$$
\Rightarrow AT = TD \Rightarrow AT e_i = T De_i
$$

\n
$$
\Rightarrow AT e_i = T d_{ii} e_i \Rightarrow A(T e_i) = d_{ii} (T e_i)
$$

\n- vector of canonical basis

 $A = T D T^{-1}$, $A v_i = \lambda_i v_i$, $D = \text{diag}(\lambda_1, \ldots, \lambda_n)$, $T e_i = v_i$

KID KAR KERKER E 1990

$$
A = T D T^{-1}, \quad A v_i = \lambda_i v_i, \quad D = \text{diag}(\lambda_1, \ldots, \lambda_n), \quad T e_i = v_i
$$

$$
\Rightarrow x' = Ax = TDT^{-1}x
$$

$$
A = T D T^{-1}, \quad A v_i = \lambda_i v_i, \quad D = \text{diag}(\lambda_1, \ldots, \lambda_n), \quad T e_i = v_i
$$

$$
\Rightarrow x' = Ax = T DT^{-1}x \Rightarrow T^{-1}x' = DT^{-1}x
$$

$$
A = T D T^{-1}, \quad A v_i = \lambda_i v_i, \quad D = \text{diag}(\lambda_1, \ldots, \lambda_n), \quad T e_i = v_i
$$

$$
\Rightarrow x' = Ax = T DT^{-1}x \Rightarrow T^{-1}x' = DT^{-1}x
$$

Make substitution

$$
y=T^{-1}x
$$

重

メロトメ 御 トメ 急 トメ 急 トー

$$
A = T D T^{-1}, \quad A v_i = \lambda_i v_i, \quad D = \text{diag}(\lambda_1, \ldots, \lambda_n), \quad T e_i = v_i
$$

$$
\Rightarrow x' = Ax = TDT^{-1}x \Rightarrow T^{-1}x' = DT^{-1}x
$$

Make substitution

$$
y = T^{-1}x \quad \Rightarrow \quad y' = T^{-1}x'
$$

重

メロトメ 御 トメ 急 トメ 急 トー

$$
A = T D T^{-1}, \quad A v_i = \lambda_i v_i, \quad D = \text{diag}(\lambda_1, \ldots, \lambda_n), \quad T e_i = v_i
$$

$$
\Rightarrow \quad x' = Ax = T D T^{-1} x \quad \Rightarrow \quad T^{-1} x' = D T^{-1} x
$$

Make substitution

$$
y = T^{-1}x \quad \Rightarrow \quad y' = T^{-1}x'
$$

Equation:

$$
\Rightarrow y' = Dy
$$

重

イロト 不優 トイ磨 トイ磨 トー

$$
A = T D T^{-1}, \quad A v_i = \lambda_i v_i, \quad D = \text{diag}(\lambda_1, \ldots, \lambda_n), \quad T e_i = v_i
$$

$$
\Rightarrow \quad x' = Ax = T D T^{-1} x \quad \Rightarrow \quad T^{-1} x' = D T^{-1} x
$$

Make substitution

$$
y = T^{-1}x \quad \Rightarrow \quad y' = T^{-1}x'
$$

Equation:

$$
\Rightarrow y' = Dy
$$

D is a diagonal matrix and a system is of the form:

$$
y'_i = \lambda_i y_i, \quad i = 1, \ldots, n
$$

 QQ 14 / 120

в

イロト イ団 トイモト イモト

$$
A = T D T^{-1}, \quad A v_i = \lambda_i v_i, \quad D = \text{diag}(\lambda_1, \ldots, \lambda_n), \quad T e_i = v_i
$$

$$
\Rightarrow \quad x' = Ax = T D T^{-1} x \quad \Rightarrow \quad T^{-1} x' = D T^{-1} x
$$

Make substitution

$$
y = T^{-1}x \quad \Rightarrow \quad y' = T^{-1}x'
$$

Equation:

$$
\Rightarrow y' = Dy
$$

D is a diagonal matrix and a system is of the form:

$$
y'_i = \lambda_i y_i, \quad i = 1, \ldots, n
$$

Solution

$$
y_i(t) = c_i e^{\lambda_i t}, \quad i = 1, \ldots, n
$$

$$
y(t) = \left[\begin{array}{c} y_1(t) \\ \vdots \\ y_n(t) \end{array}\right] =
$$

$$
y(t) = \begin{bmatrix} y_1(t) \\ \vdots \\ y_n(t) \end{bmatrix} = \begin{bmatrix} c_1 e^{\lambda_1 t} \\ \vdots \\ c_n e^{\lambda_n t} \end{bmatrix} =
$$

$$
y(t) = \begin{bmatrix} y_1(t) \\ \vdots \\ y_n(t) \end{bmatrix} = \begin{bmatrix} c_1 e^{\lambda_1 t} \\ \vdots \\ c_n e^{\lambda_n t} \end{bmatrix} = \sum_{i=1}^n c_i e^{\lambda_i t} e_i
$$

$$
y(t) = \begin{bmatrix} y_1(t) \\ \vdots \\ y_n(t) \end{bmatrix} = \begin{bmatrix} c_1 e^{\lambda_1 t} \\ \vdots \\ c_n e^{\lambda_n t} \end{bmatrix} = \sum_{i=1}^n c_i e^{\lambda_i t} e_i
$$

 $y(t) = T^{-1}x(t) \Rightarrow x(t) = T y(t)$

K ロ X x 何 X x モ X x モ X 2 モ X 2 9 9 0 0

$$
y(t) = \begin{bmatrix} y_1(t) \\ \vdots \\ y_n(t) \end{bmatrix} = \begin{bmatrix} c_1 e^{\lambda_1 t} \\ \vdots \\ c_n e^{\lambda_n t} \end{bmatrix} = \sum_{i=1}^n c_i e^{\lambda_i t} e_i
$$

$$
y(t) = T^{-1}x(t) \Rightarrow x(t) = Ty(t)
$$

$$
\Rightarrow \quad x(t) = T \sum_{i=1}^n c_i e^{\lambda_i t} e_i =
$$

$$
y(t) = \begin{bmatrix} y_1(t) \\ \vdots \\ y_n(t) \end{bmatrix} = \begin{bmatrix} c_1 e^{\lambda_1 t} \\ \vdots \\ c_n e^{\lambda_n t} \end{bmatrix} = \sum_{i=1}^n c_i e^{\lambda_i t} e_i
$$

$$
y(t) = T^{-1}x(t) \Rightarrow x(t) = Ty(t)
$$

$$
\Rightarrow \quad x(t) = T \sum_{i=1}^n c_i e^{\lambda_i t} \, e_i = \sum_{i=1}^n c_i e^{\lambda_i t} \, T \, e_i =
$$

メロトメ 御 トメ 差 トメ 差 トー 重し 299

15 / 120

$$
y(t) = \begin{bmatrix} y_1(t) \\ \vdots \\ y_n(t) \end{bmatrix} = \begin{bmatrix} c_1 e^{\lambda_1 t} \\ \vdots \\ c_n e^{\lambda_n t} \end{bmatrix} = \sum_{i=1}^n c_i e^{\lambda_i t} e_i
$$

$$
y(t) = T^{-1}x(t) \Rightarrow x(t) = Ty(t)
$$

$$
\Rightarrow \quad x(t) = \mathcal{T} \sum_{i=1}^{n} c_i e^{\lambda_i t} e_i = \sum_{i=1}^{n} c_i e^{\lambda_i t} \mathcal{T} e_i = \sum_{i=1}^{n} c_i e^{\lambda_i t} v_i
$$
 Q.E.D.

 299 15 / 120

重し

メロトメ 御 トメ 差 トメ 差 トー

Example

Solve differential equation $x' = Ax$, $x(0) = x_0$ where

$$
A = \left[\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right] \quad \text{i} \quad x_0 = \left[\begin{array}{c} 1 \\ 1 \end{array} \right].
$$

Example

Solve differential equation $x' = Ax$, $x(0) = x_0$ where

$$
A = \left[\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right] \quad \text{i} \quad x_0 = \left[\begin{array}{c} 1 \\ 1 \end{array} \right].
$$

Solution.

$$
x' = Ax \Leftrightarrow \begin{bmatrix} x'_1 \\ x'_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}
$$

(ロトイ部)→(差)→(差)→

Example

Solve differential equation $x' = Ax$, $x(0) = x_0$ where

$$
A = \left[\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right] \quad \text{i} \quad x_0 = \left[\begin{array}{c} 1 \\ 1 \end{array} \right].
$$

Solution.

$$
x' = Ax \Leftrightarrow \begin{bmatrix} x'_1 \\ x'_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 + x_2 \\ x_2 \end{bmatrix}
$$

(ロトイ部)→(差)→(差)→

Example

Solve differential equation $x' = Ax$, $x(0) = x_0$ where

$$
A = \left[\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right] \quad \text{i} \quad x_0 = \left[\begin{array}{c} 1 \\ 1 \end{array} \right].
$$

Solution.

$$
x' = Ax \quad \Leftrightarrow \quad \left[\begin{array}{c} x_1' \\ x_2' \end{array}\right] = \left[\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{c} x_1 + x_2 \\ x_2 \end{array}\right]
$$

System:

$$
\begin{array}{rcl}\nx_1' &=& x_1 + x_2 \\
x_2' &=& x_2\n\end{array}
$$

(ロトイ部)→(差)→(差)→

Example

Solve differential equation $x' = Ax$, $x(0) = x_0$ where

$$
A = \left[\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right] \quad \text{i} \quad x_0 = \left[\begin{array}{c} 1 \\ 1 \end{array} \right].
$$

Solution.

$$
x' = Ax \Leftrightarrow \begin{bmatrix} x'_1 \\ x'_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 + x_2 \\ x_2 \end{bmatrix}
$$

System:

$$
\begin{array}{rcl}\nx'_1 &=& x_1 + x_2 \\
x'_2 &=& x_2\n\end{array}
$$

Each equation may be solved separately (first solve second equation and after that solve first equation). $(0,1)$ $(0,1)$ $(0,1)$ $(1,1$ Ω

16 / 120

$$
x'_2 = x_2
$$
, $x_2(0) = 1$ \Rightarrow $x_2 = e^t$

$$
x_2'=x_2,\quad x_2(0)=1\quad\Rightarrow\quad x_2={\rm e}^t
$$

$$
\Rightarrow x'_1 = x_1 + x_2, x_1(0) = 1 \Rightarrow x'_1 = x_1 + e^t, x_1(0) = 1
$$

メロトメ 御 メメ 君 メメ 君 メー 君一 299

17 / 120

$$
x_2'=x_2,\quad x_2(0)=1\quad\Rightarrow\quad x_2={\rm e}^t
$$

$$
\Rightarrow \quad x'_1 = x_1 + x_2, \quad x_1(0) = 1 \quad \Rightarrow \quad x'_1 = x_1 + e^t, \quad x_1(0) = 1
$$

$$
x_2'=x_2,\quad x_2(0)=1\quad\Rightarrow\quad x_2={\rm e}^t
$$

$$
\Rightarrow \quad x'_1 = x_1 + x_2, \quad x_1(0) = 1 \quad \Rightarrow \quad x'_1 = x_1 + e^t, \quad x_1(0) = 1
$$

Mathematica:

DSolve[y'[t] == $y[t]$ + Exp[t], $y[t]$, t]

$$
x_2'=x_2,\quad x_2(0)=1\quad\Rightarrow\quad x_2={\rm e}^t
$$

$$
\Rightarrow \quad x'_1 = x_1 + x_2, \quad x_1(0) = 1 \quad \Rightarrow \quad x'_1 = x_1 + e^t, \quad x_1(0) = 1
$$

Mathematica:

DSolve[y'[t] == $y[t]$ + Exp[t], $y[t]$, t] ${y[t] \rightarrow E^{\dagger}t \ t + E^{\dagger}t \ C[1] }$

KID KAR KE KE KE YA GA

$$
x_2'=x_2,\quad x_2(0)=1\quad\Rightarrow\quad x_2={\rm e}^t
$$

$$
\Rightarrow \quad x'_1 = x_1 + x_2, \quad x_1(0) = 1 \quad \Rightarrow \quad x'_1 = x_1 + e^t, \quad x_1(0) = 1
$$

Mathematica:

DSolve[y'[t] == $y[t]$ + Exp[t], $y[t]$, t] ${y[t] \rightarrow E^{\dagger}t \ t + E^{\dagger}t \ C[1] }$

$$
x_1(t) = c_1 e^t + t e^t \Rightarrow x_1(t) = e^t + t e^t
$$

KID KAR KE KE KE YA GA

$$
x'_2 = x_2
$$
, $x_2(0) = 1$ \Rightarrow $x_2 = e^t$

$$
\Rightarrow x'_1 = x_1 + x_2, x_1(0) = 1 \Rightarrow x'_1 = x_1 + e^t, x_1(0) = 1
$$

Mathematica:

 $DSolve[y'[t] == y[t] + Exp[t], y[t], t]$ ${V}$ ${\tilde{V}}$ \to E^* t t $+$ E^* C $[1]$ ${\tilde{V}}$

$$
x_1(t) = c_1 e^t + t e^t \Rightarrow x_1(t) = e^t + t e^t
$$

Note. In the case of multiple eigenvalues,

we obtain terms $\mathrm{e}^{\lambda_i t}, t\;\mathrm{e}^{\lambda_i t}, t^2\,\mathrm{e}^{\lambda_i t}, \ldots$ in the sol[utio](#page-85-0)[n.](#page-87-0)

Stability of the linear system of differential equations

Definition

Linear system of differential equations

 $X' = AX$

where $A \in M_n(\mathbb{R})$, is said to be stable if any solution $X(t)$ satisfies

$$
\lim_{t\to\infty}X(t)=0.
$$

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1$

Stability of the linear system of differential equations

Definition

Linear system of differential equations

$$
X'=AX
$$

where $A \in M_n(\mathbb{R})$, is said to be stable if any solution $X(t)$ satisfies

 $\lim X(t)=0.$ *t*→∞

Theorem

*A linear system with constant coefficients X*⁰ = *A X is stable if and only if all eigenvalues of A have negative real parts. je*

Proof. (Only for case when *A* is similar to diagonal matrix).

Proof. (Only for case when *A* is similar to diagonal matrix).

Solution of differential equation is given by

$$
X(t)=\sum_{k=1}^n c_k e^{\lambda_k t} v_k.
$$

$$
X(t)=\sum_{k=1}^n c_k e^{\lambda_k t} v_k.
$$

Generally, $\lambda_k \in \mathbb{C}$, $\lambda_k = a_k + ib_k$, $a_k, b_k \in \mathbb{R}$.

19 / 120

$$
X(t)=\sum_{k=1}^n c_k e^{\lambda_k t} v_k.
$$

Generally, $\lambda_k \in \mathbb{C}$, $\lambda_k = a_k + ib_k$, $a_k, b_k \in \mathbb{R}$.

$$
e^{\lambda_k t} = e^{(a_k + ib_k)t} = e^{a_k t} (\cos b_k t + i \sin b_k t)
$$

メロトメ 御 トメ 差 トメ 差 トー 差

$$
X(t)=\sum_{k=1}^n c_k e^{\lambda_k t} v_k.
$$

Generally, $\lambda_k \in \mathbb{C}$, $\lambda_k = a_k + ib_k$, $a_k, b_k \in \mathbb{R}$.

$$
e^{\lambda_k t} = e^{(a_k + ib_k)t} = e^{a_k t} (\cos b_k t + i \sin b_k t)
$$

and

$$
\left| \mathrm{e}^{\lambda_k t} \right| = \mathrm{e}^{a_k t}
$$

イロトメ 伊 トメ 君 トメ 君 トー 君

$$
X(t)=\sum_{k=1}^n c_k e^{\lambda_k t} v_k.
$$

Generally, $\lambda_k \in \mathbb{C}$, $\lambda_k = a_k + ib_k$, $a_k, b_k \in \mathbb{R}$.

$$
e^{\lambda_k t} = e^{(a_k + ib_k)t} = e^{a_k t} (\cos b_k t + i \sin b_k t)
$$

and

$$
\left|e^{\lambda_k t}\right| = e^{a_k t}
$$

 $\lim e^{a_k t} = 0 \quad \Leftrightarrow \quad a_k < 0 \quad \Leftrightarrow \quad \text{Re} \lambda_k < 0$ *t*→∞

$$
X(t)=\sum_{k=1}^n c_k e^{\lambda_k t} v_k.
$$

Generally, $\lambda_k \in \mathbb{C}$, $\lambda_k = a_k + ib_k$, $a_k, b_k \in \mathbb{R}$.

$$
e^{\lambda_k t} = e^{(a_k + ib_k)t} = e^{a_k t} (\cos b_k t + i \sin b_k t)
$$

and

$$
\left| \mathrm{e}^{\lambda_k t} \right| = \mathrm{e}^{a_k t}
$$

 $\lim e^{a_k t} = 0 \quad \Leftrightarrow \quad a_k < 0 \quad \Leftrightarrow \quad \text{Re} \lambda_k < 0$ *t*→∞

$$
\lim_{t \to \infty} X(t) = 0 \quad \Leftrightarrow \quad \lim_{t \to \infty} e^{a_k t} = 0, \quad \forall k
$$

For 2×2 matrices we do not have to calculate eigenvalues explicitly.

For 2×2 matrices we do not have to calculate eigenvalues explicitly. Transform matrix *A* to Jordan form:

$$
A \rightarrow \left[\begin{array}{cc} \lambda_1 & * \\ 0 & \lambda_2 \end{array} \right]
$$

 λ_1 and λ_2 are eigenvalues of matrix $A \in M_2(\mathbb{R})$.

イロト イ押 トイラ トイラトー

For 2×2 matrices we do not have to calculate eigenvalues explicitly. Transform matrix *A* to Jordan form:

$$
A \rightarrow \begin{bmatrix} \lambda_1 & * \\ 0 & \lambda_2 \end{bmatrix}
$$

 λ_1 and λ_2 are eigenvalues of matrix $A \in M_2(\mathbb{R})$.

Determinant and trace do not depend on the choices of the basis.

 \Rightarrow Similar matrices have same trace and determinant.

For 2×2 matrices we do not have to calculate eigenvalues explicitly. Transform matrix *A* to Jordan form:

$$
A \rightarrow \begin{bmatrix} \lambda_1 & * \\ 0 & \lambda_2 \end{bmatrix}
$$

 λ_1 and λ_2 are eigenvalues of matrix $A \in M_2(\mathbb{R})$.

Determinant and trace do not depend on the choices of the basis.

 \Rightarrow Similar matrices have same trace and determinant.

$$
trA = \lambda_1 + \lambda_2, \quad \det A = \lambda_1 \lambda_2,
$$

Characteristic polynomial of matrix *A* is

$$
k_A(\lambda) = \lambda^2 - b\lambda + c, \quad b = \text{tr } A, c = \det A
$$

Characteristic polynomial of matrix *A* is

$$
k_A(\lambda) = \lambda^2 - b\lambda + c, \quad b = \text{tr } A, c = \det A
$$

$$
\lambda_1=\frac{b+\sqrt{b^2-4\,ac}}{2},\quad \lambda_2=\frac{b-\sqrt{b^2-4\,ac}}{2}
$$

в

イロト 不優 トイ磨 トイ磨 トー

Characteristic polynomial of matrix *A* is

$$
k_A(\lambda) = \lambda^2 - b\lambda + c, \quad b = \text{tr } A, c = \det A
$$

$$
\lambda_1=\frac{b+\sqrt{b^2-4\,a\,c}}{2},\quad \lambda_2=\frac{b-\sqrt{b^2-4\,a\,c}}{2}
$$

Viete's formulae ⇒

$$
\begin{array}{rcl}\n\lambda_1 + \lambda_2 & = & b = \text{tr}\,A \\
\lambda_1 \lambda_2 & = & c = \text{det}\,A\n\end{array}
$$

 \equiv

イロト イ団 トイミト イミト

Theorem

For $A \in M_2(\mathbb{R})$, system of differential equations $x' = Ax$ is stable \Leftrightarrow *tr A* < 0 *i* det*A* > 0

Theorem

For $A \in M_2(\mathbb{R})$, system of differential equations $x' = Ax$ is stable \Leftrightarrow *tr A* < 0 *i* det*A* > 0

Proof.

1. $\lambda_1, \lambda_2 \in \mathbb{R}$.

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ Ω

Theorem

For $A \in M_2(\mathbb{R})$, system of differential equations $x' = Ax$ is stable \Leftrightarrow *tr A* < 0 *i* det*A* > 0

Proof.

1. $\lambda_1, \lambda_2 \in \mathbb{R}$.

$$
\lambda_1<0, \lambda_2<0 \quad \Rightarrow \quad \lambda_1+\lambda_2<0 \quad \text{i} \quad \lambda_1\,\lambda_2>0
$$
For $A \in M_2(\mathbb{R})$, system of differential equations $x' = Ax$ is stable \Leftrightarrow *tr A* < 0 *i* det*A* > 0

Proof.

1. $\lambda_1, \lambda_2 \in \mathbb{R}$. $\lambda_1 < 0, \lambda_2 < 0 \Rightarrow \lambda_1 + \lambda_2 < 0$ i $\lambda_1 \lambda_2 > 0$ ⇐. Let $\lambda_1 + \lambda_2 < 0$ i $\lambda_1 \lambda_2 > 0$.

For $A \in M_2(\mathbb{R})$, system of differential equations $x' = Ax$ is stable \Leftrightarrow *tr A* < 0 *i* det*A* > 0

Proof.

1. $\lambda_1, \lambda_2 \in \mathbb{R}$. $\lambda_1 < 0, \lambda_2 < 0 \Rightarrow \lambda_1 + \lambda_2 < 0$ i $\lambda_1 \lambda_2 > 0$ ⇐. Let $\lambda_1 + \lambda_2 < 0$ i $\lambda_1 \lambda_2 > 0$.

Since $\lambda_1 \lambda_2 > 0 \Rightarrow \lambda_1$ and λ_2 are of the same sign.

 $(0.123 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m} \times 10^{-14} \text{ m}$

For $A \in M_2(\mathbb{R})$, system of differential equations $x' = Ax$ is stable \Leftrightarrow *tr A* < 0 *i* det*A* > 0

Proof.

1. $\lambda_1, \lambda_2 \in \mathbb{R}$. $\lambda_1 < 0, \lambda_2 < 0 \Rightarrow \lambda_1 + \lambda_2 < 0$ i $\lambda_1 \lambda_2 > 0$ ⇐. Let $\lambda_1 + \lambda_2 < 0$ i $\lambda_1 \lambda_2 > 0$. Since $\lambda_1 \lambda_2 > 0 \Rightarrow \lambda_1$ and λ_2 are of the same sign. Since $\lambda_1 + \lambda_2 < 0 \Rightarrow \lambda_1 < 0$ i $\lambda_2 < 0$.

KEL KALLARIN (RINGEL AGA)

For $A \in M_2(\mathbb{R})$, system of differential equations $x' = Ax$ is stable \Leftrightarrow *tr A* < 0 *i* det*A* > 0

Proof.

1. $\lambda_1, \lambda_2 \in \mathbb{R}$. $\lambda_1 < 0, \lambda_2 < 0 \Rightarrow \lambda_1 + \lambda_2 < 0$ i $\lambda_1 \lambda_2 > 0$ ⇐. Let $\lambda_1 + \lambda_2 < 0$ i $\lambda_1 \lambda_2 > 0$. Since $\lambda_1 \lambda_2 > 0 \Rightarrow \lambda_1$ and λ_2 are of the same sign. Since $\lambda_1 + \lambda_2 < 0 \Rightarrow \lambda_1 < 0$ i $\lambda_2 < 0$. **2.** $\lambda_1, \lambda_2 \in \mathbb{C} \backslash \mathbb{R}$.

K ロ X x @ X x 할 X x 할 X → 할 X → 9 Q Q →

For $A \in M_2(\mathbb{R})$, system of differential equations $x' = Ax$ is stable \Leftrightarrow *tr A* < 0 *i* det*A* > 0

Proof.

1. $\lambda_1, \lambda_2 \in \mathbb{R}$. $\lambda_1 < 0, \lambda_2 < 0 \Rightarrow \lambda_1 + \lambda_2 < 0$ i $\lambda_1 \lambda_2 > 0$ ⇐. Let $\lambda_1 + \lambda_2 < 0$ i $\lambda_1 \lambda_2 > 0$. Since $\lambda_1 \lambda_2 > 0 \Rightarrow \lambda_1$ and λ_2 are of the same sign. Since $\lambda_1 + \lambda_2 < 0 \Rightarrow \lambda_1 < 0$ i $\lambda_2 < 0$. **2.** $\lambda_1, \lambda_2 \in \mathbb{C} \setminus \mathbb{R}$. $\Rightarrow \lambda_1 = a + i \, c, \lambda_2 = a - i \, c$

KEIN KALLA BIN KEIN DE VOOR

For A \in *M*₂(\mathbb{R})*, system of differential equations* $x' = Ax$ *is stable* \Leftrightarrow *tr A* < 0 *i* det*A* > 0

Proof.

1. $\lambda_1, \lambda_2 \in \mathbb{R}$. $\lambda_1 < 0, \lambda_2 < 0 \Rightarrow \lambda_1 + \lambda_2 < 0$ i $\lambda_1 \lambda_2 > 0$ ⇐. Let $\lambda_1 + \lambda_2 < 0$ i $\lambda_1 \lambda_2 > 0$. Since $\lambda_1 \lambda_2 > 0 \Rightarrow \lambda_1$ and λ_2 are of the same sign. Since $\lambda_1 + \lambda_2 < 0 \Rightarrow \lambda_1 < 0$ i $\lambda_2 < 0$. **2.** $\lambda_1, \lambda_2 \in \mathbb{C} \backslash \mathbb{R}$. $\Rightarrow \lambda_1 = a + i \mathbf{c}, \lambda_2 = a - i \mathbf{c} \Rightarrow$ $\lambda_1 \lambda_2 = a^2 + b^2 > 0$ $\lambda_1 + \lambda_2 = 2a = 2Re\lambda_i$

KEIN KALLA BIN KEIN DE VOOR

For A \in *M*₂(\mathbb{R}), system of differential equations $x' = Ax$ is stable \Leftrightarrow *tr A* < 0 *i* det*A* > 0

Proof.

1. $\lambda_1, \lambda_2 \in \mathbb{R}$. $\lambda_1 < 0, \lambda_2 < 0 \Rightarrow \lambda_1 + \lambda_2 < 0$ i $\lambda_1 \lambda_2 > 0$ ⇐. Let $\lambda_1 + \lambda_2 < 0$ i $\lambda_1 \lambda_2 > 0$. Since $\lambda_1 \lambda_2 > 0 \Rightarrow \lambda_1$ and λ_2 are of the same sign. Since $\lambda_1 + \lambda_2 < 0 \Rightarrow \lambda_1 < 0$ i $\lambda_2 < 0$. **2.** $\lambda_1, \lambda_2 \in \mathbb{C} \backslash \mathbb{R}$. $\Rightarrow \lambda_1 = a + i \mathbf{c}, \lambda_2 = a - i \mathbf{c} \Rightarrow$ $\lambda_1 \lambda_2 = a^2 + b^2 > 0$ $\lambda_1 + \lambda_2 = 2a = 2Re\lambda_i$

> Ω $\lambda_1 + \lambda_2 < 0 \Leftrightarrow$ [R](#page-115-0)e $\lambda_1 < 0$ $\lambda_1 < 0$ $\lambda_1 < 0$ $\lambda_1 < 0$ and Re $\lambda_2 < 0$ 22 / 120

Consider differential equation

$$
X(t)'=F(X(t)),\quad X:\mathbb{R}\to\mathbb{R}^2
$$

イロト イ団 トイモト イモト 活 299

Consider differential equation

$$
X(t)'=F(X(t)),\quad X:\mathbb{R}\to\mathbb{R}^2
$$

Phase portrait - representative set of solutions, plotted as parametric curve (*t* is parameter) on Cartesian plane.

4 (D) 3 (F) 3 (F) 3 (F) 3

Consider differential equation

$$
X(t)'=F(X(t)),\quad X:\mathbb{R}\to\mathbb{R}^2
$$

Phase portrait - representative set of solutions, plotted as parametric curve (*t* is parameter) on Cartesian plane.

For given initial condition $X_0 = [x_1^0, x_2^0]^T$ we obtain one curve (trajectory)

Consider differential equation

$$
X(t)'=F(X(t)),\quad X:\mathbb{R}\to\mathbb{R}^2
$$

Phase portrait - representative set of solutions, plotted as parametric curve (*t* is parameter) on Cartesian plane.

For given initial condition $X_0 = [x_1^0, x_2^0]^T$ we obtain one curve (trajectory)

Phase portrait is obtained by displaying trajectories for several initial conditions.

 $(0.123 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m} \times 10^{-14} \text{ m}$

Consider differential equation

$$
X(t)'=F(X(t)),\quad X:\mathbb{R}\to\mathbb{R}^2
$$

Phase portrait - representative set of solutions, plotted as parametric curve (*t* is parameter) on Cartesian plane.

For given initial condition $X_0 = [x_1^0, x_2^0]^T$ we obtain one curve (trajectory)

Phase portrait is obtained by displaying trajectories for several initial conditions.

Cartesian plane containing phase portrait is sometimes named phase plane.

KORANDA KENTEL EL VIGO

Sketch phase portrait of differential equation

$$
x'=\left[\begin{array}{cc} -1 & 0 \\ 0 & -2 \end{array}\right]x
$$

イロト イ団 トイモト イモト Þ 299

Sketch phase portrait of differential equation

$$
x'=\left[\begin{array}{cc} -1 & 0 \\ 0 & -2 \end{array}\right]x
$$

Solution. Eigenvalues: $\lambda_1 = -1, \lambda_2 = -2$ Eigenvectors:

$$
v_1 = \left[\begin{array}{c} 1 \\ 0 \end{array} \right], \quad v_2 = \left[\begin{array}{c} 0 \\ 1 \end{array} \right]
$$

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ .

Sketch phase portrait of differential equation

$$
x'=\left[\begin{array}{cc} -1 & 0 \\ 0 & -2 \end{array}\right]x
$$

Solution. Eigenvalues:
$$
\lambda_1 = -1, \lambda_2 = -2
$$

Eigenvectors:

$$
v_1 = \left[\begin{array}{c} 1 \\ 0 \end{array} \right], \quad v_2 = \left[\begin{array}{c} 0 \\ 1 \end{array} \right]
$$

Solution:

$$
x(t) = c_1 e^{-t} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + c_2 e^{-2t} \begin{bmatrix} 0 \\ 1 \end{bmatrix} =
$$

 QQ 24 / 120

∍

(ロトイ部)→(差)→(差)→

Sketch phase portrait of differential equation

$$
x'=\left[\begin{array}{cc} -1 & 0 \\ 0 & -2 \end{array}\right]x
$$

Solution. Eigenvalues:
$$
\lambda_1 = -1, \lambda_2 = -2
$$

Eigenvectors:

$$
v_1 = \left[\begin{array}{c} 1 \\ 0 \end{array} \right], \quad v_2 = \left[\begin{array}{c} 0 \\ 1 \end{array} \right]
$$

Solution:

$$
x(t) = c_1 e^{-t} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + c_2 e^{-2t} \begin{bmatrix} 0 \\ 1 \end{bmatrix} =
$$

We have to plot several solutions (with different initial conditions).

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1$

$$
x(t)=c_k\,\mathrm{e}^{\lambda_k t}\,v_k,\quad k=1,2
$$

are solutions.

$$
x(t) = c_k e^{\lambda_k t} v_k, \quad k = 1, 2
$$

25 / 120

 299

活

イロト 不優 トイ磨 トイ磨 トー

are solutions.

 \Rightarrow Lines defined by eigenvectors are trajectories.

$$
x(t) = c_k e^{\lambda_k t} v_k, \quad k = 1, 2
$$

are solutions.

 \Rightarrow Lines defined by eigenvectors are trajectories.

Choose some initial condition, for example, $x(0) = [1, 1]^T$.

$$
x(t) = c_k e^{\lambda_k t} v_k, \quad k = 1, 2
$$

are solutions.

 \Rightarrow Lines defined by eigenvectors are trajectories.

Choose some initial condition, for example, $x(0) = [1, 1]^T$.

$$
\Rightarrow \quad x(t) = \left[\begin{array}{c} e^{-t} \\ e^{-2t} \end{array} \right]
$$

в

K ロ ▶ K 個 ▶ K 重 ▶ K 重 ▶ …

$$
x(t) = c_k e^{\lambda_k t} v_k, \quad k = 1, 2
$$

are solutions.

 \Rightarrow Lines defined by eigenvectors are trajectories.

Choose some initial condition, for example, $x(0) = [1, 1]^T$.

$$
\Rightarrow \quad x(t) = \left[\begin{array}{c} e^{-t} \\ e^{-2t} \end{array} \right]
$$

How parametric defined curve $\{({\rm e}^{-t},{\rm e}^{-2t})\mid t\in\mathbb{R}\}$ looks like?

 $A \cap (A \cup A \cup B) \cup (A \cup B) \cup (A \cup B) \cup (B \cup B)$

$$
x(t) = c_k e^{\lambda_k t} v_k, \quad k = 1, 2
$$

are solutions.

 \Rightarrow Lines defined by eigenvectors are trajectories.

Choose some initial condition, for example, $x(0) = [1, 1]^T$.

$$
\Rightarrow \quad x(t) = \left[\begin{array}{c} e^{-t} \\ e^{-2t} \end{array} \right]
$$

How parametric defined curve $\{({\rm e}^{-t},{\rm e}^{-2t})\mid t\in\mathbb{R}\}$ looks like?

$$
e^{-2t} = \left(e^{-t}\right)^2
$$

 $A \cap (A \cup A \cup B) \cup (A \cup B) \cup (A \cup B) \cup (B \cup B)$

$$
x(t) = c_k e^{\lambda_k t} v_k, \quad k = 1, 2
$$

are solutions.

 \Rightarrow Lines defined by eigenvectors are trajectories.

Choose some initial condition, for example, $x(0) = [1, 1]^T$.

$$
\Rightarrow \quad x(t) = \left[\begin{array}{c} e^{-t} \\ e^{-2t} \end{array} \right]
$$

How parametric defined curve $\{({\rm e}^{-t},{\rm e}^{-2t})\mid t\in\mathbb{R}\}$ looks like?

$$
e^{-2t} = (e^{-t})^2 \Rightarrow x_2 = x_1^2
$$

$$
x(t) = c_k e^{\lambda_k t} v_k, \quad k = 1, 2
$$

are solutions.

 \Rightarrow Lines defined by eigenvectors are trajectories.

Choose some initial condition, for example, $x(0) = [1, 1]^T$.

$$
\Rightarrow \quad x(t) = \left[\begin{array}{c} e^{-t} \\ e^{-2t} \end{array} \right]
$$

How parametric defined curve $\{({\rm e}^{-t},{\rm e}^{-2t})\mid t\in\mathbb{R}\}$ looks like?

$$
e^{-2t} = (e^{-t})^2 \Rightarrow x_2 = x_1^2 \rightarrow
$$
 parabola

$$
x(t) = c_k e^{\lambda_k t} v_k, \quad k = 1, 2
$$

are solutions.

Lines defined by eigenvectors are trajectories.

Choose some initial condition, for example, $x(0) = [1, 1]^T$.

$$
\Rightarrow \quad x(t) = \left[\begin{array}{c} e^{-t} \\ e^{-2t} \end{array} \right]
$$

How parametric defined curve $\{({\rm e}^{-t},{\rm e}^{-2t})\mid t\in\mathbb{R}\}$ looks like?

 $e^{-2t} = (e^{-t})^2$ \Rightarrow $x_2 = x_1^2$ \rightarrow parabola In general, $x(0) = [1, \alpha]^T$, $\alpha \in \mathbb{R}$

$$
\Rightarrow \quad x(t) = \left[\begin{array}{c} e^{-t} \\ \alpha e^{-2t} \end{array} \right]
$$

KOLKAR KELKEL E VAN

$$
x(t) = c_k e^{\lambda_k t} v_k, \quad k = 1, 2
$$

are solutions.

 \Rightarrow Lines defined by eigenvectors are trajectories.

Choose some initial condition, for example, $x(0) = [1, 1]^T$.

$$
\Rightarrow \quad x(t) = \left[\begin{array}{c} e^{-t} \\ e^{-2t} \end{array} \right]
$$

How parametric defined curve $\{({\rm e}^{-t},{\rm e}^{-2t})\mid t\in\mathbb{R}\}$ looks like?

 $e^{-2t} = (e^{-t})^2$ \Rightarrow $x_2 = x_1^2$ \rightarrow parabola In general, $x(0) = [1, \alpha]^T$, $\alpha \in \mathbb{R}$

$$
\Rightarrow \quad x(t) = \left[\begin{array}{c} e^{-t} \\ \alpha e^{-2t} \end{array} \right] \quad \rightarrow \quad x_2 = \alpha \, x_1^2
$$

KOLKAR KELKEL E VAN

25 / 120

Trajectory for $x_0 = [1, 1]^T$:

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$ 重 299 In what direction solution goes?

In what direction solution goes?

Direction in \bar{x} is $A\bar{x}$.

In what direction solution goes?

Direction in \bar{x} is $A\bar{x}$.

Direction in [1, 1] is

$$
\left[\begin{array}{cc} -1 & 0 \\ 0 & -2 \end{array}\right] \left[\begin{array}{c} 1 \\ 1 \end{array}\right] = \left[\begin{array}{c} -1 \\ -2 \end{array}\right]
$$

Trajectory for $x_0 = [1, 1]^T$:

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$ 重 299

Immediately, we have another trajectory

イロト イ部 トイ君 トイ君 ト 重 299

and another two

メロメメ部メメ君メメ君メー 重 299

30 / 120

Phase portrait:

Phase portrait for

$$
A = \left[\begin{array}{cc} -1 & 0 \\ 0 & -5 \end{array} \right]
$$
?

メロトメ 御 トメ ミトメ ミト ■ 1 299 Phase portrait for

$$
A=\left[\begin{array}{cc} -1 & 0 \\ 0 & -5 \end{array}\right]
$$
?

We obtain solution of differential equation $x' = Ax$ as before:

$$
x(t) = \left[\begin{array}{c} c_1 e^{-t} \\ c_2 e^{-5t} \end{array} \right]
$$

в

イロト イ団 トイモト イモト
$$
A=\left[\begin{array}{cc} -1 & 0 \\ 0 & -5 \end{array}\right]
$$
?

We obtain solution of differential equation $x' = Ax$ as before:

$$
x(t) = \left[\begin{array}{c} c_1 e^{-t} \\ c_2 e^{-5t} \end{array} \right]
$$

For initial condition $x_0 = \left[1, 1\right]^T$ we have

$$
x(t) = \left[\begin{array}{c} e^{-t} \\ e^{-5t} \end{array} \right].
$$

Trajectory is graph of function:

$$
x_2=x_1^5.
$$

4 ロ ト 4 何 ト 4 ラ ト 4 ラ ト

Phase portrait for
$$
x' = \begin{bmatrix} -1 & 0 \\ 0 & -5 \end{bmatrix} x
$$

メロメメ部メメ君メメ君メー 299 重

$$
A = \left[\begin{array}{cc} -2 & 0 \\ 0 & -1 \end{array} \right]
$$
?

メロトメ 御 トメ ミトメ ミト ■ 1 299

$$
A=\left[\begin{array}{cc}-2 & 0\\0 & -1\end{array}\right]
$$
?

Solution of differential equation $x' = A x$ is:

$$
x(t) = \left[\begin{array}{c} c_1 e^{-2t} \\ c_2 e^{-t} \end{array} \right]
$$

$$
A=\left[\begin{array}{cc}-2 & 0\\0 & -1\end{array}\right]
$$
?

Solution of differential equation $x' = A x$ is:

$$
x(t) = \left[\begin{array}{c} c_1 e^{-2t} \\ c_2 e^{-t} \end{array} \right]
$$

For initial condition $x_0 = [1, 1]^T$ we have

$$
x(t) = \left[\begin{array}{c} e^{-2t} \\ e^{-t} \end{array} \right]
$$

.

Trajectory is graph of function:

$$
x_2^2=x_1.
$$

i.e.

$$
x_2=\sqrt{x_1}.
$$

34 / 120

Phase portrait for
$$
x' = \begin{bmatrix} -2 & 0 \\ 0 & -1 \end{bmatrix} x
$$

K ロ X K 伊 X K ミ X K ミ X ミ → D Q Q Q

35 / 120

Parabola directed toward axis that corresponds to largest eigenvalue.

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1$

$$
A = \left[\begin{array}{cc} 1 & 0 \\ 0 & 2 \end{array} \right]
$$
?

メロトメ 御 トメ ミトメ ミト 重し 299

$$
A = \left[\begin{array}{cc} 1 & 0 \\ 0 & 2 \end{array} \right]
$$
?

Solution of differential equation $x' = A x$ is::

$$
x(t) = \left[\begin{array}{c} c_1 e^t \\ c_2 e^{2t} \end{array} \right]
$$

$$
A = \left[\begin{array}{cc} 1 & 0 \\ 0 & 2 \end{array} \right]
$$
?

Solution of differential equation $x' = A x$ is::

$$
x(t) = \left[\begin{array}{c} c_1 e^t \\ c_2 e^{2t} \end{array} \right]
$$

For initial condition $x_0 = [1, 1]^T$ we have

$$
x(t)=\left[\begin{array}{c}e^t\\e^{2t}\end{array}\right].
$$

Trajectory is graph of function:

$$
x_2=x_1^2.
$$

 \equiv

 $A \cup B \cup A \cup B \cup A \cup B \cup A \cup B \cup A$

Phase portrait for
$$
x' = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} x
$$

メロトメ 御 トメ ミトメ ミト 299 重

38 / 120

イロトメ 御 トメ 君 トメ 君 トッ Þ 299 If eigenvalues are equal:

$$
A = \left[\begin{array}{cc} \lambda & 0 \\ 0 & \lambda \end{array} \right]
$$
?

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ... 重 299 If eigenvalues are equal:

$$
A = \left[\begin{array}{cc} \lambda & 0 \\ 0 & \lambda \end{array} \right]
$$
?

Solution of differential equation $x' = A x$ is:

$$
x(t) = \left[\begin{array}{c} c_1 e^{\lambda t} \\ c_2 e^{\lambda t} \end{array} \right]
$$

E

イロト 不優 トイ磨 トイ磨 トー

If eigenvalues are equal:

$$
A = \left[\begin{array}{cc} \lambda & 0 \\ 0 & \lambda \end{array} \right]
$$
?

Solution of differential equation $x' = A x$ is:

$$
x(t) = \left[\begin{array}{c} c_1 e^{\lambda t} \\ c_2 e^{\lambda t} \end{array} \right]
$$

For initial condition $x_0 = \left[1, 1\right]^T$ we have

$$
x(t) = \left[\begin{array}{c} e^{\lambda t} \\ e^{\lambda t} \end{array}\right].
$$

Trajectory is graph of function:

$$
x_2=x_1.
$$

 Ω 40 / 120

 $\mathbf{A} \cap \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A}$

Phase portrait for
$$
x' = \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} x, \quad \lambda < 0
$$

メロトメ 御 メメ 君 メメ 君 メー 君一 299

41 / 120

We consider case when

$$
A=\left[\begin{array}{cc}-1 & 1\\0 & -1\end{array}\right].
$$

イロト 不優 トイ磨 トイ磨 トー в QQ

We consider case when

$$
A=\left[\begin{array}{cc}-1 & 1\\0 & -1\end{array}\right].
$$

Solution of differential equation $x' = A x$ is:

$$
x(t) = \left[\begin{array}{c} c_1 e^{-t} + c_2 t e^{-t} \\ c_2 e^{-t} \end{array} \right]
$$

イロトメ 御 トメ 君 トメ 君 トー

We consider case when

$$
A=\left[\begin{array}{cc}-1&1\\0&-1\end{array}\right].
$$

Solution of differential equation $x' = A x$ is:

$$
x(t) = \left[\begin{array}{c} c_1 e^{-t} + c_2 t e^{-t} \\ c_2 e^{-t} \end{array} \right]
$$

From

$$
x_2(t)=c_2\,\mathrm{e}^{-t}
$$

it follows that

$$
x_1(t) = c_1 e^{-t} + c_2 t e^{-t} = \frac{c_1}{c_2} x_2(t) - x_2(t) \ln \frac{x_2(t)}{c_2}.
$$

KID KARA KE KA E KILE

We consider case when

$$
A=\left[\begin{array}{cc}-1 & 1\\0 & -1\end{array}\right].
$$

Solution of differential equation $x' = A x$ is:

$$
x(t) = \left[\begin{array}{c} c_1 e^{-t} + c_2 t e^{-t} \\ c_2 e^{-t} \end{array} \right]
$$

From

$$
x_2(t)=c_2\,\mathrm{e}^{-t}
$$

it follows that

$$
x_1(t) = c_1 e^{-t} + c_2 t e^{-t} = \frac{c_1}{c_2} x_2(t) - x_2(t) \ln \frac{x_2(t)}{c_2}.
$$

For $x_2(t) > 0$:

$$
x_1 = \left(\frac{c_1}{c_2} - \ln c_2\right) x_2 - x_2 \ln x_2 = c x_2 - x_2 \ln x_2.
$$

Trajectory for $x_2 > 0$ and example of another trajectory for $x_2 < 0$:

メロトメ 倒 トメ ヨ トメ ヨト

メロトメ 御 トメ 君 トメ 君 トッ 299 44 / 120

We consider case when

$$
A = \left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right].
$$

We consider case when

$$
A = \left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right].
$$

Solution of differential equation $x' = A x$ is:

$$
x(t) = \left[\begin{array}{c} c_1 e^t \\ c_2 e^{-t} \end{array} \right]
$$

(ロ) (個) (悪) (悪)

We consider case when

$$
A = \left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right].
$$

Solution of differential equation $x' = A x$ is:

$$
x(t) = \left[\begin{array}{c} c_1 e^t \\ c_2 e^{-t} \end{array} \right]
$$

Trajectory:

$$
x_1x_2=c_1c_2=c
$$

4 0 8 4 4 9 8 4 9 8 4 9 8

We consider case when

$$
A = \left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right].
$$

Solution of differential equation $x' = A x$ is:

$$
x(t) = \left[\begin{array}{c} c_1 e^t \\ c_2 e^{-t} \end{array} \right]
$$

Trajectory:

$$
x_1x_2=c_1c_2=c\\
$$

- hyperbola

 Ω 45 / 120

4 0 8 4 4 9 8 4 9 8 4 9 8

In general, for

$$
A = \left[\begin{array}{cc} \lambda_1 & 0 \\ 0 & -\lambda_2 \end{array} \right],
$$

 $\lambda_1, \lambda_2 > 0$, solution of differential equation $x' = Ax$ is:

$$
x(t) = \left[\begin{array}{c} c_1 e^{\lambda_1} \\ c_2 e^{-\lambda_2} \end{array} \right]
$$

 \equiv

イロト イ団 トイミト イミト

In general, for

$$
A = \left[\begin{array}{cc} \lambda_1 & 0 \\ 0 & -\lambda_2 \end{array} \right],
$$

 $\lambda_1, \lambda_2 > 0$, solution of differential equation $x' = Ax$ is:

$$
x(t) = \left[\begin{array}{c} c_1 e^{\lambda_1} \\ c_2 e^{-\lambda_2} \end{array} \right]
$$

Trajectory:

$$
x_1^{\lambda_2} x_2^{\lambda_1} = c_1 c_2 = c
$$

$$
x_1 = \alpha x_2^{-\lambda_1/\lambda_2}
$$

 \equiv

イロト イ団 トイミト イミト

イロト 不優 トイ磨 トイ磨 トー E 299 47 / 120

Phase porteait for $x' = Ax$,

$$
A=\left[\begin{array}{rr}-2 & 1\\ \frac{1}{4} & -1\end{array}\right]
$$
?

イロト イ団 トイヨト イヨト 活 299

Phase porteait for $x' = Ax$,

$$
A=\left[\begin{array}{rr}-2&1\\ \frac{1}{4}&-1\end{array}\right]
$$
?

Eigenvalues and eigenvectors:

Phase porteait for $x' = Ax$,

$$
A=\left[\begin{array}{rr}-2&1\\ \frac{1}{4}&-1\end{array}\right]
$$
?

Eigenvalues and eigenvectors:

Mathematica:

```
a = \{(-2, 1), (1/4, -1)\}\;;Eigenvalues[a]
```
イロトメ 御 トメ 君 トメ 君 トー 君

Phase porteait for $x' = Ax$,

$$
A=\left[\begin{array}{cc}-2 & 1\\ \frac{1}{4} & -1\end{array}\right]
$$
?

Eigenvalues and eigenvectors:

Mathematica:

```
a = \{(-2, 1), (1/4, -1)\}\;;Eigenvalues[a]
```

```
{1/2(-3-Sqrt[2]),1/2(-3+Sqrt[2])}
```
KON KAN KEN KEN EL KORA

Phase porteait for $x' = Ax$,

$$
A=\left[\begin{array}{rr}-2&1\\ \frac{1}{4}&-1\end{array}\right]
$$
?

Eigenvalues and eigenvectors:

Mathematica:

```
a = \{(-2, 1), (1/4, -1)\}\;;Eigenvalues[a]
```

```
{1/2(-3-Sqrt[2]),1/2(-3+Sqrt[2])}
```

```
Simplify[Eigenvectors[a]]
```
 $A \cup B \rightarrow A \cup B$

Phase porteait for $x' = Ax$,

$$
A=\left[\begin{array}{rr}-2&1\\ \frac{1}{4}&-1\end{array}\right]
$$
?

Eigenvalues and eigenvectors:

Mathematica:

```
a = \{(-2, 1), (1/4, -1)\};Eigenvalues[a]
```

```
{1/2(-3-Sqrt[2]),1/2(-3+Sqrt[2])}
```
Simplify[Eigenvectors[a]]

```
{(-2 (1+Sqrt[2]),1}, {2(-1+Sqrt[2]),1)}
```
KEIN KALLA BIN KEIN DE KORO
What if matrix is not diagonal?

Phase porteait for $x' = Ax$,

$$
A=\left[\begin{array}{rr}-2&1\\ \frac{1}{4}&-1\end{array}\right]
$$
?

Eigenvalues and eigenvectors:

Mathematica:

```
a = \{(-2, 1), (1/4, -1)\};Eigenvalues[a]
```

```
{1/2(-3-Sqrt[2]),1/2(-3+Sqrt[2])}
```
Simplify[Eigenvectors[a]]

```
{(-2 (1+Sqrt[2]),1}, {2(-1+Sqrt[2]),1)}
```
t = Transpose[Simplify[Eigenvectors[a]]]

KET KALLA SI YE KE YA GA

What if matrix is not diagonal?

Phase porteait for $x' = Ax$,

$$
A=\left[\begin{array}{rr}-2&1\\ \frac{1}{4}&-1\end{array}\right]
$$
?

Eigenvalues and eigenvectors:

Mathematica:

```
a = \{(-2, 1), (1/4, -1)\}\;Eigenvalues[a]
```

```
{1/2(-3-Sqrt[2]),1/2(-3+Sqrt[2])}
```
Simplify[Eigenvectors[a]]

 ${(-2 (1+Sqrt[2]),1}, {2(-1+Sqrt[2]),1)}$

t = Transpose[Simplify[Eigenvectors[a]]]

 ${+2(1+Sort[2])}$ ${+2(1+Sort[2])}$, ${2(-1+Sort[2])}$, ${1,1}$ ${1,1}$, ${1,1}$, ${1,1}$

Eigenvalues:

$$
\lambda_1=\frac{-3-\sqrt{2}}{2},\quad \lambda_2=\frac{-3+\sqrt{2}}{2},
$$

and eigenvectors:

$$
v_1=\left[\begin{array}{c}-2(1+\sqrt{2})\\1\end{array}\right]\quad v_2=\left[\begin{array}{c}2(-1+\sqrt{2})\\1\end{array}\right]
$$

Transformation matrix:

$$
T=\left[\begin{array}{cc}-2(1+\sqrt{2}) & 2(-1+\sqrt{2})\\1 & 1\end{array}\right]
$$

重

イロト イ団 トイモト イモト

Eigenvalues:

$$
\lambda_1=\frac{-3-\sqrt{2}}{2},\quad \lambda_2=\frac{-3+\sqrt{2}}{2},
$$

and eigenvectors:

$$
v_1=\left[\begin{array}{c}-2(1+\sqrt{2})\\1\end{array}\right]\quad v_2=\left[\begin{array}{c}2(-1+\sqrt{2})\\1\end{array}\right]
$$

Transformation matrix:

$$
T=\left[\begin{array}{cc}-2(1+\sqrt{2}) & 2(-1+\sqrt{2})\\1 & 1\end{array}\right]
$$

Substitution:

$$
T^{-1}AT = D = \left[\begin{array}{cc} \lambda_1 & 0 \\ 0 & \lambda_2 \end{array} \right], \quad y = T^{-1}x
$$

 299 49 / 120

重

イロト 不優 トイ磨 トイ磨 トー

Eigenvalues:

$$
\lambda_1 = \frac{-3 - \sqrt{2}}{2}, \quad \lambda_2 = \frac{-3 + \sqrt{2}}{2},
$$

and eigenvectors:

$$
v_1=\left[\begin{array}{c}-2(1+\sqrt{2})\\1\end{array}\right]\quad v_2=\left[\begin{array}{c}2(-1+\sqrt{2})\\1\end{array}\right]
$$

Transformation matrix:

$$
T=\left[\begin{array}{cc}-2(1+\sqrt{2}) & 2(-1+\sqrt{2})\\1 & 1\end{array}\right]
$$

Substitution:

$$
\mathcal{T}^{-1}A\,\mathcal{T}=D=\left[\begin{array}{cc} \lambda_1 & 0 \\ 0 & \lambda_2 \end{array}\right],\quad y=\mathcal{T}^{-1}x
$$

We consider differential equation $y' = D y$.

÷.

イロト イ団 トイミト イミト

Trajectory for $y' = D y$:

メロトメ 伊 トメ ミトメ ミト 重 299

50 / 120

Trajectory for $x' = Ax$, $x = Tx$:

Phase portrait for
$$
x' = \begin{bmatrix} -2 & 1 \\ \frac{1}{4} & -1 \end{bmatrix} x
$$
:

K ロ X x 何 X x モ X x モ X 2 モ X 2 9 9 0 0

52 / 120

Phase portrait for
$$
x' = \begin{bmatrix} -2 & 1 \\ \frac{1}{4} & 1 \end{bmatrix} x
$$
:

K ロ X K 伊 X K ミ X K ミ X ミ → D Q Q Q

Equation:

$$
x' = \left[\begin{array}{cc} 0 & 0 \\ 0 & \lambda \end{array}\right] x
$$

メロトメ 御 トメ 君 トメ 君 トリ 君 299

Equation:

$$
x' = \left[\begin{array}{cc} 0 & 0 \\ 0 & \lambda \end{array}\right] x
$$

System:

$$
x'_1 = 0
$$

$$
x'_2 = \lambda x_2
$$

 299

■

メロトメ 御 トメ 君 トメ 君 トー

Equation:

$$
x' = \left[\begin{array}{cc} 0 & 0 \\ 0 & \lambda \end{array}\right] x
$$

System:

$$
x'_1 = 0
$$

$$
x'_2 = \lambda x_2
$$

$$
x_1(t) = c_1
$$

$$
x_2(t) = c_2 e^{\lambda t}
$$

54 / 120

 299

メロトメ 御きメ 電子メモン 一番

Equation:

$$
x' = \left[\begin{array}{cc} 0 & 0 \\ 0 & \lambda \end{array}\right] x
$$

System:

$$
x'_1 = 0
$$

$$
x'_2 = \lambda x_2
$$

$$
x_1(t) = c_1
$$

$$
x_2(t) = c_2 e^{\lambda t}
$$

Equilibrium: $x_2 = 0$ \Rightarrow $x^* = (c, 0), c \in \mathbb{R}$

54 / 120

 299

イロトメ 伊 トメ 君 トメ 君 トー 君

Phase portrait for
$$
x' = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} x
$$
:

イロト イ部 トイモト イモト 重 299

55 / 120

For $x' = \begin{bmatrix} 0 & 0 \ 0 & 0 \end{bmatrix}$ x solution is constant function $x(t) = c$. Therefore, each point is equilibrium.

For $x' = \begin{bmatrix} 0 & 0 \ 0 & 0 \end{bmatrix}$ x solution is constant function $x(t) = c$. Therefore, each point is equilibrium.

When dimension of Jordan block is 2×2 :

$$
x'=\left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right]x
$$

system of equation is:

$$
x'_1 = x_2
$$

$$
x'_2 = 0.
$$

K ロ ト K 御 ト K 澄 ト K 澄 ト 一種

For $x' = \begin{bmatrix} 0 & 0 \ 0 & 0 \end{bmatrix}$ x solution is constant function $x(t) = c$. Therefore, each point is equilibrium.

When dimension of Jordan block is 2×2 :

$$
x'=\left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right]x
$$

system of equation is:

$$
x'_1 = x_2
$$

$$
x'_2 = 0.
$$

Solution:

$$
x_2(t) = c_2
$$

K ロ ト K 御 ト K 澄 ト K 澄 ト 一種

For $x' = \begin{bmatrix} 0 & 0 \ 0 & 0 \end{bmatrix}$ x solution is constant function $x(t) = c$. Therefore, each point is equilibrium.

When dimension of Jordan block is 2×2 :

$$
x'=\left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right]x
$$

system of equation is:

$$
x'_1 = x_2
$$

$$
x'_2 = 0.
$$

Solution:

$$
x_2(t) = c_2
$$

$$
x'_1 = c_2
$$

K ロ ト K 御 ト K 澄 ト K 澄 ト 一種

For $x' = \begin{bmatrix} 0 & 0 \ 0 & 0 \end{bmatrix}$ x solution is constant function $x(t) = c$. Therefore, each point is equilibrium.

When dimension of Jordan block is 2×2 :

$$
x'=\left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right]x
$$

system of equation is:

$$
x'_1 = x_2
$$

$$
x'_2 = 0.
$$

Solution:

$$
x_2(t) = c_2
$$

\n
$$
x'_1 = c_2
$$

\n
$$
x_1(t) = c_2t + c_1
$$

For $x' = \begin{bmatrix} 0 & 0 \ 0 & 0 \end{bmatrix}$ x solution is constant function $x(t) = c$. Therefore, each point is equilibrium.

When dimension of Jordan block is 2×2 :

$$
x'=\left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right]x
$$

system of equation is:

$$
x'_1 = x_2
$$

$$
x'_2 = 0.
$$

Solution:

$$
x_2(t) = c_2
$$

\n
$$
x'_1 = c_2
$$

\n
$$
x_1(t) = c_2t + c_1
$$

\nEquilibrium: $x_2 = 0 \Rightarrow x^* = (c, 0), c \in \mathbb{R}$

Phase portrait for
$$
x' = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x
$$
:

メロトメ 個 トメ 君 トメ 君 トッ 君 し 2990

 $Re\lambda \neq 0$

Differential equation

$$
x'=\left[\begin{array}{cc}a&b\\-b&a\end{array}\right]x
$$

イロト 不優 トイ磨 トイ磨 トー в 299

 $Re\lambda \neq 0$

Differential equation

$$
x'=\left[\begin{array}{cc}a&b\\-b&a\end{array}\right]x
$$

Characteristic polynomial:

$$
(a-\lambda)^2+c^2=0
$$

э

イロトメ 御 トメ 君 トメ 君 トッ

 $Re\lambda \neq 0$

Differential equation

$$
x'=\left[\begin{array}{cc}a&b\\-b&a\end{array}\right]x
$$

Characteristic polynomial:

$$
(a-\lambda)^2+c^2=0
$$

$$
\lambda_1 = a + ib, \quad \lambda_1 = a - ib
$$

イロトメ 御 トメ 君 トメ 君 トッ 298 э 58 / 120

 $Re\lambda \neq 0$

...

Differential equation

$$
x'=\left[\begin{array}{cc}a&b\\-b&a\end{array}\right]x
$$

Characteristic polynomial:

$$
(a-\lambda)^2+c^2=0
$$

$$
\lambda_1 = a + ib, \quad \lambda_1 = a - ib
$$

$$
e^{\lambda_i t} = e^{(a \pm i b)t} = e^{at} e^{\pm i b t} = e^{at} (\cos bt \pm i \sin bt)
$$

Complex eigenvalues and complex eigenvectors, but a solution is real.

4 (D) 3 (F) 3 (F) 3 (F) 3

Mathematica:

DSolve[{x'[t] ==a x[t]+b y[t], y'[t] ==-b x[t]+a y[t]},{x[t],y[t]},t]

Mathematica:

DSolve $\lceil {x' \atop 1} \rceil = a \tImes[t] + b \tfack[t]$, $y' \lceil t \rceil = -b \tfack[t] + a$ $y[t]$, $\{x[t], y[t]\}$, t]

 $\{x[t]-\Sigma^{\hat{a}}(t)\in[1]\cos[b(t+E^{\hat{a}}(a(t))C[2]\sin[b(t)]\},\}$ $y[t]-\Sigma^{(a t)C[2]Cos[b t]-E^{(a t)C[1]Sin[b t]}$

$$
x(t) = \begin{bmatrix} c_1 e^{at} \cos bt + c_2 e^{at} \sin bt \\ c_2 e^{at} \cos bt - c_1 e^{at} \sin bt \end{bmatrix}
$$

= $c_1 e^{at} \begin{bmatrix} \cos bt \\ -\sin bt \end{bmatrix} + c_2 e^{at} \begin{bmatrix} \sin bt \\ \cos bt \end{bmatrix}$

K ロ ▶ K 個 ▶ K ミ ▶ K ミ ▶ - ' 큰' - K 9 Q @

Trajectory for za
$$
c_1 = 1
$$
, $c_2 = 1$ and $A = \begin{bmatrix} 0.1 & 1 \\ -1 & 0.1 \end{bmatrix}$

Spiral.

メロトメ 御 トメ 差 トメ 差 トー 重。 299 Phase portrait for

イロト 不優 トイ磨 トイ磨 トー \Rightarrow 299 61 / 120

 $Re\lambda = 0$

 $Re\lambda = 0$

 $a = 0 \Rightarrow$

$$
x(t) = c_1 \left[\begin{array}{c} \cos bt \\ -\sin bt \end{array} \right] + c_2 \left[\begin{array}{c} \sin bt \\ \cos bt \end{array} \right]
$$

K ロ X x 何 X x モ X x モ X 2 モ X 2 9 9 0 0

 $Re\lambda = 0$ $a = 0 \Rightarrow$

$$
x(t) = c_1 \left[\begin{array}{c} \cos bt \\ -\sin bt \end{array} \right] + c_2 \left[\begin{array}{c} \sin bt \\ \cos bt \end{array} \right]
$$

Note,

$$
x_1(t)^2 = c_1^2 \cos^2 bt + c_1 c_2 \cos bt \sin bt + c_2^2 \sin 2bt
$$

$$
x_2(t)^2 = c_1^2 \sin^2 bt - c_1 c_2 \sin bt \cos bt + c_2^2 \cos 2bt
$$

K ロ X x 何 X x モ X x モ X 2 モ X 2 9 9 0 0

 $Re\lambda = 0$ $a = 0 \Rightarrow$

$$
x(t) = c_1 \left[\begin{array}{c} \cos bt \\ -\sin bt \end{array} \right] + c_2 \left[\begin{array}{c} \sin bt \\ \cos bt \end{array} \right]
$$

Note,

$$
x_1(t)^2 = c_1^2 \cos^2 bt + c_1 c_2 \cos bt \sin bt + c_2^2 \sin 2bt
$$

\n
$$
x_2(t)^2 = c_1^2 \sin^2 bt - c_1 c_2 \sin bt \cos bt + c_2^2 \cos 2bt \Rightarrow
$$

\n
$$
x_1^2 + x_2^2 = c_1^2 + c_2^2 = r^2
$$

違い

メロトメ 御 トメ き トメ き トー

Phase portrait for
$$
A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}
$$

Phase portrait for
$$
B = T^{-1}A T = \begin{bmatrix} -\frac{4}{3} & -\frac{5}{3} \\ \frac{5}{3} & \frac{4}{3} \end{bmatrix}
$$

$$
A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, T = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}
$$

メロトメ 御 トメ 君 トメ 君 トッ 君の 2990

64 / 120

 $\lambda_1 > 0, \lambda_2 < 0$ $\lambda_1 = 0, \lambda_2 > 0$ $\text{Re}\lambda_i = 0$ $\text{Re}\lambda_i > 0$

Jordan block 2×2

66 / 120

Consider differential equation

$$
X'=F(X),\quad F:\mathbb{R}^n\to\mathbb{R}^n.
$$

イロト イ団 トイモト イモト в 299

Consider differential equation

$$
X'=F(X),\quad F:\mathbb{R}^n\to\mathbb{R}^n.
$$

Like as in 1-dimensional case, function *F* may be substituted by Taylor polynomial of 1. degree:

$$
F(X) \approx F(X_0) + J(X_0) \cdot (X - X_0)
$$

イロトメ 御 トメ 君 トメ 君 トッ

Consider differential equation

$$
X'=F(X),\quad F:\mathbb{R}^n\to\mathbb{R}^n.
$$

Like as in 1-dimensional case, function *F* may be substituted by Taylor polynomial of 1. degree:

$$
F(X) \approx F(X_0) + J(X_0) \cdot (X - X_0)
$$

Note. F, X, X_0 are from \mathbb{R}^n .

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ○ 君

Consider differential equation

$$
X'=F(X),\quad F:\mathbb{R}^n\to\mathbb{R}^n.
$$

Like as in 1-dimensional case, function *F* may be substituted by Taylor polynomial of 1. degree:

$$
F(X) \approx F(X_0) + J(X_0) \cdot (X - X_0)
$$

Note. F, X, X_0 are from \mathbb{R}^n . What is J^\prime ?

K ロ ▶ K 個 ▶ K 重 ▶ K 重 ▶ …

Consider differential equation

$$
X'=F(X),\quad F:\mathbb{R}^n\to\mathbb{R}^n.
$$

Like as in 1-dimensional case, function *F* may be substituted by Taylor polynomial of 1. degree:

$$
F(X) \approx F(X_0) + J(X_0) \cdot (X - X_0)
$$

Note. F, X, X_0 are from \mathbb{R}^n . What is J^\prime ?

$$
J(Y) = \left[\begin{array}{c} f_1(y_1,\ldots,y_n) \\ \vdots \\ f_n(y_1,\ldots,y_n) \end{array}\right],
$$

K ロ ▶ K 個 ▶ K 重 ▶ K 重 ▶ …

Consider differential equation

$$
X'=F(X),\quad F:\mathbb{R}^n\to\mathbb{R}^n.
$$

Like as in 1-dimensional case, function *F* may be substituted by Taylor polynomial of 1. degree:

$$
F(X) \approx F(X_0) + J(X_0) \cdot (X - X_0)
$$

Note. F, X, X_0 are from \mathbb{R}^n . What is J^\prime ?

$$
J(Y) = \begin{bmatrix} f_1(y_1, \ldots, y_n) \\ \vdots \\ f_n(y_1, \ldots, y_n) \end{bmatrix}, \quad F'(Y) = \begin{bmatrix} \frac{\partial f_i}{\partial y_j} \end{bmatrix}
$$

 $J = J_F$ is Jacobian matrix

イロトメ 倒下 メミトメ ミトー 差

Example

Determine Jacobian matrix for function *F* from chemostat model.

Example

Determine Jacobian matrix for function *F* from chemostat model.

Solution.

$$
F(S, P) = \left[\begin{array}{c} -V\frac{S}{K+S}\frac{P}{Y} + \omega S_0 - \omega S \\ V\frac{S}{K+S}P - \omega P \end{array} \right]
$$

K ロ K K 御 K K 君 K K 君 K L

Example

Determine Jacobian matrix for function *F* from chemostat model.

Solution.

$$
F(S, P) = \left[\begin{array}{c} -V \frac{S}{K+S} \frac{P}{Y} + \omega S_0 - \omega S \\ V \frac{S}{K+S} P - \omega P \end{array} \right]
$$

$$
f_1(S,P) = -V \frac{S}{K+S} \frac{P}{Y} + \omega S_0 - \omega S
$$

$$
f_2(S,P) = V \frac{S}{K+S} P - \omega P
$$

メロメメ 御 メメ きょく きょう Þ QQ

$$
\frac{\partial f_1}{\partial S} = \frac{\partial}{\partial S} \left[-V \frac{S}{K+S} \frac{P}{Y} + \omega S_0 - \omega S \right]
$$

69 / 120

$$
\frac{\partial f_1}{\partial S} = \frac{\partial}{\partial S} \left[-V \frac{S}{K+S} \frac{P}{Y} + \omega S_0 - \omega S \right]
$$

$$
= -\frac{VK}{(K+S)^2} \frac{P}{Y} - \omega
$$

$$
\frac{\partial f_1}{\partial S} = \frac{\partial}{\partial S} \left[-V \frac{S}{K+S} \frac{P}{Y} + \omega S_0 - \omega S \right]
$$

$$
= -\frac{VK}{(K+S)^2} \frac{P}{Y} - \omega
$$

$$
\frac{\partial f_1}{\partial P} = \frac{\partial}{\partial P} \left[-V \frac{S}{K+S} \frac{P}{Y} + \omega S_0 - \omega S \right]
$$

69 / 120

$$
\frac{\partial f_1}{\partial S} = \frac{\partial}{\partial S} \left[-V \frac{S}{K+S} \frac{P}{Y} + \omega S_0 - \omega S \right]
$$

$$
= -\frac{VK}{(K+S)^2} \frac{P}{Y} - \omega
$$

$$
\frac{\partial f_1}{\partial P} = \frac{\partial}{\partial P} \left[-V \frac{S}{K+S} \frac{P}{Y} + \omega S_0 - \omega S \right]
$$

$$
= -V \frac{S}{K+S} \frac{1}{Y}
$$

$$
\frac{\partial f_1}{\partial S} = \frac{\partial}{\partial S} \left[-V \frac{S}{K+S} \frac{P}{Y} + \omega S_0 - \omega S \right]
$$

$$
= -\frac{VK}{(K+S)^2} \frac{P}{Y} - \omega
$$

$$
\frac{\partial f_1}{\partial P} = \frac{\partial}{\partial P} \left[-V \frac{S}{K+S} \frac{P}{Y} + \omega S_0 - \omega S \right]
$$

$$
= \ - V \frac{S}{K+S} \frac{1}{Y}
$$

$$
\frac{\partial f_2}{\partial S} = \frac{\partial}{\partial S} \left[V \frac{S}{K+S} P - \omega P \right]
$$

69 / 120

$$
\frac{\partial f_1}{\partial S} = \frac{\partial}{\partial S} \left[-V \frac{S}{K+S} \frac{P}{Y} + \omega S_0 - \omega S \right]
$$

$$
= -\frac{VK}{(K+S)^2} \frac{P}{Y} - \omega
$$

$$
\frac{\partial f_1}{\partial P} = \frac{\partial}{\partial P} \left[-V \frac{S}{K+S} \frac{P}{Y} + \omega S_0 - \omega S \right]
$$

$$
= \ - V \frac{S}{K+S} \frac{1}{Y}
$$

$$
\frac{\partial f_2}{\partial S} = \frac{\partial}{\partial S} \left[V \frac{S}{K+S} P - \omega P \right] = \frac{VK}{(K+S)^2} P
$$

69 / 120

$$
\frac{\partial f_1}{\partial S} = \frac{\partial}{\partial S} \left[-V \frac{S}{K+S} \frac{P}{Y} + \omega S_0 - \omega S \right]
$$

$$
= -\frac{VK}{(K+S)^2} \frac{P}{Y} - \omega
$$

$$
\frac{\partial f_1}{\partial P} = \frac{\partial}{\partial P} \left[-V \frac{S}{K+S} \frac{P}{Y} + \omega S_0 - \omega S \right]
$$

$$
= \ - V \frac{S}{K+S} \frac{1}{Y}
$$

$$
\frac{\partial f_2}{\partial S} = \frac{\partial}{\partial S} \left[V \frac{S}{K+S} P - \omega P \right] = \frac{VK}{(K+S)^2} P
$$

$$
\frac{\partial f_2}{\partial P} = \frac{\partial}{\partial P} \left[V \frac{S}{K+S} P - \omega P \right]
$$

69 / 120

$$
\frac{\partial f_1}{\partial S} = \frac{\partial}{\partial S} \left[-V \frac{S}{K+S} \frac{P}{Y} + \omega S_0 - \omega S \right]
$$

$$
= -\frac{VK}{(K+S)^2} \frac{P}{Y} - \omega
$$

$$
\frac{\partial f_1}{\partial P} = \frac{\partial}{\partial P} \left[-V \frac{S}{K+S} \frac{P}{Y} + \omega S_0 - \omega S \right]
$$

$$
= \ - V \frac{S}{K+S} \frac{1}{Y}
$$

$$
\frac{\partial f_2}{\partial S} = \frac{\partial}{\partial S} \left[V \frac{S}{K+S} P - \omega P \right] = \frac{VK}{(K+S)^2} P
$$

$$
\frac{\partial f_2}{\partial P} = \frac{\partial}{\partial P} \left[V \frac{S}{K+S} P - \omega P \right] = V \frac{S}{K+S} - \omega
$$

 \equiv 990 69 / 120

 \mathbf{p} .

$$
J_F(S, P) = \begin{bmatrix} \frac{\partial f_1}{\partial S} & \frac{\partial f_1}{\partial P} \\ \frac{\partial f_2}{\partial S} & \frac{\partial f_2}{\partial P} \end{bmatrix}
$$

70 / 120

$$
J_F(S, P) = \begin{bmatrix} \frac{\partial f_1}{\partial S} & \frac{\partial f_1}{\partial P} \\ \frac{\partial f_2}{\partial S} & \frac{\partial f_2}{\partial P} \end{bmatrix} = \begin{bmatrix} -\frac{VK}{(K+S)^2} \frac{P}{Y} - \omega & -V \frac{S}{K+S} \frac{1}{Y} \\ \frac{VK}{(K+S)^2} P & V \frac{S}{K+S} - \omega \end{bmatrix}
$$

As in 1-d case, **equilibrium point** *X* ∗ is a zero of function *F*:

 $F(X^*) = 0.$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © Q Q @

As in 1-d case, **equilibrium point** *X* ∗ is a zero of function *F*:

 $F(X^*) = 0.$

If we substitute *F* by Taylor polynomial of 1. degree around *X* ∗ :

$$
F(X) \approx F(X^*) + J_F(X^*) \cdot (X - X^*) = J_F(X^*) \cdot (X - X^*)
$$

 Ω

 $A \cap (A \cup A \cup B) \cup (A \cup B) \cup (A \cup B) \cup (B \cup B)$

As in 1-d case, **equilibrium point** *X* ∗ is a zero of function *F*:

 $F(X^*) = 0.$

If we substitute *F* by Taylor polynomial of 1. degree around *X* ∗ :

$$
F(X) \approx F(X^*) + J_F(X^*) \cdot (X - X^*) = J_F(X^*) \cdot (X - X^*)
$$

Now we consider differential equation

$$
X'=J_F(X^*)\cdot(X-X^*).
$$

 $A \cap (A \cup A \cup B) \cup (A \cup B) \cup (A \cup B) \cup (B \cup B)$

As in 1-d case, **equilibrium point** *X* ∗ is a zero of function *F*:

 $F(X^*) = 0.$

If we substitute *F* by Taylor polynomial of 1. degree around *X* ∗ :

$$
F(X) \approx F(X^*) + J_F(X^*) \cdot (X - X^*) = J_F(X^*) \cdot (X - X^*)
$$

Now we consider differential equation

$$
X'=J_F(X^*)\cdot(X-X^*).
$$

By substitution $Y = X - X^*$ we obtain \Rightarrow

KON KON KENYEN E YOOR

As in 1-d case, **equilibrium point** *X* ∗ is a zero of function *F*:

 $F(X^*) = 0.$

If we substitute *F* by Taylor polynomial of 1. degree around *X* ∗ :

$$
F(X) \approx F(X^*) + J_F(X^*) \cdot (X - X^*) = J_F(X^*) \cdot (X - X^*)
$$

Now we consider differential equation

$$
X'=J_F(X^*)\cdot(X-X^*).
$$

By substitution $Y = X - X^*$ we obtain \Rightarrow

$$
Y'=J_F(X^*)\cdot Y
$$

KON KON KENYEN E YOOR

As in 1-d case, **equilibrium point** *X* ∗ is a zero of function *F*:

 $F(X^*) = 0.$

If we substitute *F* by Taylor polynomial of 1. degree around *X* ∗ :

$$
F(X) \approx F(X^*) + J_F(X^*) \cdot (X - X^*) = J_F(X^*) \cdot (X - X^*)
$$

Now we consider differential equation

$$
X'=J_F(X^*)\cdot(X-X^*).
$$

By substitution $Y = X - X^*$ we obtain \Rightarrow

$$
Y'=J_F(X^*)\cdot Y
$$

Differential equation is similar to the equation for exponential model, only, $J_f(X^*)$ is (constant) matrix. **KON KON KENYEN E YOOR**

Note. Hartman-Grobman theorem justifies linearization. Theorem shows that a solution of nonlinear differential equation

$$
X'=F(X)
$$

in the neighborhood of equilibrium point *X* [∗] qualitatively behaves as a solution of linear differential equation

$$
X'=F'(X^*)X
$$

in the neighborhood of point $X = 0$.

4 0 8 4 4 9 8 4 9 8 4 9 8

Hartman-Grobman theorem.

Theorem (Hartman-Grobman Theorem)

If x^* *is a* **hyperbolic** *equilibrium of* $x' = f(x)$ *,* $x \in \mathbb{R}^n$ *, then there exists a* **homeomorphism** *z* = *h*(*x*) *defined in a neighborhood of x*[∗] *that maps trajectories of* $x' = f(x)$ *to those of* $z' = Az$ *where* $A = J_f(x^*)$ *.*

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$

Hartman-Grobman theorem.

Theorem (Hartman-Grobman Theorem)

If x^* *is a* **hyperbolic** *equilibrium of* $x' = f(x)$ *,* $x \in \mathbb{R}^n$ *, then there exists a* **homeomorphism** *z* = *h*(*x*) *defined in a neighborhood of x*[∗] *that maps trajectories of* $x' = f(x)$ *to those of* $z' = Az$ *where* $A = J_f(x^*)$ *.*

hyperbolic equilibrium - Jacobian matrix at equilibrium point has all eigenvalues with nonzero real part

4 (D) 3 (F) 3 (F) 3 (F) 3

Hartman-Grobman theorem.

Theorem (Hartman-Grobman Theorem)

If x^* *is a* **hyperbolic** *equilibrium of* $x' = f(x)$ *,* $x \in \mathbb{R}^n$ *, then there exists a* **homeomorphism** *z* = *h*(*x*) *defined in a neighborhood of x*[∗] *that maps trajectories of* $x' = f(x)$ *to those of* $z' = Az$ *where* $A = J_f(x^*)$ *.*

hyperbolic equilibrium - Jacobian matrix at equilibrium point has all eigenvalues with nonzero real part

homeomorphism - a continuous map with a continuous inverse

4 0 8 4 4 9 8 4 9 8 4 9 8

Let X^* is an equilibrium point of the system $X' = F(X)$ and all *eigenvalues of J^F* (*X* ∗) *have nonzero real parts. Then, X*[∗] *is locally stable equilibrium if and only if all real parts of eigenvalues of the Jacobian matrix J^F* (*X* ∗) *are negative.*

Let X^* is an equilibrium point of the system $X' = F(X)$ and all *eigenvalues of J^F* (*X* ∗) *have nonzero real parts. Then, X*[∗] *is locally stable equilibrium if and only if all real parts of eigenvalues of the Jacobian matrix J^F* (*X* ∗) *are negative.*

Algorithm.

¹ For any equilibrium *X* [∗] calculate Jacobian matrix of *F* at equilibrium X^* ($J_F(X^*)$) and check eigenvalues.

4 (D) 3 (F) 3 (F) 3 (F) 3

Let X^* is an equilibrium point of the system $X' = F(X)$ and all *eigenvalues of J^F* (*X* ∗) *have nonzero real parts. Then, X*[∗] *is locally stable equilibrium if and only if all real parts of eigenvalues of the Jacobian matrix J^F* (*X* ∗) *are negative.*

Algorithm.

- ¹ For any equilibrium *X* [∗] calculate Jacobian matrix of *F* at equilibrium X^* ($J_F(X^*)$) and check eigenvalues.
- 2 If real parts of all eigenvalues are negative then equilibrium is locally stable.

4 0 8 4 6 8 4 9 8 4 9 8 1

Let X^* is an equilibrium point of the system $X' = F(X)$ and all *eigenvalues of J^F* (*X* ∗) *have nonzero real parts. Then, X*[∗] *is locally stable equilibrium if and only if all real parts of eigenvalues of the Jacobian matrix J^F* (*X* ∗) *are negative.*

Algorithm.

- ¹ For any equilibrium *X* [∗] calculate Jacobian matrix of *F* at equilibrium X^* ($J_F(X^*)$) and check eigenvalues.
- 2 If real parts of all eigenvalues are negative then equilibrium is locally stable.
- ³ If there is at least one eigenvalue with positive real part then equilibrium is not locally stable.

 Ω

イロト イ押 トイラ トイラトー

Let X^* is an equilibrium point of the system $X' = F(X)$ and all *eigenvalues of J^F* (*X* ∗) *have nonzero real parts. Then, X*[∗] *is locally stable equilibrium if and only if all real parts of eigenvalues of the Jacobian matrix J^F* (*X* ∗) *are negative.*

Algorithm.

- ¹ For any equilibrium *X* [∗] calculate Jacobian matrix of *F* at equilibrium X^* ($J_F(X^*)$) and check eigenvalues.
- 2 If real parts of all eigenvalues are negative then equilibrium is locally stable.
- ³ If there is at least one eigenvalue with positive real part then equilibrium is not locally stable.

Not[e](#page-245-0).C[a](#page-216-0)se Re $\lambda_k = 0$ $\lambda_k = 0$ $\lambda_k = 0$ is complex and sho[uld](#page-249-0) [b](#page-251-0)e a[n](#page-251-0)al[y](#page-279-0)[z](#page-280-0)[ed](#page-0-0) [u](#page-393-0)[si](#page-0-0)[ng](#page-393-0) Ω some other approach.

Note. Hartman-Grobman Theorem says nothing about global stability.

$$
x' = -x - x^3
$$
 i $x' = -x + x^2$.

$$
x' = -x - x^3
$$
 i $x' = -x + x^2$.

In both cases linearization at *x* [∗] = 0 yields

$$
x'=-x,
$$

and $x^* = 0$ is locally stable equilibrium.

4 0 8 4 6 8 4 9 8 4 9 8 1

$$
x' = -x - x^3
$$
 i $x' = -x + x^2$.

In both cases linearization at *x* [∗] = 0 yields

$$
x'=-x,
$$

and $x^* = 0$ is locally stable equilibrium.

In the first case, all solutions converge toward 0 (unique equilibrium).

イロト イ押 トイラ トイラトー

$$
x' = -x - x^3
$$
 i $x' = -x + x^2$.

In both cases linearization at *x* [∗] = 0 yields

$$
x'=-x,
$$

and $x^* = 0$ is locally stable equilibrium.

In the first case, all solutions converge toward 0 (unique equilibrium).

In the second case, 1 is another equilibrium and for $x_0 > 1$ solution wil not converge toward 0 (it will diverge to $+\infty$).

 $(0.123 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m} \times 10^{-14} \text{ m}$

$$
X' = -(X + Y) - (X - Y) \cdot (X^{2} + Y^{2})
$$

\n
$$
Y' = -(X + Y) + (X - Y) \cdot (X^{2} + Y^{2})
$$

イロト イ団 トイモト イモト Þ QQ

$$
X' = -(X + Y) - (X - Y) \cdot (X^{2} + Y^{2})
$$

\n
$$
Y' = -(X + Y) + (X - Y) \cdot (X^{2} + Y^{2})
$$

Jacobian matrix at (0, 0):

$$
J_F = \left[\begin{array}{rr} -1 & -1 \\ -1 & -1 \end{array} \right]
$$

KONYA MARKATA DI KATA D

$$
X' = -(X + Y) - (X - Y) \cdot (X^{2} + Y^{2})
$$

\n
$$
Y' = -(X + Y) + (X - Y) \cdot (X^{2} + Y^{2})
$$

Jacobian matrix at (0, 0):

$$
J_F = \left[\begin{array}{rr} -1 & -1 \\ -1 & -1 \end{array} \right]
$$

Eigenvalues: -2 an 0.

 $(0.12 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

K ロ X x 何 X x モ X x モ X 2 モ X 2 9 9 0 0

77 / 120

メロトメ 御 トメ 差 トメ 差 トー ■■ 2990

77 / 120

$$
X' = -(X + Y) + (X - Y) \cdot (X^{2} + Y^{2})
$$

\n
$$
Y' = -(X + Y) - (X - Y) \cdot (X^{2} + Y^{2})
$$

イロト イ団 トイモト イモト Þ QQ

78 / 120

$$
X' = -(X + Y) + (X - Y) \cdot (X^{2} + Y^{2})
$$

\n
$$
Y' = -(X + Y) - (X - Y) \cdot (X^{2} + Y^{2})
$$

Jacobian matrix at (0, 0):

$$
J_F = \left[\begin{array}{rr} -1 & -1 \\ -1 & -1 \end{array} \right]
$$

KONYA MARKATA DI KATA D

$$
X' = -(X + Y) + (X - Y) \cdot (X^{2} + Y^{2})
$$

\n
$$
Y' = -(X + Y) - (X - Y) \cdot (X^{2} + Y^{2})
$$

Jacobian matrix at (0, 0):

$$
J_F = \left[\begin{array}{rr} -1 & -1 \\ -1 & -1 \end{array} \right]
$$

Eigenvalues: -2 an 0.

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ ...

メロトメ 御 メメ 君 メメ 君 メー 君一 2990

$$
X' = (X + Y) + (X - Y) \cdot (X^2 + Y^2)
$$

\n
$$
Y' = (X + Y) - (X - Y) \cdot (X^2 + Y^2)
$$

イロト イ団 トイモト イモト Þ QQ

80 / 120

$$
X' = (X + Y) + (X - Y) \cdot (X^2 + Y^2)
$$

\n
$$
Y' = (X + Y) - (X - Y) \cdot (X^2 + Y^2)
$$

Jacobian matrix at (0, 0):

$$
J_F = \left[\begin{array}{rr} 1 & 1 \\ 1 & 1 \end{array} \right]
$$

 $(0.12.47)$ $(0.12.47)$

$$
X' = (X + Y) + (X - Y) \cdot (X^2 + Y^2)
$$

\n
$$
Y' = (X + Y) - (X - Y) \cdot (X^2 + Y^2)
$$

Jacobian matrix at (0, 0):

$$
J_F = \left[\begin{array}{rr} 1 & 1 \\ 1 & 1 \end{array} \right]
$$

Eigenvalues: 2 an 0.

 $(0.12 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

メロトメ 御 トメ 差 トメ 差 トー 造っ 2990

$$
X' = -Y - X^3 - XY^2 Y' = X - X^2Y - Y^3
$$

イロト イ団 トイモト イモト E QQ

$$
X' = -Y - X^3 - XY^2 Y' = X - X^2Y - Y^3
$$

Jacobian matrix at (0, 0):

$$
J_F = \left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right]
$$

 Ω 82 / 120

イロト イ団 トイモト イモト

$$
X' = -Y - X^3 - XY^2 Y' = X - X^2Y - Y^3
$$

Jacobian matrix at (0, 0):

$$
J_F = \left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right]
$$

Eigenvalues: $\pm i$.

 $(0.12 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

EXERCISES

メロトメ 伊 トメ 君 トメ 君 トー 重 299

84 / 120

$$
S' = -V \frac{S}{K+S} \frac{P}{Y} + \omega S_0 - \omega S,
$$

$$
P' = V \frac{S}{K+S} P - \omega P
$$

イロト イ団 トイモト イモト 造 299

$$
S' = -V \frac{S}{K+S} \frac{P}{Y} + \omega S_0 - \omega S,
$$

$$
P' = V \frac{S}{K+S} P - \omega P
$$

Model has 5 parameters: V, K, Y, ω, S_0

$$
S' = -V \frac{S}{K+S} \frac{P}{Y} + \omega S_0 - \omega S,
$$

$$
P' = V \frac{S}{K+S} P - \omega P
$$

Model has 5 parameters: V, K, Y, ω, S_0

To make computation easier, we will use dedimensionalized model.

(ロ) (個) (悪) (悪)

$$
S' = -V \frac{S}{K+S} \frac{P}{Y} + \omega S_0 - \omega S,
$$

$$
P' = V \frac{S}{K+S} P - \omega P
$$

Model has 5 parameters: V, K, Y, ω, S_0

To make computation easier, we will use dedimensionalized model. So,

(ロ) (個) (悪) (悪)

$$
S' = -V \frac{S}{K+S} \frac{P}{Y} + \omega S_0 - \omega S,
$$

$$
P' = V \frac{S}{K+S} P - \omega P
$$

Model has 5 parameters: V, K, Y, ω, S_0

To make computation easier, we will use dedimensionalized model.

So,

Problem

Dedimensionalize chemostat model.

Hint. Introduce new variables:

$$
P(t) = P^*N(\tau), \quad S(t) = S^*C(\tau), \quad t = t^*\tau
$$

Constants P^* , S^* , t^* determine in the way to simplify the model (to reduce a number of parameters). $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

Solution.

Solution.

$$
P'(t) = \frac{d}{dt}P(t) = \frac{d}{dt}P^*N(\tau)
$$

メロトメ 御 トメ ミトメ ミト 重 299

$$
P'(t) = \frac{d}{dt}P(t) = \frac{d}{dt}P^*N(\tau)
$$

$$
= P^* \frac{d}{dt}N\left(\frac{t}{t^*}\right)
$$

メロトメ 御 トメ 君 トメ 君 トー 重 299 =

Solution.

$$
P'(t) = \frac{d}{dt}P(t) = \frac{d}{dt}P^*N(\tau)
$$

=
$$
P^* \frac{d}{dt}N\left(\frac{t}{t^*}\right) = \frac{P^*}{t^*}N'\left(\frac{t}{t^*}\right)
$$

メロトメ 御 トメ 君 トメ 君 トー 重 299

$$
P'(t) = \frac{d}{dt}P(t) = \frac{d}{dt}P^*N(\tau)
$$

=
$$
P^* \frac{d}{dt}N\left(\frac{t}{t^*}\right) = \frac{P^*}{t^*}N'\left(\frac{t}{t^*}\right)
$$

=
$$
\frac{P^*}{t^*}N'(\tau)
$$

 299 86 / 120

重

メロトメ 御 トメ ミトメ ミト

$$
P'(t) = \frac{d}{dt}P(t) = \frac{d}{dt}P^*N(\tau)
$$

=
$$
P^*\frac{d}{dt}N\left(\frac{t}{t^*}\right) = \frac{P^*}{t^*}N'\left(\frac{t}{t^*}\right)
$$

=
$$
\frac{P^*}{t^*}N'(\tau)
$$

 $S'(t) =$

$$
P'(t) = \frac{d}{dt}P(t) = \frac{d}{dt}P^*N(\tau)
$$

=
$$
P^* \frac{d}{dt}N\left(\frac{t}{t^*}\right) = \frac{P^*}{t^*}N'\left(\frac{t}{t^*}\right)
$$

=
$$
\frac{P^*}{t^*}N'(\tau)
$$

$$
S'(t) = \frac{S^*}{t^*}C'(\tau)
$$

 299 86 / 120

重

メロトメ 御 トメ ミトメ ミト

Model is of the form

$$
\frac{S^*}{t^*}C' = -\frac{VS^*C}{K+S^*C}\frac{P^*N}{Y} + \omega S_0 - \omega S^*C
$$

$$
\frac{P^*}{t^*}N' = \frac{VS^*C}{K+S^*C}P^*N - \omega P^*N
$$

Model is of the form

⇒

$$
\frac{S^*}{t^*}C' = -\frac{VS^*C}{K+S^*C}\frac{P^*N}{Y} + \omega S_0 - \omega S^*C
$$

$$
\frac{P^*}{t^*}N' = \frac{VS^*C}{K+S^*C}P^*N - \omega P^*N
$$

$$
C' = -t^* \frac{VC}{K+S^*C} \frac{P^*N}{Y} + \frac{t^*\omega S_0}{S^*} - t^*\omega C
$$

$$
N' = t^* \frac{VS^*C}{K+S^*C}N - t^*\omega N
$$

 299 87 / 120

重

K ロ ト K 個 ト K 重 ト K 重 ト …

Model is of the form

⇒

⇒

$$
\frac{S^*}{t^*}C' = -\frac{VS^*C}{K+S^*C}\frac{P^*N}{Y} + \omega S_0 - \omega S^*C
$$

$$
\frac{P^*}{t^*}N' = \frac{VS^*C}{K+S^*C}P^*N - \omega P^*N
$$

$$
C' = -t^* \frac{VC}{K+S^*C} \frac{P^*N}{Y} + \frac{t^*\omega S_0}{S^*} - t^*\omega C
$$

$$
N' = t^* \frac{v \, S \, C}{K + S^* C} N - t^* \omega \, N
$$

K ロ ト K 個 ト K 重 ト K 重 ト … 重 299 87 / 120

$$
C' = -\frac{t^* V P^*}{S^* Y} \frac{C}{\frac{K}{S^*} + C} N + \frac{t^* \omega S_0}{S^*} - t^* \omega C
$$

$$
N' = t^* V \frac{C}{\frac{K}{S^*} + C} N - t^* \omega N
$$

K ロ X K 伊 X K ミ X K ミ X ミ → D Q Q Q

$$
C' = -\frac{t^* VP^*}{S^* Y} \frac{C}{\frac{K}{S^*} + C} N + \frac{t^* \omega S_0}{S^*} - t^* \omega C
$$

$$
N' = t^* V \frac{C}{\frac{K}{S^*} + C} N - t^* \omega N
$$

造

イロト 不優 トイ磨 トイ磨 トー

$$
C' = -\frac{t^* V P^*}{S^* Y} \frac{C}{\frac{K}{S^*} + C} N + \frac{t^* \omega S_0}{S^*} - t^* \omega C
$$

$$
N' = t^* V \frac{C}{\frac{K}{S^*} + C} N - t^* \omega N
$$

$$
\frac{K}{S^*}=1, \quad t^*\omega=1, \quad \frac{t^*VP^*}{S^*Y}=1
$$

メロトメ 倒 トメ 君 トメ 君 トー 君

$$
C' = -\frac{t^* V P^*}{S^* Y} \frac{C}{\frac{K}{S^*} + C} N + \frac{t^* \omega S_0}{S^*} - t^* \omega C
$$

$$
N' = t^* V \frac{C}{\frac{K}{S^*} + C} N - t^* \omega N
$$

$$
\frac{K}{S^*} = 1, \quad t^* \omega = 1, \quad \frac{t^* VP^*}{S^* Y} = 1
$$
\n
$$
\Rightarrow \quad S^* = K, \quad t^* = \frac{1}{\omega}, \quad P^* = \frac{S^* Y}{t^* V} = \frac{Y K \omega}{V}
$$

 2990 88 / 120

メロトメ 倒 トメ 君 トメ 君 トー 君

$$
C' = -\frac{t^* V P^*}{S^* Y} \frac{C}{\frac{K}{S^*} + C} N + \frac{t^* \omega S_0}{S^*} - t^* \omega C
$$

$$
N' = t^* V \frac{C}{\frac{K}{S^*} + C} N - t^* \omega N
$$

$$
\frac{K}{S^*} = 1, \quad t^* \omega = 1, \quad \frac{t^* VP^*}{S^* Y} = 1
$$
\n
$$
\Rightarrow \quad S^* = K, \quad t^* = \frac{1}{\omega}, \quad P^* = \frac{S^* Y}{t^* V} = \frac{Y K \omega}{V}
$$

Define new parameters:

$$
\alpha_1 = t^* V = \frac{V}{\omega}, \quad \alpha_2 = \frac{t^* \omega S_0}{S^*} = \frac{S_0}{K}
$$

 299 88 / 120

Dedimensionalized chemostat model:

$$
C' = -\frac{C}{1+C}N + \alpha_2 - C
$$

$$
N' = \alpha_1 \frac{C}{1+C}N - N
$$

в

イロト イ団 トイミト イミト

Dedimensionalized chemostat model:

$$
C' = -\frac{C}{1+C}N + \alpha_2 - C
$$

$$
N' = \alpha_1 \frac{C}{1+C}N - N
$$

Note. Only two parameters remain in analysis. Note that $\alpha_1, \alpha_2 > 0$

K ロ ▶ K 御 ▶ K 澄 ▶ K 澄 ▶ │ 澄

Dedimensionalized chemostat model:

$$
C' = -\frac{C}{1+C}N + \alpha_2 - C
$$

$$
N' = \alpha_1 \frac{C}{1+C}N - N
$$

Note. Only two parameters remain in analysis. Note that $\alpha_1, \alpha_2 > 0$

Note. Substitution

$$
\Rightarrow \quad t^* = \frac{1}{V}, \quad S^* = t^* \omega \, S_0 P^* = \frac{Y K \omega}{V}
$$

also reduces number of parameters on 2.

イロトメ 御 トメ 君 トメ 君 トー 君

Determine equilibrium points of chemostat model. (Use dedimensionalized model.)

Determine equilibrium points of chemostat model. (Use dedimensionalized model.)

Solution. Dedimensionalized chemostat model:

$$
C' = -\frac{C}{1+C}N + \alpha_2 - C
$$

$$
N' = \alpha_1 \frac{C}{1+C}N - N
$$

(ロトイ部)→(理)→(理)→

Determine equilibrium points of chemostat model. (Use dedimensionalized model.)

Solution. Dedimensionalized chemostat model:

$$
C' = -\frac{C}{1+C}N + \alpha_2 - C
$$

$$
N' = \alpha_1 \frac{C}{1+C}N - N
$$

Differential equation

 $X' = F(X)$

90 / 120

 Ω

イロト イ押 トイラ トイラト

Determine equilibrium points of chemostat model. (Use dedimensionalized model.)

Solution. Dedimensionalized chemostat model:

$$
C' = -\frac{C}{1+C}N + \alpha_2 - C
$$

$$
N' = \alpha_1 \frac{C}{1+C}N - N
$$

Differential equation

 $X' = F(X)$

$$
X = \left[\begin{array}{c} C \\ N \end{array} \right]
$$

 Ω 90 / 120

イロト イ押 トイラ トイラト

Determine equilibrium points of chemostat model. (Use dedimensionalized model.)

Solution. Dedimensionalized chemostat model:

$$
C' = -\frac{C}{1+C}N + \alpha_2 - C
$$

$$
N' = \alpha_1 \frac{C}{1+C}N - N
$$

Differential equation

$$
X'=F(X)
$$

$$
X = \begin{bmatrix} C \\ N \end{bmatrix} \text{ and } F(X) = F(C, N) = \begin{bmatrix} -\frac{C}{1+C}N + \alpha_2 - C \\ \alpha_1 \frac{C}{1+C}N - N \end{bmatrix}
$$

90 / 120

From $F(C, N) = 0$ it follows

$$
0 = -\frac{C}{1+C}N + \alpha_2 - C
$$

$$
0 = \alpha_1 \frac{C}{1+C}N - N
$$

K ロ ト K 個 ト K 重 ト K 重 ト … 重 299 From $F(C, N) = 0$ it follows

$$
0 = -\frac{C}{1+C}N + \alpha_2 - C
$$

$$
0 = \alpha_1 \frac{C}{1+C}N - N
$$

Second equation yields:

$$
\left(\alpha_1\frac{C}{1+C}-1\right)N=0
$$

重

イロト イ団 トイミト イミト

From $F(C, N) = 0$ it follows

$$
0 = -\frac{C}{1+C}N + \alpha_2 - C
$$

$$
0 = \alpha_1 \frac{C}{1+C}N - N
$$

Second equation yields:

$$
\left(\alpha_1 \frac{C}{1+C} - 1\right) N = 0
$$

$$
N = 0 \quad \text{or} \quad \alpha_1 \frac{C}{1+C} = 0
$$

重

イロト イ団 トイミト イミト

K ロ X x 何 X x モ X x モ X 2 モ X 2 9 9 0 0

92 / 120

First equation yields

$$
0=-\frac{C}{1+C}N+\alpha_2-C=
$$

K ロ ト K 個 ト K 重 ト K 重 ト … 重 299

First equation yields

$$
0=-\frac{C}{1+C}N+\alpha_2-C=\alpha_2-C
$$

K ロ ト K 個 ト K 重 ト K 重 ト … 画 299

First equation yields

$$
0=-\frac{C}{1+C}N+\alpha_2-C=\alpha_2-C
$$

$$
\Rightarrow \quad C = \alpha_2
$$

K ロ ト K 個 ト K 重 ト K 重 ト … 画 299

First equation yields

$$
0=-\frac{C}{1+C}N+\alpha_2-C=\alpha_2-C
$$

$$
\Rightarrow \quad C = \alpha_2
$$

Equilibrium:

$$
X_1=(\alpha_2,0)
$$

K ロ ト K 個 ト K 重 ト K 重 ト … 画 299 92 / 120

First equation yields

$$
0=-\frac{C}{1+C}N+\alpha_2-C=\alpha_2-C
$$

$$
\Rightarrow \quad C = \alpha_2
$$

Equilibrium:

$$
X_1=(\alpha_2,0)
$$

Trivial equilibrium - no population.

画

イロト イ団 トイミト イミト

First equation yields

$$
0=-\frac{C}{1+C}N+\alpha_2-C=\alpha_2-C
$$

$$
\Rightarrow \quad C = \alpha_2
$$

Equilibrium:

$$
X_1=(\alpha_2,0)
$$

Trivial equilibrium - no population.

$$
C=\alpha_2\quad\Rightarrow\quad S=S_0.
$$

 299 92 / 120

重

イロト イ団 トイミト イミト

2.
$$
\alpha_1 \frac{C}{1+C} - 1 = 0
$$

K ロ X K 伊 X K ミ X K ミ X ミ → D Q Q Q

2.
$$
\alpha_1 \frac{C}{1+C} - 1 = 0 \Rightarrow C = \frac{1}{\alpha_1 - 1}
$$

K ロ X K 伊 X K ミ X K ミ X ミ → D Q Q Q

2.
$$
\alpha_1 \frac{C}{1+C} - 1 = 0 \Rightarrow C = \frac{1}{\alpha_1 - 1}
$$

Substitute into 1. equation:

$$
0=-\frac{C}{1+C}N+\alpha_2-C
$$

2.
$$
\alpha_1 \frac{C}{1+C} - 1 = 0 \Rightarrow C = \frac{1}{\alpha_1 - 1}
$$

Substitute into 1. equation:

 $\overline{}$

$$
0=-\frac{C}{1+C}N+\alpha_2-C=-\frac{1}{\alpha_1}N+\alpha_2-\frac{1}{\alpha_1-1}
$$

۰,

2.
$$
\alpha_1 \frac{C}{1+C} - 1 = 0 \Rightarrow C = \frac{1}{\alpha_1 - 1}
$$

Substitute into 1. equation:

 $\overline{}$

$$
0 = -\frac{C}{1+C}N + \alpha_2 - C = -\frac{1}{\alpha_1}N + \alpha_2 - \frac{1}{\alpha_1 - 1}
$$

۰,

$$
\Rightarrow \quad N = \alpha_1 \left(\alpha_2 - \frac{1}{\alpha_1 - 1} \right)
$$

イロト イ部 トイモト イモト 重 299
[Analysis of systems of differential equations](#page-324-0) [Phase portrait for chemostat model](#page-324-0)

2.
$$
\alpha_1 \frac{C}{1+C} - 1 = 0 \Rightarrow C = \frac{1}{\alpha_1 - 1}
$$

Substitute into 1. equation:

 $\overline{}$

$$
0 = -\frac{C}{1+C}N + \alpha_2 - C = -\frac{1}{\alpha_1}N + \alpha_2 - \frac{1}{\alpha_1 - 1}
$$

۰,

$$
\Rightarrow \quad N = \alpha_1 \left(\alpha_2 - \frac{1}{\alpha_1 - 1} \right)
$$

Equilibrium:

$$
X_2 = \left(\frac{1}{\alpha_1 - 1}, \alpha_1 \left(\alpha_2 - \frac{1}{\alpha_1 - 1}\right)\right)
$$

イロト イ部 トイモト イモト 重 299 [Analysis of systems of differential equations](#page-325-0) [Phase portrait for chemostat model](#page-325-0)

2.
$$
\alpha_1 \frac{C}{1+C} - 1 = 0 \Rightarrow C = \frac{1}{\alpha_1 - 1}
$$

Substitute into 1. equation:

C

$$
0=-\frac{C}{1+C}N+\alpha_2-C=-\frac{1}{\alpha_1}N+\alpha_2-\frac{1}{\alpha_1-1}
$$

1

$$
\Rightarrow \quad N = \alpha_1 \left(\alpha_2 - \frac{1}{\alpha_1 - 1} \right)
$$

Equilibrium:

$$
X_2 = \left(\frac{1}{\alpha_1 - 1}, \alpha_1 \left(\alpha_2 - \frac{1}{\alpha_1 - 1}\right)\right)
$$

C and *N* are positive. What are conditions for the existence of positive equilibrium? $(0.5, 0.6)$ $(0.5, 0.7)$ 299

$$
X_2 = \left(\frac{1}{\alpha_1 - 1}, \alpha_1 \left(\alpha_2 - \frac{1}{\alpha_1 - 1}\right)\right)
$$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ... 重 299

$$
X_2 = \left(\frac{1}{\alpha_1 - 1}, \alpha_1 \left(\alpha_2 - \frac{1}{\alpha_1 - 1}\right)\right)
$$

$$
\alpha_2 - \frac{1}{\alpha_1 - 1} > 0
$$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ... 重 299

$$
X_2 = \left(\frac{1}{\alpha_1 - 1}, \alpha_1 \left(\alpha_2 - \frac{1}{\alpha_1 - 1}\right)\right)
$$

$$
\alpha_2 - \frac{1}{\alpha_1 - 1} > 0
$$

Interpretation:

$$
\alpha_1 - 1 > 0 \quad \Rightarrow \quad \frac{V}{\omega} > 1 \quad \Rightarrow \quad V > \omega
$$

イロト イ部 トイモト イモト 重 299

94 / 120

$$
X_2 = \left(\frac{1}{\alpha_1 - 1}, \alpha_1 \left(\alpha_2 - \frac{1}{\alpha_1 - 1}\right)\right)
$$

$$
\alpha_2 - \frac{1}{\alpha_1 - 1} > 0
$$

Interpretation:

$$
\alpha_1 - 1 > 0 \quad \Rightarrow \quad \frac{V}{\omega} > 1 \quad \Rightarrow \quad V > \omega
$$

Maximal growth rate should be larger then washout rate.

If washout rate is to high, loss of cells is greater then growth rate.

 $(0.12.16)$ $(0.12.16)$

$$
\alpha_2-\frac{1}{\alpha_1-1}>0
$$

K ロ X K 伊 X K ミ X K ミ X ミ → D Q Q Q

$$
\alpha_2-\frac{1}{\alpha_1-1}>0
$$

Substrate concentration in the equilibrium:

$$
C^*=\frac{1}{\alpha_1-1}
$$

$$
\alpha_2-\frac{1}{\alpha_1-1}>0
$$

Substrate concentration in the equilibrium:

$$
C^* = \frac{1}{\alpha_1 - 1}
$$

$$
\Rightarrow \quad \alpha_2 > C^* \quad \Rightarrow \quad \frac{S_0}{K} > \frac{S^*}{K} \quad \Rightarrow \quad S_0 > S^* = \frac{K}{\frac{V}{\omega} - 1}
$$

 299 95 / 120

活

イロト イ団 トイモト イモト

$$
\alpha_2-\frac{1}{\alpha_1-1}>0
$$

Substrate concentration in the equilibrium:

$$
C^* = \frac{1}{\alpha_1 - 1}
$$

$$
\Rightarrow \quad \alpha_2 > C^* \quad \Rightarrow \quad \frac{S_0}{K} > \frac{S^*}{K} \quad \Rightarrow \quad S_0 > S^* = \frac{K}{\frac{V}{\omega} - 1}
$$

Substrate concentration in the equilibrium have to be smaller then inflowing substrate concentration.

(ロ) (個) (悪) (悪)

Example

Stability of equilibrium points in chemostat model.

Example

Stability of equilibrium points in chemostat model.

$$
X' = F(X) = F(C, N)
$$

$$
F(C, N) = \begin{bmatrix} f_1(C, N) \\ f_2(C, N) \end{bmatrix} = \begin{bmatrix} -\frac{C}{1+C}N + \alpha_2 - C \\ \alpha_1 \frac{C}{1+C}N - N \end{bmatrix}
$$

 299 96 / 120

∍

イロト イ部 トイ磨 トイ磨 トー

Example

Stability of equilibrium points in chemostat model.

$$
X' = F(X) = F(C, N)
$$

\n
$$
F(C, N) = \begin{bmatrix} f_1(C, N) \\ f_2(C, N) \end{bmatrix} = \begin{bmatrix} -\frac{C}{1 + C}N + \alpha_2 - C \\ \frac{C}{1 + C}N - N \end{bmatrix}
$$

\n
$$
\frac{\partial f_1}{\partial C} = -N \frac{1}{(1 + C)^2} - 1
$$

\n
$$
\frac{\partial f_1}{\partial N} = -\frac{C}{1 + C}
$$

\n
$$
\frac{\partial f_2}{\partial C} = \alpha_1 N \frac{1}{(1 + C)^2}
$$

\n
$$
\frac{\partial f_2}{\partial N} = \alpha_1 \frac{C}{1 + C} - 1
$$

 299 96 / 120

$$
J_F = \begin{bmatrix} \frac{\partial f_1}{\partial C} & \frac{\partial f_1}{\partial N} \\ \frac{\partial f_2}{\partial C} & \frac{\partial f_2}{\partial N} \end{bmatrix} = \begin{bmatrix} -N\frac{1}{(1+C)^2} - 1 & -\frac{C}{1+C} \\ \alpha_1 N \frac{1}{(1+C)^2} & \alpha_1 \frac{C}{1+C} - 1 \end{bmatrix}
$$

K ロ X K 伊 X K ミ X K ミ X ミ → D Q Q Q

$$
J_F = \begin{bmatrix} \frac{\partial f_1}{\partial C} & \frac{\partial f_1}{\partial N} \\ \frac{\partial f_2}{\partial C} & \frac{\partial f_2}{\partial N} \end{bmatrix} = \begin{bmatrix} -N\frac{1}{(1+C)^2} - 1 & -\frac{C}{1+C} \\ \alpha_1 N \frac{1}{(1+C)^2} & \alpha_1 \frac{C}{1+C} - 1 \end{bmatrix}
$$

1.ekvilibrum $X_1 = (\alpha_2, 0)$

$$
J_F(X_1)=J_F(\alpha_2,0)=\left[\begin{array}{cc}-1&-\frac{\alpha_2}{1+\alpha_2}\\0&\alpha_1\frac{\alpha_2}{1+\alpha_2}-1\end{array}\right]
$$

造り

メロトメ 御 トメ 差 トメ 差 トー

$$
J_F = \begin{bmatrix} \frac{\partial f_1}{\partial C} & \frac{\partial f_1}{\partial N} \\ \frac{\partial f_2}{\partial C} & \frac{\partial f_2}{\partial N} \end{bmatrix} = \begin{bmatrix} -N\frac{1}{(1+C)^2} - 1 & -\frac{C}{1+C} \\ \alpha_1 N \frac{1}{(1+C)^2} & \alpha_1 \frac{C}{1+C} - 1 \end{bmatrix}
$$

1.ekvilibrum $X_1 = (\alpha_2, 0)$

$$
J_F(X_1)=J_F(\alpha_2,0)=\left[\begin{array}{cc}-1&-\frac{\alpha_2}{1+\alpha_2}\\0&\alpha_1\frac{\alpha_2}{1+\alpha_2}-1\end{array}\right]
$$

Eigenvalues are on the diagonal! (Upper triangular matrix.)

$$
\begin{array}{rcl}\n\lambda_1 &=& -1 < 0 \\
\lambda_2 &=& \alpha_1 \frac{\alpha_2}{1 + \alpha_2} - 1\n\end{array}
$$

 QQ 97 / 120

イロトメ 御 トメ 君 トメ 君 トー 君

 \setminus

メロトメ 御 メメ 君 メメ 君 メー 君一

$$
\lambda_2 = \alpha_1 \frac{\alpha_2}{1 + \alpha_2} - 1
$$

$$
= \frac{\alpha_1 \alpha_2 - 1 - \alpha_2}{1 + \alpha_2}
$$

$$
= \frac{\alpha_2 (\alpha_1 - 1) - 1}{1 + \alpha_2}
$$

$$
= \frac{\alpha_1 - 1}{1 + \alpha_2} \left(\alpha_2 - \frac{1}{\alpha_1 - 1} \right)
$$

 2990 98 / 120

$$
\lambda_2 = \alpha_1 \frac{\alpha_2}{1 + \alpha_2} - 1
$$

$$
= \frac{\alpha_1 \alpha_2 - 1 - \alpha_2}{1 + \alpha_2}
$$

$$
= \frac{\alpha_2 (\alpha_1 - 1) - 1}{1 + \alpha_2}
$$

$$
= \frac{\alpha_1 - 1}{1 + \alpha_2} \left(\alpha_2 - \frac{1}{\alpha_1 - 1} \right)
$$

If exists positive second equilibrium (X_2) :

$$
\alpha_1-1 \quad i \quad \alpha_2-\frac{1}{\alpha_1-1}>0
$$

then

$$
\lambda_2 > \mathsf{0}
$$

and X_1 is not locally stable equilibrium.

 299 98 / 120

E

K ロ ▶ K 個 ▶ K 君 ▶ K 君 ▶ ..

$$
X_2 = \left(\frac{1}{\alpha_1 - 1}, \alpha_1 \left(\alpha_2 - \frac{1}{\alpha_1 - 1}\right)\right)
$$

メロトメ団トメモトメモト 重 299

$$
X_2 = \left(\frac{1}{\alpha_1 - 1}, \alpha_1 \left(\alpha_2 - \frac{1}{\alpha_1 - 1}\right)\right)
$$

Denote: $\beta = \alpha_2(\alpha_1 - 1)$

Existence of positive equilibrium⇒

$$
\alpha_1 > 1, \quad \beta > 1
$$

в

イロト イ団 トイモト イモト

$$
X_2 = \left(\frac{1}{\alpha_1 - 1}, \alpha_1 \left(\alpha_2 - \frac{1}{\alpha_1 - 1}\right)\right)
$$

Denote: $\beta = \alpha_2(\alpha_1 - 1)$

Existence of positive equilibrium⇒

$$
\alpha_1 > 1, \quad \beta > 1
$$

IFrom the condition for equilibrium:

$$
\alpha_1\frac{C}{1+C}-1=0
$$

в

イロト イ団 トイミト イミト

$$
X_2 = \left(\frac{1}{\alpha_1 - 1}, \alpha_1 \left(\alpha_2 - \frac{1}{\alpha_1 - 1}\right)\right)
$$

Denote: $\beta = \alpha_2(\alpha_1 - 1)$

Existence of positive equilibrium⇒

$$
\alpha_1 > 1, \quad \beta > 1
$$

IFrom the condition for equilibrium:

$$
\alpha_1 \frac{C}{1+C} - 1 = 0
$$

$$
J_F(X_2) = \begin{bmatrix} -N \frac{1}{(1+C)^2} - 1 & -\frac{C}{1+C} \\ \alpha_1 N \frac{1}{(1+C)^2} & \alpha_1 \frac{C}{1+C} - 1 \end{bmatrix}
$$

$$
J_F(X_2) = \left[\begin{array}{cc} -\left(N^*\frac{1}{(1+C^*)^2}+1\right) & -\frac{C^*}{1+C^*} \\ \alpha_1N^*\frac{1}{(1+C^*)^2} & 0 \end{array} \right]
$$

$$
J_F(X_2)=\left[\begin{array}{cc} -\left(N^*\frac{1}{(1+C^*)^2}+1\right)&-\frac{C^*}{1+C^*}\\&\alpha_1N^*\frac{1}{(1+C^*)^2}&0\end{array}\right]
$$

$$
trJ_F(X_2)=-\left(N^*\frac{1}{(1+C^*)^2}+1\right)<0
$$

100 / 120

K ロ X K 伊 X K ミ X K ミ X ミ → D Q Q Q

$$
J_F(X_2) = \left[\begin{array}{cc} -\left(N^*\frac{1}{(1+C^*)^2}+1\right) & -\frac{C^*}{1+C^*} \\ \alpha_1N^*\frac{1}{(1+C^*)^2} & 0 \end{array} \right]
$$

$$
trJ_F(X_2)=-\left(N^*\frac{1}{(1+C^*)^2}+1\right)<0
$$

$$
\det J_F(X_2)=\frac{C^*}{1+C^*}\alpha_1 N^*\frac{1}{(1+C^*)^2}>0
$$

100 / 120

K ロ X K 伊 X K ミ X K ミ X ミ → D Q Q Q

$$
J_F(X_2) = \left[\begin{array}{cc} -\left(N^*\frac{1}{(1+C^*)^2} + 1\right) & -\frac{C^*}{1+C^*} \\ \alpha_1 N^*\frac{1}{(1+C^*)^2} & 0 \end{array} \right]
$$

$$
\text{tr} J_F(X_2) = -\left(N^*\frac{1}{(1+C^*)^2}+1\right) < 0
$$

$$
\det J_{\digamma}(X_2)=\frac{C^*}{1+C^*}\alpha_1 N^*\frac{1}{(1+C^*)^2}>0
$$

 X_2 is locally stable equilibrium.

 299 100 / 120

重

K ロ ト K 個 ト K 重 ト K 重 ト …

4.6. Phase portrait for chemostat model

イロト イ団 トイモト イモト в 299

101 / 120

4.6. Phase portrait for chemostat model

Dedimensionalized chemostat model:

$$
C' = -\frac{C}{1+C}N + \alpha_2 - C
$$

$$
N' = \alpha_1 \frac{C}{1+C}N - N
$$

Equilibriums:

$$
X_1 = (\alpha_2, 0), \quad X_2 = \left(\frac{1}{\alpha_1 - 1}, \alpha_1 \left(\alpha_2 - \frac{1}{\alpha_1 - 1}\right)\right)
$$

$$
J_F(X_1) = J_F(\alpha_2, 0) = \begin{bmatrix} -1 & -\frac{\alpha_2}{1 + \alpha_2} \\ 0 & \alpha_1 \frac{\alpha_2}{1 + \alpha_2} - 1 \end{bmatrix}
$$

 Ω 101 / 120

1. One positive equilibrium

$$
\alpha_1 - 1 < 0 \quad \text{or} \quad \alpha_2 - \frac{1}{\alpha_1 - 1} < 0
$$
\nExample: $\alpha_1 = \frac{1}{2}$, $\alpha_2 = 2$: $J_F(X_1) = \begin{bmatrix} -1 & -\frac{2}{3} \\ 0 & -\frac{2}{3} \end{bmatrix}$

\nThese restrict this linearized differential equation.

Phase portrait of the linearized differential equatione:

Phase portrait

Linearized equationea Chemostat model

 $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$

 290 103 / 120

Þ

2. Two positive equilibriums

$$
\alpha_1 - 1 > 0 \quad \text{and} \quad \alpha_2 - \frac{1}{\alpha_1 - 1} > 0
$$

$$
X_2 = \left(\frac{1}{\alpha_1 - 1}, \alpha_1 \left(\alpha_2 - \frac{1}{\alpha_1 - 1}\right)\right)
$$

$$
J_F(X_2) = \left[\begin{array}{cc} -\left(N^*\frac{1}{(1+C^*)^2}+1\right) & -\frac{C^*}{1+C^*} \\ \alpha_1N^*\frac{1}{(1+C^*)^2} & 0 \end{array} \right]
$$

 299 104 / 120

∍

イロト イ部 トイ磨 トイ磨 トー

2. Two positive equilibriums

$$
\alpha_1 - 1 > 0 \quad \text{and} \quad \alpha_2 - \frac{1}{\alpha_1 - 1} > 0
$$

$$
X_2 = \left(\frac{1}{\alpha_1 - 1}, \alpha_1 \left(\alpha_2 - \frac{1}{\alpha_1 - 1}\right)\right)
$$

$$
J_F(X_2) = \left[\begin{array}{cc} -\left(N^*\frac{1}{(1+C^*)^2} + 1\right) & -\frac{C^*}{1+C^*} \\ \alpha_1 N^* \frac{1}{(1+C^*)^2} & 0 \end{array} \right]
$$

Example: $\alpha_1 = 2$, $\alpha_2 = 2$

 QQ 104 / 120

в

イロト イ団 トイモト イモト

1. equilibrium:
$$
X_1 = (2, 0), J_F(X_1) = \begin{bmatrix} -1 & -\frac{2}{3} \\ 0 & \frac{1}{3} \end{bmatrix}
$$

Phase portrait of the linearized differential equatione:

メロトメ 御 トメ 君 トメ 君 ト ŧ 299

105 / 120

2. equilibrium:
$$
X_2 = (1, 2), F'(X_2) = \begin{bmatrix} -\frac{3}{2} & -\frac{1}{2} \\ 1 & 0 \end{bmatrix}
$$

Phase portrait of the linearized differential equatione:

メロトメ 御 トメ ヨ トメ ヨト ŧ 299

1. equilibrium 2. equilibrium

 299

メロトメ 伊 トメ 君 トメ 君 トー
Phase portrait of the chemostat model:

メロトメ 御 トメ ヨ トメ ヨト QQ ∍

109 / 120

Phase portrait of the chemostat model:

Problem

Dinamics of two populations is described by the system of differential equations:

$$
x' = xy - 2x - 2y + 4,
$$

\n
$$
y' = 4y - y^2 - x - 1.
$$

Sketch the phase portrait of the given differential equation.

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1$

Equilibriums:

 $xy - 2x - 2y + 4 = 0$

Equilibriums:

$$
xy-2x-2y+4=0 \Rightarrow x(y-2)-2(y-2)=(x-2)(y-2)=0
$$

イロト 不優 トイ磨 トイ磨 トー ミー 299

Equilibriums:

$$
xy-2x-2y+4=0 \Rightarrow x(y-2)-2(y-2)=(x-2)(y-2)=0 \Rightarrow
$$

 $x = 2$ or $y = 2$.

Equilibriums:

$$
xy-2x-2y+4=0 \Rightarrow x(y-2)-2(y-2)=(x-2)(y-2)=0 \Rightarrow
$$

$$
x=2 \quad \text{or} \quad y=2.
$$

1.
$$
y = 2
$$

0 = $4y - y^2 - x - 1 = 3 - x$

イロト 不優 トイ磨 トイ磨 トー 重し 299 112 / 120

Equilibriums:

$$
xy-2x-2y+4=0 \Rightarrow x(y-2)-2(y-2)=(x-2)(y-2)=0 \Rightarrow
$$

$$
x=2 \quad \text{or} \quad y=2.
$$

1.
$$
y = 2
$$

0 = $4y - y^2 - x - 1 = 3 - x \Rightarrow x = 3$

ミー

イロト 不優 トイ磨 トイ磨 トー

Equilibriums:

$$
xy-2x-2y+4=0 \Rightarrow x(y-2)-2(y-2)=(x-2)(y-2)=0 \Rightarrow
$$

$$
x=2 \quad \text{or} \quad y=2.
$$

1.
$$
y = 2
$$

0 = $4y - y^2 - x - 1 = 3 - x \Rightarrow x = 3$

Equilibrium: $E_1 = (3, 2)$

目目

イロト イ団 トイミト イミト

Equilibriums:

$$
xy-2x-2y+4=0 \Rightarrow x(y-2)-2(y-2)=(x-2)(y-2)=0 \Rightarrow
$$

$$
x=2 \quad \text{or} \quad y=2.
$$

1.
$$
y = 2
$$

0 = $4y - y^2 - x - 1 = 3 - x \Rightarrow x = 3$

Equilibrium: $E_1 = (3, 2)$

2. $x = 2$

$$
0 = 4y - y^2 - x - 1 = -y^2 + 4y - 3
$$

重

イロト イ団 トイヨト イヨト

Equilibriums:

$$
xy-2x-2y+4=0 \Rightarrow x(y-2)-2(y-2)=(x-2)(y-2)=0 \Rightarrow
$$

$$
x=2 \quad \text{or} \quad y=2.
$$

1.
$$
y = 2
$$

0 = $4y - y^2 - x - 1 = 3 - x$ \Rightarrow $x = 3$

Equilibrium: $E_1 = (3, 2)$

2. $x = 2$

$$
0 = 4y - y^2 - x - 1 = -y^2 + 4y - 3 \quad \Rightarrow \quad y_1 = 1, \quad y_2 = 3.
$$

 299 112 / 120

重

イロト イ団 トイヨト イヨト

Equilibriums:

$$
xy-2x-2y+4=0 \Rightarrow x(y-2)-2(y-2)=(x-2)(y-2)=0 \Rightarrow
$$

$$
x=2 \quad \text{or} \quad y=2.
$$

1.
$$
y = 2
$$

0 = $4y - y^2 - x - 1 = 3 - x$ \Rightarrow $x = 3$

Equilibrium: $E_1 = (3, 2)$

2. $x = 2$

$$
0 = 4y - y^2 - x - 1 = -y^2 + 4y - 3 \Rightarrow y_1 = 1, y_2 = 3.
$$

Equilibrium: $E_2 = (2, 1), E_3 = (2, 3).$

$$
F(x,y) = \left[\begin{array}{c} xy - 2x - 2y + 4, \\ 4y - y^2 - x - 1. \end{array} \right]
$$

メロトメ 御 トメ 差 トメ 差 トー $E = \Omega Q$

$$
F(x, y) = \begin{bmatrix} xy - 2x - 2y + 4, \\ 4y - y^2 - x - 1. \end{bmatrix}
$$

$$
J_F(x, y) = \begin{bmatrix} y - 2 & x - 2 \\ -1 & 4 - 2y. \end{bmatrix}
$$

$$
F(x, y) = \begin{bmatrix} xy - 2x - 2y + 4, \\ 4y - y^2 - x - 1. \end{bmatrix}
$$

$$
J_F(x, y) = \begin{bmatrix} y - 2 & x - 2 \\ -1 & 4 - 2y. \end{bmatrix}
$$

1. Equilibrium

$$
J_F(E_1)=J_F(3,2)=\left[\begin{array}{cc}0&1\\-1&0.\end{array}\right]
$$

 299 113 / 120

■■

イロト イ団 トイミト イミト

$$
F(x, y) = \begin{bmatrix} xy - 2x - 2y + 4, \\ 4y - y^2 - x - 1. \end{bmatrix}
$$

$$
J_F(x, y) = \begin{bmatrix} y - 2 & x - 2 \\ -1 & 4 - 2y. \end{bmatrix}
$$

1. Equilibrium

$$
J_F(E_1)=J_F(3,2)=\left[\begin{array}{cc}0&1\\-1&0.\end{array}\right]
$$

Circle!

 299 113 / 120

重

イロト イ団 トイヨト イヨト

$$
J_F(x, y) = \begin{bmatrix} y - 2 & x - 2 \\ -1 & 4 - 2y \end{bmatrix}
$$

$$
J_F(E_2) = J_F(2, 3) = \begin{bmatrix} 1 & 0 \\ -1 & -2 \end{bmatrix}
$$

メロメメ部メメ君メメ君メー 重 299

$$
J_F(x, y) = \begin{bmatrix} y - 2 & x - 2 \\ -1 & 4 - 2y \end{bmatrix}
$$

$$
J_F(E_2) = J_F(2, 3) = \begin{bmatrix} 1 & 0 \\ -1 & -2 \end{bmatrix}
$$

Saddle.

メロトメ 御 トメ 差 トメ 差 トー 重 299

$$
J_F(x, y) = \begin{bmatrix} y - 2 & x - 2 \\ -1 & 4 - 2y \end{bmatrix}
$$

$$
J_F(E_2) = J_F(2, 3) = \begin{bmatrix} 1 & 0 \\ -1 & -2 \end{bmatrix}
$$

Saddle.

$$
\lambda_2=-2, \quad v_2=e_2
$$

 299 115 / 120

重

メロトメ 御 トメ 差 トメ 差 トー

$$
J_F(x, y) = \begin{bmatrix} y - 2 & x - 2 \\ -1 & 4 - 2y \end{bmatrix}
$$

$$
J_F(E_2) = J_F(2, 3) = \begin{bmatrix} 1 & 0 \\ -1 & -2 \end{bmatrix}
$$

Saddle.

$$
\lambda_2=-2, \quad v_2=e_2
$$

$$
J_F - \lambda_1 I = \left[\begin{array}{cc} 0 & 0 \\ -1 & -3 \end{array} \right]
$$

 299 115 / 120

重

メロトメ 御 トメ 差 トメ 差 トー

$$
J_F(x, y) = \begin{bmatrix} y - 2 & x - 2 \\ -1 & 4 - 2y \end{bmatrix}
$$

$$
J_F(E_2) = J_F(2, 3) = \begin{bmatrix} 1 & 0 \\ -1 & -2 \end{bmatrix}
$$

Saddle.

$$
\lambda_2 = -2, \quad v_2 = e_2
$$

$$
J_F - \lambda_1 I = \begin{bmatrix} 0 & 0 \\ -1 & -3 \end{bmatrix} \Rightarrow x - 1 = -3x_2
$$

メロトメ 御 トメ 差 トメ 差 トー 重 299 115 / 120

$$
J_F(x, y) = \begin{bmatrix} y - 2 & x - 2 \\ -1 & 4 - 2y \end{bmatrix}
$$

$$
J_F(E_2) = J_F(2, 3) = \begin{bmatrix} 1 & 0 \\ -1 & -2 \end{bmatrix}
$$

Saddle.

$$
\lambda_2 = -2, \quad v_2 = e_2
$$

$$
J_F - \lambda_1 I = \begin{bmatrix} 0 & 0 \\ -1 & -3 \end{bmatrix} \Rightarrow x - 1 = -3x_2 \Rightarrow v_1 = \begin{bmatrix} -3 \\ 1 \end{bmatrix}
$$

メロトメ 御 トメ 差 トメ 差 トー 重 299 115 / 120

$$
J_F(x, y) = \begin{bmatrix} y - 2 & x - 2 \\ -1 & 4 - 2y \end{bmatrix}
$$

$$
J_F(E_2) = J_F(2, 3) = \begin{bmatrix} 1 & 0 \\ -1 & -2 \end{bmatrix}
$$

Saddle.

$$
\lambda_2 = -2, \quad v_2 = e_2
$$

$$
J_F - \lambda_1 I = \begin{bmatrix} 0 & 0 \\ -1 & -3 \end{bmatrix} \Rightarrow x - 1 = -3x_2 \Rightarrow v_1 = \begin{bmatrix} -3 \\ 1 \end{bmatrix}
$$

メロトメ 御 トメ 差 トメ 差 トー 重 299 115 / 120

$$
J_F(x, y) = \begin{bmatrix} y - 2 & x - 2 \\ -1 & 4 - 2y \end{bmatrix}
$$

$$
J_F(E_3) = J_F(2, 1) = \begin{bmatrix} -1 & 0 \\ -1 & 2 \end{bmatrix}
$$

メロメメ部メメ君メメ君メー 重 299 117 / 120

$$
J_F(x, y) = \begin{bmatrix} y - 2 & x - 2 \\ -1 & 4 - 2y \end{bmatrix}
$$

$$
J_F(E_3) = J_F(2, 1) = \begin{bmatrix} -1 & 0 \\ -1 & 2 \end{bmatrix}
$$

Saddle.

メロトメ 御 トメ 差 トメ 差 トー 重 299 117 / 120

$$
J_F(x, y) = \begin{bmatrix} y - 2 & x - 2 \\ -1 & 4 - 2y \end{bmatrix}
$$

$$
J_F(E_3) = J_F(2, 1) = \begin{bmatrix} -1 & 0 \\ -1 & 2 \end{bmatrix}
$$

Saddle.

$$
\lambda_2=2, \quad v_2=e_2
$$

 299 117 / 120

重

メロトメ 御 トメ 差 トメ 差 トー

$$
J_F(x, y) = \begin{bmatrix} y - 2 & x - 2 \\ -1 & 4 - 2y \end{bmatrix}
$$

$$
J_F(E_3) = J_F(2, 1) = \begin{bmatrix} -1 & 0 \\ -1 & 2 \end{bmatrix}
$$

Saddle.

$$
\lambda_2=2, \quad v_2=e_2
$$

$$
J_F - \lambda_1 I = \left[\begin{array}{cc} 0 & 0 \\ -1 & 3 \end{array} \right]
$$

 299 117 / 120

重

メロトメ 御 トメ 差 トメ 差 トー

$$
J_F(x, y) = \begin{bmatrix} y - 2 & x - 2 \\ -1 & 4 - 2y \end{bmatrix}
$$

$$
J_F(E_3) = J_F(2, 1) = \begin{bmatrix} -1 & 0 \\ -1 & 2 \end{bmatrix}
$$

Saddle.

$$
\lambda_2 = 2, \quad v_2 = e_2
$$

$$
J_F - \lambda_1 I = \begin{bmatrix} 0 & 0 \\ -1 & 3 \end{bmatrix} \Rightarrow x - 1 = 3x_2
$$

メロトメ 御 トメ 差 トメ 差 トー 重 299 117 / 120

$$
J_F(x, y) = \begin{bmatrix} y - 2 & x - 2 \\ -1 & 4 - 2y \end{bmatrix}
$$

$$
J_F(E_3) = J_F(2, 1) = \begin{bmatrix} -1 & 0 \\ -1 & 2 \end{bmatrix}
$$

Saddle.

$$
\lambda_2 = 2, \quad v_2 = e_2
$$

$$
J_F - \lambda_1 I = \begin{bmatrix} 0 & 0 \\ -1 & 3 \end{bmatrix} \Rightarrow x - 1 = 3x_2 \Rightarrow v_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}
$$

メロトメ 御 トメ 差 トメ 差 トー 重 299 117 / 120

メロメメ部メメ君メメ君メー 重 299

118 / 120

Sketch of the phase portrait

Phase portrait

メロトメ 御 トメ ヨ トメ ヨト ŧ 299