
Analysis of systems of differential equations

PRINCIPLES OF MATHEMATICAL MODELLING

4. ANALYSIS OF SYSTEMS OF DIFFERENTIAL
EQUATIONS
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4.1. System of differential equations

Chemostat model is an example for system of differential equations:

S′ = −V
S

K + S
P
Y

+ ω S0 − ω S, S(0) = s0

P ′ = V
S

K + S
P − ω P, P(0) = p0

→ Two differential equations with two unknown functions.

System of differential equations may be written in a vector form.

Define

X (t) =

[
S(t)
P(t)

]
, X : R→ R2

X - vector function
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Derivative of vector function:

X ′(t) =

[
S′(t)
P ′(t)

]
,

→ derivative by components

For

F (X ) =

 −V
S

K + S
P
Y

+ ω S0 − ω S

V
S

K + S
P − ω P

 and X0 =

[
s0
p0

]
,

vector function

X (t) =

[
S(t)
P(t)

]
is a solution of the differential equation

X ′(t) = F (X (t)), X (0) = X0.
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Generally, system of differential equations

y ′1 = f1(y1, . . . , yn), y1(0) = y0
1

y ′2 = f2(y1, . . . , yn), y2(0) = y0
2

...
y ′n = fn(y1, . . . , yn), yn(0) = y0

n

may be written in a vector form.

Y ′(t) = F (Y (t)), Y (0) = Y0,

where

Y =

 y1
...

yn

 , F (Y ) =

 f1(y1, . . . , yn)
...

fn(y1, . . . , yn)

 i Y0 =

 y0
1
...

y0
n

 ,
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4.3. Linear system of differential equations

Diiferential equation
X ′(t) = A X (t).

for A ∈ Mn(R) is called a linear system of differential equations.

-X ′ = F (X ) and F is a linear function.

-Otherwise, nonlinear system of differential equations.

x ′1(t) = a11x1(t) + a12x2(t) + . . .+ a1nxn(t)
x ′2(t) = a21x1(t) + a22x2(t) + . . .+ a2nxn(t)

...
...

x ′n(t) = an1x1(t) + an2x2(t) + . . .+ annxn(t)

5 / 120



Analysis of systems of differential equations Linear system of differential equations

4.3. Linear system of differential equations

Diiferential equation
X ′(t) = A X (t).

for A ∈ Mn(R) is called a linear system of differential equations.

-X ′ = F (X ) and F is a linear function.

-Otherwise, nonlinear system of differential equations.

x ′1(t) = a11x1(t) + a12x2(t) + . . .+ a1nxn(t)
x ′2(t) = a21x1(t) + a22x2(t) + . . .+ a2nxn(t)

...
...

x ′n(t) = an1x1(t) + an2x2(t) + . . .+ annxn(t)

5 / 120



Analysis of systems of differential equations Linear system of differential equations

4.3. Linear system of differential equations

Diiferential equation
X ′(t) = A X (t).

for A ∈ Mn(R) is called a linear system of differential equations.

-X ′ = F (X ) and F is a linear function.

-Otherwise, nonlinear system of differential equations.

x ′1(t) = a11x1(t) + a12x2(t) + . . .+ a1nxn(t)
x ′2(t) = a21x1(t) + a22x2(t) + . . .+ a2nxn(t)

...
...

x ′n(t) = an1x1(t) + an2x2(t) + . . .+ annxn(t)

5 / 120



Analysis of systems of differential equations Linear system of differential equations

Eigenvalue

Definition
Scalar λ is an eigenvalue of matrix A ∈ Mn(R) if there exists x 6= 0
such that

A x = λ x .

Vector x is called eigenvector of matrix A.

Theorem
λ is eigenvalue of matrix A ∈ Mn(R) ⇔ det(A− λ I) = 0.

→ λ is zero (root) of characteristic polynomial (characteristic root).
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Example
Find eigenvalues and eigenvectors of matrix

A =

[
3 1
1 4

]
.

Solution.

p(λ) =

∣∣∣∣ 3− λ 1
1 4− λ

∣∣∣∣ = (3− λ)(4− λ)− 1 = λ2 − 7λ+ 11

p(λ) = 0 ⇒

λ1,2 =
7±
√

49− 4 · 11
2

=
7±
√

5
2

λ1 =
7 +
√

5
2

, λ2 =
7−
√

5
2
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Eigenvectors.

Solve the system:

A x = λ1 x ⇔ (A− λ1I)x = 0

[
3− λ1 1

1 4− λ1

]
x = 0

Augmented matrix (last column i a zero-vector and we omitted it):[
3− 7+

√
5

2 1
1 4− 7+

√
5

2

]
∼

[
−1−

√
5

2 1
1 1−

√
5

2

]
∼

∼

[
−1+

√
5

2 1
1+
√

5
2

1−5
4

]
∼

[
−1+

√
5

2 1
−1+

√
5

2 1

]
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−1 +
√

5
2

x1 + x2 = 0 ⇒ x2 =
1 +
√

5
2

x1

and

X1 =

[
x1

1+
√

5
2 x1

]
= x1

[
1

1+
√

5
2

]

X1 =

[
1

1+
√

5
2

]
A little bit faster. Note that matrix[

3− λ2 1
1 4− λ2

]
x = 0

is singular. ⇒ rows are dependent ⇒ rows are proportional

(3− λ2)x1 + x2 = 0 ⇒ x2 = −(3− λ2)x1 = −

(
3− 7−

√
5

2

)
x1
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x2 =
1−
√

5
2

x1

⇒ X2 =

[
1

1−
√

5
2

]
x1

X2 =

[
1

1−
√

5
2

]
Checking the result:

A X1 =

[
3 1
1 4

][
1

1+
√

5
2

]
=

[
3 + 1+

√
5

2
1 + 4 1+

√
5

2

]
=

[
7+
√

5
2

6+4
√

5
2

]

λ1 X1 =
7 +
√

5
2

[
1

1+
√

5
2

]
=

[
7+
√

5
2

7+
√

5+7
√

5+5
4

]
=

[
7+
√

5
2

12+8
√

5
4

]

⇒ A X1 = λ1 X1
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Analysis of systems of differential equations Linear system of differential equations

Solution of differemtial equation x ′ = A x

Example

Solve differential equation x ′ = A x , x(0) = x0 where

A =

[
1 0
0 2

]
i x0 =

[
1
1

]
.

Solution.

x ′ = A x ⇔
[

x ′1
x ′2

]
=

[
1 0
0 2

] [
x1
x2

]
=

[
x1

2 x2

]
System:

x ′1 = x1

x ′2 = 2 x2

Each equation can be solved separatelly.
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Analysis of systems of differential equations Linear system of differential equations

x ′1 = x1 ⇒ x1(t) = c1 et

x ′2 = x2 ⇒ x2(t) = c2 e2 t

x(t) =

[
c1 et

c2 e2 t

]
Constants c1 i c2 are determined from the initial condition[

1
1

]
= x(0) =

[
c1
c2

]

x(t) =

[
et

e2 t

]
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Analysis of systems of differential equations Linear system of differential equations

Theorem
Let matrix A ∈ Mn(R) is similar to diagonal matrix. then a general
solution of differential equation x ′(t) = A x is given by

x(t) =
n∑

i=1

ci eλi t vi

where λi are eigenvalues and vi corresponding eigenvectors of matrix
A (A vi = λivi ). Constants ci are determined from initial conditions.

Note. Matrix A is similar to diagonal matrix if there exist regular matrix
T and diagonal matrix D satisfying

A = T D T−1.

On the diagonal of D are eigenvalues of matrix A and columns of
matrix T are eigenvectors:

⇒ A T = T D ⇒ A T ei = T D ei

⇒ A T ei = T dii ei ⇒ A (T ei) = dii (T ei)

ei - vector of canonical basis
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Analysis of systems of differential equations Linear system of differential equations

Proof.

A = T D T−1, A vi = λivi , D = diag(λ1, . . . , λn), T ei = vi

⇒ x ′ = A x = T D T−1 x ⇒ T−1 x ′ = D T−1x

Make substitution

y = T−1x ⇒ y ′ = T−1x ′

Equation:
⇒ y ′ = D y

D is a diagonal matrix and a system is of the form:

y ′i = λiyi , i = 1, . . . ,n

Solution
yi(t) = ci eλi t , i = 1, . . . ,n
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Analysis of systems of differential equations Linear system of differential equations

y(t) =

 y1(t)
...

yn(t)

 =

 c1 eλ1t

...
cn eλnt

 =
n∑

i=1

ci eλi t ei

y(t) = T−1x(t) ⇒ x(t) = T y(t)

⇒ x(t) = T
n∑

i=1

ci eλi t ei =
n∑

i=1

ci eλi t T ei =
n∑

i=1

ci eλi t vi

Q.E.D.
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Analysis of systems of differential equations Linear system of differential equations

Why is similarity to oa diagonal matrix imortant?

Example

Solve differential equation x ′ = A x , x(0) = x0 where

A =

[
1 1
0 1

]
i x0 =

[
1
1

]
.

Solution.

x ′ = A x ⇔
[

x ′1
x ′2

]
=

[
1 1
0 1

] [
x1
x2

]
=

[
x1 + x2

x2

]
System:

x ′1 = x1 + x2

x ′2 = x2

Each equation may be solved separately (first solve second equation
and after that solve first equation).
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Analysis of systems of differential equations Linear system of differential equations

x ′2 = x2, x2(0) = 1 ⇒ x2 = et

⇒ x ′1 = x1 + x2, x1(0) = 1 ⇒ x ′1 = x1 + et , x1(0) = 1

(et is not a solution!)

Mathematica:

DSolve[y’[t] == y[t] + Exp[t], y[t], t]

{{y[t] -> Eˆt t + Eˆt C[1]}}

x1(t) = c1et + t et ⇒ x1(t) = et + t et

Note. In the case of multiple eigenvalues,

we obtain terms eλi t , t eλi t , t2 eλi t , . . . in the solution.
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Analysis of systems of differential equations Linear system of differential equations

Stability of the linear system of differential
equations

Definition
Linear system of differential equations

X ′ = A X

where A ∈ Mn(R), is said to be stable if any solution X (t) satisfies

lim
t→∞

X (t) = 0.

Theorem
A linear system with constant coefficients X ′ = A X is stable if and only
if all eigenvalues of A have negative real parts. je
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Analysis of systems of differential equations Linear system of differential equations

Proof. (Only for case when A is similar to diagonal matrix).

Solution of differential equation is given by

X (t) =
n∑

k=1

ck eλk t vk .

Generally, λk ∈ C, λk = ak + i bk , ak ,bk ∈ R.

eλk t = e(ak+i bk )t = eak t (cos bk t + i sin bk t)

and ∣∣∣eλk t
∣∣∣ = eak t

lim
t→∞

eak t = 0 ⇔ ak < 0 ⇔ Reλk < 0

lim
t→∞

X (t) = 0 ⇔ lim
t→∞

eak t = 0, ∀k

Q.E.D.
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Analysis of systems of differential equations Linear system of differential equations

Eigenvalues of 2× 2 matrix

For 2× 2 matrices we do not have to calculate eigenvalues explicitly.

Transform matrix A to Jordan form:

A →
[
λ1 ∗
0 λ2

]
λ1 and λ2 are eigenvalues of matrix A ∈ M2(R).

Determinant and trace do not depend on the choices of the basis.

⇒ Similar matrices have same trace and determinant.

trA = λ1 + λ2, det A = λ1λ2,

20 / 120
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Analysis of systems of differential equations Linear system of differential equations

More elementary argumentation.

Characteristic polynomial of matrix A is

kA(λ) = λ2 − b λ+ c, b = tr A, c = det A

λ1 =
b +
√

b2 − 4 a c
2

, λ2 =
b −
√

b2 − 4 a c
2

Viete’s formulae⇒

λ1 + λ2 = b = tr A
λ1 λ2 = c = det A
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Analysis of systems of differential equations Linear system of differential equations

Theorem
For A ∈ M2(R), system of differential equations x ′ = A x is stable⇔
tr A < 0 i det A > 0

Proof.
1. λ1, λ2 ∈ R.

λ1 < 0, λ2 < 0 ⇒ λ1 + λ2 < 0 i λ1 λ2 > 0

⇐. Let
λ1 + λ2 < 0 i λ1 λ2 > 0.

Since λ1 λ2 > 0⇒ λ1 and λ2 are of the same sign.

Since λ1 + λ2 < 0⇒ λ1 < 0 i λ2 < 0.

2. λ1, λ2 ∈ C\R. ⇒ λ1 = a + i c, λ2 = a− i c ⇒
λ1 λ2 = a2 + b2 > 0

λ1 + λ2 = 2a = 2Reλi

λ1 + λ2 < 0 ⇔ Reλ1 < 0 and Reλ2 < 0

Q.E.D.
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tr A < 0 i det A > 0

Proof.
1. λ1, λ2 ∈ R.

λ1 < 0, λ2 < 0 ⇒ λ1 + λ2 < 0 i λ1 λ2 > 0

⇐. Let
λ1 + λ2 < 0 i λ1 λ2 > 0.

Since λ1 λ2 > 0⇒ λ1 and λ2 are of the same sign.
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λ1 λ2 = a2 + b2 > 0

λ1 + λ2 = 2a = 2Reλi

λ1 + λ2 < 0 ⇔ Reλ1 < 0 and Reλ2 < 0

Q.E.D.
22 / 120



Analysis of systems of differential equations Phase portrait

4.3. Phase portrait

Consider differential equation

X (t)′ = F (X (t)), X : R→ R2

Phase portrait - representative set of solutions, plotted as parametric
curve (t is parameter) on Cartesian plane.

For given initial condition X0 = [x0
1 , x

0
2 ]T we obtain one curve

(trajectory)

Phase portrait is obtained by displaying trajectories for several initial
conditions.

Cartesian plane containing phase portrait is sometimes named phase
plane.
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Analysis of systems of differential equations Phase portrait

Example
Sketch phase portrait of differential equation

x ′ =

[
−1 0
0 −2

]
x

Solution. Eigenvalues: λ1 = −1, λ2 = −2

Eigenvectors:

v1 =

[
1
0

]
, v2 =

[
0
1

]
Solution:

x(t) = c1 e−t
[

1
0

]
+ c2 e−2t

[
0
1

]
=

We have to plot several solutions (with different initial conditions).

24 / 120



Analysis of systems of differential equations Phase portrait

Example
Sketch phase portrait of differential equation

x ′ =

[
−1 0
0 −2

]
x

Solution. Eigenvalues: λ1 = −1, λ2 = −2

Eigenvectors:

v1 =

[
1
0

]
, v2 =

[
0
1

]

Solution:

x(t) = c1 e−t
[

1
0

]
+ c2 e−2t

[
0
1

]
=

We have to plot several solutions (with different initial conditions).

24 / 120



Analysis of systems of differential equations Phase portrait

Example
Sketch phase portrait of differential equation

x ′ =

[
−1 0
0 −2

]
x

Solution. Eigenvalues: λ1 = −1, λ2 = −2

Eigenvectors:

v1 =

[
1
0

]
, v2 =

[
0
1

]
Solution:

x(t) = c1 e−t
[

1
0

]
+ c2 e−2t

[
0
1

]
=

We have to plot several solutions (with different initial conditions).

24 / 120



Analysis of systems of differential equations Phase portrait

Example
Sketch phase portrait of differential equation

x ′ =

[
−1 0
0 −2

]
x

Solution. Eigenvalues: λ1 = −1, λ2 = −2

Eigenvectors:

v1 =

[
1
0

]
, v2 =

[
0
1

]
Solution:

x(t) = c1 e−t
[

1
0

]
+ c2 e−2t

[
0
1

]
=

We have to plot several solutions (with different initial conditions).

24 / 120



Analysis of systems of differential equations Phase portrait

Note that
x(t) = ck eλk t vk , k = 1,2

are solutions.

⇒ Lines defined by eigenvectors are trajectories.

Choose some initial condition, for example, x(0) = [1,1]T .

⇒ x(t) =

[
e−t

e−2t

]
How parametric defined curve {(e−t , e−2t ) | t ∈ R} looks like?

e−2t =
(
e−t)2 ⇒ x2 = x2

1 → parabola

In general, x(0) = [1, α]T , α ∈ R

⇒ x(t) =

[
e−t

α e−2t

]
→ x2 = α x2

1
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Analysis of systems of differential equations Phase portrait

Trajectory for x0 = [1,1]T :

-2 -1 1 2
x1

-2

-1

1

2
x2
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Analysis of systems of differential equations Phase portrait

In what direction solution goes?

Direction in x̄ is A x̄ .

Direction in [1,1] is [
−1 0
0 −2

] [
1
1

]
=

[
−1
−2

]
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Analysis of systems of differential equations Phase portrait

Trajectory for x0 = [1,1]T :
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Analysis of systems of differential equations Phase portrait

Immediately, we have another trajectory

-2 -1 1 2
x1

-2

-1

1

2
x2
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and another two

-2 -1 1 2
x1

-2

-1

1

2
x2
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Phase portrait:

-2 -1 1 2
x1

-2

-1

1

2
x2

31 / 120



Analysis of systems of differential equations Phase portrait

Phase portrait for

A =

[
−1 0
0 −5

]
?

We obtain solution of differential equation x ′ = A x as before:

x(t) =

[
c1 e−t

c2 e−5t

]
For initial condition x0 = [1,1]T we have

x(t) =

[
e−t

e−5t

]
.

Trajectory is graph of function:

x2 = x5
1 .
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Phase portrait for x ′ =

[
−1 0
0 −5

]
x

-2 -1 1 2
x1

-2

-1

1

2
x2
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Analysis of systems of differential equations Phase portrait

Phase portrait for

A =

[
−2 0
0 −1

]
?

Solution of differential equation x ′ = A x is:

x(t) =

[
c1 e−2t

c2 e−t

]
For initial condition x0 = [1,1]T we have

x(t) =

[
e−2t

e−t

]
.

Trajectory is graph of function:

x2
2 = x1.

i.e.
x2 =

√
x1.
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Phase portrait for x ′ =

[
−2 0
0 −1

]
x

-2 -1 1 2
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Analysis of systems of differential equations Phase portrait

Phase portrait for

A =

[
−1 0
0 −2

]
A =

[
−2 0
0 −1

]

-2 -1 1 2
x1

-2

-1

1

2
x2

-2 -1 1 2
x1

-2

-1

1

2
x2

Parabola directed toward axis that corresponds to largest eigenvalue.
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Analysis of systems of differential equations Phase portrait

Phase portrait for

A =

[
1 0
0 2

]
?

Solution of differential equation x ′ = A x is::

x(t) =

[
c1 et

c2 e2t

]
For initial condition x0 = [1,1]T we have

x(t) =

[
et

e2t

]
.

Trajectory is graph of function:

x2 = x2
1 .
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Phase portrait for x ′ =

[
1 0
0 2

]
x
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Phase portrait for

A =

[
−1 0
0 −2

]
A =

[
1 0
0 2

]
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Analysis of systems of differential equations Phase portrait

If eigenvalues are equal:

A =

[
λ 0
0 λ

]
?

Solution of differential equation x ′ = A x is:

x(t) =

[
c1 eλ t

c2 eλ t

]
For initial condition x0 = [1,1]T we have

x(t) =

[
eλ t

eλ t

]
.

Trajectory is graph of function:

x2 = x1.
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Analysis of systems of differential equations Phase portrait

Phase portrait for x ′ =

[
λ 0
0 λ

]
x , λ < 0

-2 -1 1 2
x1

-2

-1

1

2
x2
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Analysis of systems of differential equations Phase portrait

Case when dimension of Jordan blok is 2× 2

We consider case when

A =

[
−1 1
0 −1

]
.

Solution of differential equation x ′ = A x is:

x(t) =

[
c1 e−t +c2t e−t

c2 e−t

]
From

x2(t) = c2 e−t

it follows that

x1(t) = c1 e−t +c2t e−t =
c1

c2
x2(t)− x2(t) ln

x2(t)
c2

.

For x2(t) > 0:

x1 =

(
c1

c2
− ln c2

)
x2 − x2 ln x2 = c x2 − x2 ln x2.
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Analysis of systems of differential equations Phase portrait

Trajectory for x2 > 0 and example of another trajectory for x2 < 0:

0.5 1.0 1.5 2.0
x2

-2

-1

1

2
x1

-2 -1 1 2
x2

-2

-1

1

2
x1
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Analysis of systems of differential equations Phase portrait

Phase portrait for

A =

[
−1 1
0 −1

]
A =

[
1 1
0 1

]

-2 -1 1 2
x1

-2

-1

1

2
x2

-2 -1 1 2
x1

-2

-1

1

2
x2
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Analysis of systems of differential equations Phase portrait

Case when eigenvalues are of oposite sign

We consider case when

A =

[
1 0
0 −1

]
.

Solution of differential equation x ′ = A x is:

x(t) =

[
c1 et

c2 e−t

]
Trajectory:

x1x2 = c1c2 = c

- hyperbola
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In general, for

A =

[
λ1 0
0 −λ2

]
,

λ1, λ2 > 0, solution of differential equation x ′ = A x is:

x(t) =

[
c1 eλ1

c2 e−λ2

]

Trajectory:
xλ2

1 xλ1
2 = c1c2 = c

x1 = α x−λ1/λ2
2
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Phase portrait for

A =

[
−1 0
0 1

]
A =

[
1 0
0 −3

]
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x1
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What if matrix is not diagonal?

Phase porteait for x ′ = A x ,

A =

[
−2 1

1
4 −1

]
?

Eigenvalues and eigenvectors:

Mathematica:

a = {{-2,1},{1/4,-1}};
Eigenvalues[a]

{1/2(-3-Sqrt[2]),1/2(-3+Sqrt[2])}

Simplify[Eigenvectors[a]]

{{-2 (1+Sqrt[2]),1},{2(-1+Sqrt[2]),1}}

t = Transpose[Simplify[Eigenvectors[a]]]

{{-2(1+Sqrt[2]),2(-1+Sqrt[2])},{1,1}}
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Analysis of systems of differential equations Phase portrait

Eigenvalues:

λ1 =
−3−

√
2

2
, λ2 =

−3 +
√

2
2

,

and eigenvectors:

v1 =

[
−2(1 +

√
2)

1

]
v2 =

[
2(−1 +

√
2)

1

]
Transformation matrix:

T =

[
−2(1 +

√
2) 2(−1 +

√
2)

1 1

]

Substitution:

T−1A T = D =

[
λ1 0
0 λ2

]
, y = T−1x

We consider differential equation y ′ = D y .
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Trajectory for y ′ = D y :

-2 -1 1 2
x1

-2

-1

1

2
x2
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Trajectory for x ′ = A x , x = T x :

-2 -1 1 2
x1

-2

-1

1

2
x2

T−−−−→
v1

v2

-2 -1 1 2
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-1

1
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Phase portrait for x ′ =

[
−2 1

1
4 −1

]
x :

-2 -1 1 2
x1

-2

-1

1

2
x2
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Phase portrait for x ′ =

[
−2 1

1
4 1

]
x :

-2 -1 1 2
x1

-2

-1

1

2
x2
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Analysis of systems of differential equations Phase portrait

λ1 = 0, λ2 6= 0
Equation:

x ′ =

[
0 0
0 λ

]
x

System:

x ′1 = 0
x ′2 = λ x2

x1(t) = c1

x2(t) = c2 eλt

Equilibrium: x2 = 0 ⇒ x∗ = (c,0), c ∈ R
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Phase portrait for x ′ =

[
0 0
0 1

]
x :

-2 -1 1 2
x1

-2

-1

1

2
x2
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Analysis of systems of differential equations Phase portrait

λ1 = 0, λ2 = 0

For x ′ =

[
0 0
0 0

]
x solution is constant function x(t) = c. Therefore,

each point is equilibrium.

When dimension of Jordan block is 2× 2:

x ′ =

[
0 1
0 0

]
x

system of equation is:

x ′1 = x2

x ′2 = 0.

Solution:

x2(t) = c2

x ′1 = c2

x1(t) = c2t + c1

Equilibrium: x2 = 0 ⇒ x∗ = (c,0), c ∈ R
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Phase portrait for x ′ =

[
0 1
0 0

]
x :

-2 -1 1 2
x1

-2

-1

1

2
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Analysis of systems of differential equations Phase portrait

Complex eigenvalues.

Reλ 6= 0

Differential equation

x ′ =

[
a b
−b a

]
x

Characteristic polynomial:

(a− λ)2 + c2 = 0

λ1 = a + i b, λ1 = a− i b

eλi t = e(a±i b)t = ea t e±i b t = ea t (cos b t ± i sin b t)

Complex eigenvalues and complex eigenvectors, but a solution is real.
...
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Analysis of systems of differential equations Phase portrait

Mathematica:

DSolve[{x’[t]==a x[t]+b y[t], y’[t] ==-b x[t]+a
y[t]},{x[t],y[t]},t]

{{x[t]->E (̂a t)C[1]Cos[b t+E (̂a t)C[2]Sin[b t],
y[t]->E (̂a t)C[2]Cos[b t]-E (̂a t)C[1]Sin[b t]}}

x(t) =

[
c1 ea t cos b t + c2 ea t sin b t
c2 ea t cos b t − c1 ea t sin b t

]
= c1 ea t

[
cos b t
− sin b t

]
+ c2 ea t

[
sin b t
cos b t

]
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Trajectory for za c1 = 1, c2 = 1 and A =

[
0.1 1
−1 0.1

]

-2 -1 1 2
x1

-2

-1

1

2
x2

Spiral.
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Phase portrait for

A =

[
0.1 1
−1 0.1

]
A =

[
0.1 −1
1 0.1

]

-2 -1 1 2
x1

-2

-1

1

2
x2
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-2

-1

1

2
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Reλ = 0

a = 0 ⇒
x(t) = c1

[
cos b t
− sin b t

]
+ c2

[
sin b t
cos b t

]
Note,

x1(t)2 = c2
1 cos2 b t + c1c2 cos b t sin b t + c2

2 sin 2b t

x2(t)2 = c2
1 sin2 b t − c1c2 sin b t cos b t + c2

2 cos 2b t ⇒

x2
1 + x2

2 = c2
1 + c2

2 = r2
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Phase portrait for A =

[
0 1
−1 0

]
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Phase portrait for B = T−1A T =

[
−4

3 −5
3

5
3

4
3

]
A =

[
0 1
−1 0

]
, T =

[
1 2
2 1

]
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1
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Analysis of systems of differential equations Phase portrait

Real eigenvalues Jordan
block 2× 2

λ2 < λ1 < 0 λ1 < λ2 < 0 λ1 = λ2 < 0 λ1 = λ2 < 0

λ2 > λ1 > 0 λ1 > λ2 > 0 λ1 = λ2 > 0 λ1 = λ2 > 0
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Jordan
block 2× 2

λ1 < 0, λ2 > 0 λ1 = 0, λ2 < 0 λ1 = λ2 = 0 Reλi < 0

λ1 > 0, λ2 < 0 λ1 = 0, λ2 > 0 Reλi = 0 Reλi > 0
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Analysis of systems of differential equations Linearization

4.2. Linearization

Consider differential equation

X ′ = F (X ), F : Rn → Rn.

Like as in 1-dimensional case, function F may be substituted by Taylor
polynomial of 1. degree:

F (X ) ≈ F (X0) + J(X0) · (X − X0)

Note. F ,X ,X0 are from Rn.
W̌hat is J ′?

J(Y ) =

 f1(y1, . . . , yn)
...

fn(y1, . . . , yn)

 , F ′(Y ) =

[
∂fi
∂yj

]

J = JF is Jacobian matrix
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Example
Determine Jacobian matrix for function F from chemostat model.

Solution.

F (S,P) =

 −V
S

K + S
P
Y

+ ω S0 − ω S

V
S

K + S
P − ω P



f1(S,P) = −V
S

K + S
P
Y

+ ω S0 − ω S

f2(S,P) = V
S

K + S
P − ω P
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∂f1
∂S

=
∂

∂S

[
−V

S
K + S

P
Y

+ ω S0 − ω S
]

= − V K
(K + S)2

P
Y
− ω

∂f1
∂P

=
∂

∂P

[
−V

S
K + S

P
Y

+ ω S0 − ω S
]

= −V
S

K + S
1
Y

∂f2
∂S

=
∂

∂S

[
V

S
K + S

P − ω P
]

=
V K

(K + S)2 P

∂f2
∂P

=
∂

∂P

[
V

S
K + S

P − ω P
]

= V
S

K + S
− ω
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JF (S,P) =


∂f1
∂S

∂f1
∂P

∂f2
∂S

∂f2
∂P



=

 −
V K

(K + S)2
P
Y
− ω −V

S
K + S

1
Y

V K
(K + S)2 P V

S
K + S

− ω


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JF (S,P) =


∂f1
∂S

∂f1
∂P

∂f2
∂S

∂f2
∂P

 =

 −
V K

(K + S)2
P
Y
− ω −V

S
K + S

1
Y

V K
(K + S)2 P V

S
K + S

− ω


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Analysis of systems of differential equations Linearization

Equilibrium.

As in 1-d case, equilibrium point X ∗ is a zero of function F :

F (X ∗) = 0.

If we substitute F by Taylor polynomial of 1. degree around X ∗:

F (X ) ≈ F (X ∗) + JF (X ∗) · (X − X ∗) = JF (X ∗) · (X − X ∗)

Now we consider differential equation

X ′ = JF (X ∗) · (X − X ∗).

By substitution Y = X − X ∗ we obtain ⇒

Y ′ = JF (X ∗) · Y

Differential equation is similar to the equation for exponential model,
only, Jf (X ∗) is (constant) matrix.
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Analysis of systems of differential equations Linearization

Note. Hartman-Grobman theorem justifies linearization.
Theorem shows that a solution of nonlinear differential equation

X ′ = F (X )

in the neighborhood of equilibrium point X ∗ qualitatively behaves as a
solution of linear differential equation

X ′ = F ′(X ∗)X

in the neighborhood of point X = 0.
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Analysis of systems of differential equations Linearization

Hartman-Grobman theorem.

Theorem (Hartman-Grobman Theorem)

If x∗ is a hyperbolic equilibrium of x ′ = f (x), x ∈ Rn, then there exists
a homeomorphism z = h(x) defined in a neighborhood of x∗ that
maps trajectories of x ′ = f (x) to those of z ′ = Az where A = Jf (x∗).

hyperbolic equilibrium - Jacobian matrix at equilibrium point has all
eigenvalues with nonzero real part

homeomorphism - a continuous map with a continuous inverse
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Analysis of systems of differential equations Linearization

Theorem
Let X ∗ is an equilibrium point of the system X ′ = F (X ) and all
eigenvalues of JF (X ∗) have nonzero real parts. Then, X ∗ is locally
stable equilibrium if and only if all real parts of eigenvalues of the
Jacobian matrix JF (X ∗) are negative.

Algorithm.
1 For any equilibrium X ∗ calculate Jacobian matrix of F at

equilibrium X ∗ (JF (X ∗)) and check eigenvalues.

2 If real parts of all eigenvalues are negative then equilibrium is
locally stable.

3 If there is at least one eigenvalue with positive real part then
equilibrium is not locally stable.

Note. Case Reλk = 0 is complex and should be analyzed using
some other approach.
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Analysis of systems of differential equations Linearization

Note. Hartman-Grobman Theorem says nothing about global stability.

For example, compare two equations:

x ′ = −x − x3 i x ′ = −x + x2.

In both cases linearization at x∗ = 0 yields

x ′ = −x ,

and x∗ = 0 is locally stable equilibrium.

In the first case, all solutions converge toward 0 (unique equilibrium).

In the second case, 1 is another equilibrium and for x0 > 1 solution wil
not converge toward 0 (it will diverge to +∞).
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Analysis of systems of differential equations Linearization

The hyperbolicity condition can’t be removed.

X ′ = −(X + Y )− (X − Y ) · (X 2 + Y 2)

Y ′ = −(X + Y ) + (X − Y ) · (X 2 + Y 2)

Jacobian matrix at (0,0):

JF =

[
−1 −1
−1 −1

]
Eigenvalues: -2 an 0.
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Analysis of systems of differential equations Linearization

Phase portrait.
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Phase portrait.
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Analysis of systems of differential equations Linearization

The hyperbolicity condition can’t be removed.

X ′ = −Y − X 3 − X Y 2

Y ′ = X − X 2Y − Y 3

Jacobian matrix at (0,0):

JF =

[
0 −1
1 0

]
Eigenvalues: ±i .
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Phase portrait.
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Analysis of systems of differential equations Exercises

EXERCISES
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Analysis of systems of differential equations Phase portrait for chemostat model

We will use chemostat model in our examples:

S′ = −V
S

K + S
P
Y

+ ω S0 − ω S,

P ′ = V
S

K + S
P − ω P

Model has 5 parameters: V ,K ,Y , ω,S0

To make computation easier, we will use dedimensionalized model.

So,

Problem
Dedimensionalize chemostat model.

Hint. Introduce new variables:

P(t) = P∗N(τ), S(t) = S∗C(τ), t = t∗τ

Constants P∗,S∗, t∗ determine in the way to simplify the model (to
reduce a number of parameters).
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Analysis of systems of differential equations Phase portrait for chemostat model

Solution.

P ′(t) =
d
dt

P(t) =
d
dt

P∗N(τ)

= P∗
d
dt

N
(

t
t∗

)
=

P∗

t∗
N ′
(

t
t∗

)
=

P∗

t∗
N ′(τ)

S′(t) =
S∗

t∗
C′(τ)

86 / 120



Analysis of systems of differential equations Phase portrait for chemostat model

Solution.

P ′(t) =
d
dt

P(t) =
d
dt

P∗N(τ)

= P∗
d
dt

N
(

t
t∗

)
=

P∗

t∗
N ′
(

t
t∗

)
=

P∗

t∗
N ′(τ)

S′(t) =
S∗

t∗
C′(τ)

86 / 120



Analysis of systems of differential equations Phase portrait for chemostat model

Solution.

P ′(t) =
d
dt

P(t) =
d
dt

P∗N(τ)

= P∗
d
dt

N
(

t
t∗

)

=
P∗

t∗
N ′
(

t
t∗

)
=

P∗

t∗
N ′(τ)

S′(t) =
S∗

t∗
C′(τ)

86 / 120



Analysis of systems of differential equations Phase portrait for chemostat model

Solution.

P ′(t) =
d
dt

P(t) =
d
dt

P∗N(τ)

= P∗
d
dt

N
(

t
t∗

)
=

P∗

t∗
N ′
(

t
t∗

)
=

P∗

t∗
N ′(τ)

S′(t) =
S∗

t∗
C′(τ)

86 / 120



Analysis of systems of differential equations Phase portrait for chemostat model

Solution.

P ′(t) =
d
dt

P(t) =
d
dt

P∗N(τ)

= P∗
d
dt

N
(

t
t∗

)
=

P∗

t∗
N ′
(

t
t∗

)
=

P∗

t∗
N ′(τ)

S′(t) =
S∗

t∗
C′(τ)

86 / 120



Analysis of systems of differential equations Phase portrait for chemostat model

Solution.

P ′(t) =
d
dt

P(t) =
d
dt

P∗N(τ)

= P∗
d
dt

N
(

t
t∗

)
=

P∗

t∗
N ′
(

t
t∗

)
=

P∗

t∗
N ′(τ)

S′(t) =

S∗

t∗
C′(τ)

86 / 120



Analysis of systems of differential equations Phase portrait for chemostat model

Solution.

P ′(t) =
d
dt

P(t) =
d
dt

P∗N(τ)

= P∗
d
dt

N
(

t
t∗

)
=

P∗

t∗
N ′
(

t
t∗

)
=

P∗

t∗
N ′(τ)

S′(t) =
S∗

t∗
C′(τ)

86 / 120



Analysis of systems of differential equations Phase portrait for chemostat model

Model is of the form

S∗

t∗
C′ = − V S∗C

K + S∗C
P∗N

Y
+ ω S0 − ω S∗C

P∗

t∗
N ′ =

V S∗C
K + S∗C

P∗N − ω P∗N

⇒

C′ = −t∗
V C

K + S∗C
P∗N

Y
+

t∗ω S0

S∗
− t∗ωC

N ′ = t∗
V S∗C

K + S∗C
N − t∗ωN

⇒
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Analysis of systems of differential equations Phase portrait for chemostat model

C′ = − t∗VP∗

S∗Y
C

K
S∗ + C

N +
t∗ω S0

S∗
− t∗ωC

N ′ = t∗V
C

K
S∗ + C

N − t∗ωN

Choose P∗,S∗, t∗ to remove 3 parameters:

K
S∗

= 1, t∗ω = 1,
t∗VP∗

S∗Y
= 1

⇒ S∗ = K , t∗ =
1
ω
, P∗ =

S∗Y
t∗V

=
Y K ω

V
Define new parameters:

α1 = t∗V =
V
ω
, α2 =

t∗ω S0

S∗
=

S0

K
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Analysis of systems of differential equations Phase portrait for chemostat model

Dedimensionalized chemostat model:

C′ = − C
1 + C

N + α2 − C

N ′ = α1
C

1 + C
N − N

Note. Only two parameters remain in analysis. Note that α1, α2 > 0

Note. Substitution

⇒ t∗ =
1
V
, S∗ = t∗ω S0P∗ =

Y K ω

V

also reduces number of parameters on 2.
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Analysis of systems of differential equations Phase portrait for chemostat model

Problem
Determine equilibrium points of chemostat model.
(Use dedimensionalized model.)

Solution. Dedimensionalized chemostat model:

C′ = − C
1 + C

N + α2 − C

N ′ = α1
C

1 + C
N − N

Differential equation
X ′ = F (X )

X =

[
C
N

]
and F (X ) = F (C,N) =

 − C
1 + C

N + α2 − C

α1
C

1 + C
N − N



90 / 120



Analysis of systems of differential equations Phase portrait for chemostat model

Problem
Determine equilibrium points of chemostat model.
(Use dedimensionalized model.)

Solution. Dedimensionalized chemostat model:

C′ = − C
1 + C

N + α2 − C

N ′ = α1
C

1 + C
N − N

Differential equation
X ′ = F (X )

X =

[
C
N

]
and F (X ) = F (C,N) =

 − C
1 + C

N + α2 − C

α1
C

1 + C
N − N



90 / 120



Analysis of systems of differential equations Phase portrait for chemostat model

Problem
Determine equilibrium points of chemostat model.
(Use dedimensionalized model.)

Solution. Dedimensionalized chemostat model:

C′ = − C
1 + C

N + α2 − C

N ′ = α1
C

1 + C
N − N

Differential equation
X ′ = F (X )

X =

[
C
N

]
and F (X ) = F (C,N) =

 − C
1 + C

N + α2 − C

α1
C

1 + C
N − N



90 / 120



Analysis of systems of differential equations Phase portrait for chemostat model

Problem
Determine equilibrium points of chemostat model.
(Use dedimensionalized model.)

Solution. Dedimensionalized chemostat model:

C′ = − C
1 + C

N + α2 − C

N ′ = α1
C

1 + C
N − N

Differential equation
X ′ = F (X )

X =

[
C
N

]

and F (X ) = F (C,N) =

 − C
1 + C

N + α2 − C

α1
C

1 + C
N − N



90 / 120



Analysis of systems of differential equations Phase portrait for chemostat model

Problem
Determine equilibrium points of chemostat model.
(Use dedimensionalized model.)

Solution. Dedimensionalized chemostat model:

C′ = − C
1 + C

N + α2 − C

N ′ = α1
C

1 + C
N − N

Differential equation
X ′ = F (X )

X =

[
C
N

]
and F (X ) = F (C,N) =

 − C
1 + C

N + α2 − C

α1
C

1 + C
N − N


90 / 120



Analysis of systems of differential equations Phase portrait for chemostat model

From F (C,N) = 0 it follows

0 = − C
1 + C

N + α2 − C

0 = α1
C

1 + C
N − N

Second equation yields:(
α1

C
1 + C

− 1
)

N = 0

N = 0 or α1
C

1 + C
= 0
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Analysis of systems of differential equations Phase portrait for chemostat model

1. N = 0

First equation yields

0 = − C
1 + C

N + α2 − C = α2 − C

⇒ C = α2

Equilibrium:
X1 = (α2,0)

Trivial equilibrium - no population.

C = α2 ⇒ S = S0.
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Analysis of systems of differential equations Phase portrait for chemostat model

2. α1
C

1 + C
− 1 = 0

⇒ C =
1

α1 − 1

Substitute into 1. equation:

0 = − C
1 + C

N + α2 − C = − 1
α1

N + α2 −
1

α1 − 1

⇒ N = α1

(
α2 −

1
α1 − 1

)
Equilibrium:

X2 =

(
1

α1 − 1
, α1

(
α2 −

1
α1 − 1

))

C and N are positive. What are conditions for the existence of positive
equilibrium?
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Positivity of equilibrium

X2 =

(
1

α1 − 1
, α1

(
α2 −

1
α1 − 1

))

α1 − 1 > 0

α2 −
1

α1 − 1
> 0

Interpretation:

α1 − 1 > 0 ⇒ V
ω
> 1 ⇒ V > ω

Maximal growth rate should be larger then washout rate.

If washout rate is to high, loss of cells is greater then growth rate.
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α2 −
1

α1 − 1
> 0

Substrate concentration in the equilibrium:

C∗ =
1

α1 − 1

⇒ α2 > C∗ ⇒ S0

K
>

S∗

K
⇒ S0 > S∗ =

K
V
ω − 1

Substrate concentration in the equilibrium have to be smaller then
inflowing substrate concentration.
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Example
Stability of equilibrium points in chemostat model.

X ′ = F (X ) = F (C,N)

F (C,N) =

[
f1(C,N)
f2(C,N)

]
=

 − C
1 + C

N + α2 − C

α1
C

1 + C
N − N


∂f1
∂C

= −N
1

(1 + C)2 − 1

∂f1
∂N

= − C
1 + C

∂f2
∂C

= α1N
1

(1 + C)2

∂f2
∂N

= α1
C

1 + C
− 1
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JF =

[
∂f1
∂C

∂f1
∂N

∂f2
∂C

∂f2
∂N

]
=

 −N
1

(1 + C)2 − 1 − C
1 + C

α1N
1

(1 + C)2 α1
C

1 + C
− 1



1.ekvilibrum X1 = (α2,0)

JF (X1) = JF (α2,0) =

 −1 − α2

1 + α2

0 α1
α2

1 + α2
− 1


Eigenvalues are on the diagonal! (Upper triangular matrix.)

λ1 = −1 < 0

λ2 = α1
α2

1 + α2
− 1
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λ2 = α1
α2

1 + α2
− 1

=
α1α2 − 1− α2

1 + α2

=
α2(α1 − 1)− 1

1 + α2

=
α1 − 1
1 + α2

(
α2 −

1
α1 − 1

)

If exists positive second equilibrium (X2):

α1 − 1 i α2 −
1

α1 − 1
> 0

then
λ2 > 0

and X1 is not locally stable equilibrium.

98 / 120



Analysis of systems of differential equations Phase portrait for chemostat model

λ2 = α1
α2

1 + α2
− 1

=
α1α2 − 1− α2

1 + α2

=
α2(α1 − 1)− 1

1 + α2

=
α1 − 1
1 + α2

(
α2 −

1
α1 − 1

)

If exists positive second equilibrium (X2):

α1 − 1 i α2 −
1

α1 − 1
> 0

then
λ2 > 0

and X1 is not locally stable equilibrium.
98 / 120



Analysis of systems of differential equations Phase portrait for chemostat model

2. equilibrium

X2 =

(
1

α1 − 1
, α1

(
α2 −

1
α1 − 1

))

Denote: β = α2(α1 − 1)

Existence of positive equilibrium⇒

α1 > 1, β > 1

IFrom the condition for equilibrium:

α1
C

1 + C
− 1 = 0

JF (X2) =

 −N
1

(1 + C)2 − 1 − C
1 + C

α1N
1

(1 + C)2 α1
C

1 + C
− 1


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JF (X2) =

 −
(

N∗
1

(1 + C∗)2 + 1
)
− C∗

1 + C∗

α1N∗
1

(1 + C∗)2 0



trJF (X2) = −
(

N∗
1

(1 + C∗)2 + 1
)
< 0

det JF (X2) =
C∗

1 + C∗
α1N∗

1
(1 + C∗)2 > 0

X2 is locally stable equilibrium.
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4.6. Phase portrait for chemostat model

Dedimensionalized chemostat model:

C′ = − C
1 + C

N + α2 − C

N ′ = α1
C

1 + C
N − N

Equilibriums:

X1 = (α2,0), X2 =

(
1

α1 − 1
, α1

(
α2 −

1
α1 − 1

))

JF (X1) = JF (α2,0) =

 −1 − α2

1 + α2

0 α1
α2

1 + α2
− 1


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1. One positive equilibrium

α1 − 1 < 0 or α2 −
1

α1 − 1
< 0

Example: α1 = 1
2 , α2 = 2: JF (X1) =

 −1 −2
3

0 −2
3


Phase portrait of the linearized differential equatione:

0.5 1.0 1.5 2.0 2.5 3.0
C0.0

0.5

1.0

1.5

2.0

2.5

3.0
N
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Phase portrait

Linearized equationea Chemostat model

0.5 1.0 1.5 2.0 2.5 3.0
C0.0

0.5
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2. Two positive equilibriums

α1 − 1 > 0 and α2 −
1

α1 − 1
> 0

X2 =

(
1

α1 − 1
, α1

(
α2 −

1
α1 − 1

))

JF (X2) =

 −
(

N∗
1

(1 + C∗)2 + 1
)
− C∗

1 + C∗

α1N∗
1

(1 + C∗)2 0



Example: α1 = 2, α2 = 2
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1. equilibrium: X1 = (2,0), JF (X1) =

 −1 −2
3

0 1
3


Phase portrait of the linearized differential equatione:
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2. equilibrium: X2 = (1,2), F ′(X2) =

 −3
2 −1

2

1 0


Phase portrait of the linearized differential equatione:
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1. equilibrium 2. equilibrium
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Phase portrait of the chemostat model:
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Phase portrait of the chemostat model:
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Problem
Dinamics of two populations is described by the system of differential
equations:

x ′ = x y − 2x − 2y + 4,
y ′ = 4y − y2 − x − 1.

Sketch the phase portrait of the given differential equation.
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Solution.

Equilibriums:

x y−2x−2y +4 = 0

⇒ x(y−2)−2(y−2) = (x−2)(y−2) = 0 ⇒

x = 2 or y = 2.

1. y = 2
0 = 4y − y2 − x − 1 = 3− x ⇒ x = 3

Equilibrium: E1 = (3,2)

2. x = 2

0 = 4y − y2 − x − 1 = −y2 + 4y − 3 ⇒ y1 = 1, y2 = 3.

Equilibrium: E2 = (2,1), E3 = (2,3).
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0 = 4y − y2 − x − 1 = −y2 + 4y − 3 ⇒ y1 = 1, y2 = 3.

Equilibrium: E2 = (2,1), E3 = (2,3).
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Jacobian matrix.

F (x , y) =

[
x y − 2x − 2y + 4,
4y − y2 − x − 1.

]

JF (x , y) =

[
y − 2 x − 2
−1 4− 2y .

]

1. Equilibrium

JF (E1) = JF (3,2) =

[
0 1
−1 0.

]
Circle!
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2. Equilibrium

JF (x , y) =

[
y − 2 x − 2
−1 4− 2y

]
JF (E2) = JF (2,3) =

[
1 0
−1 −2

]

Saddle.

λ2 = −2, v2 = e2

JF − λ1I =

[
0 0
−1 −3

]
⇒ x − 1 = −3x2 ⇒ v1 =

[
−3
1

]

115 / 120



Analysis of systems of differential equations Phase portrait for chemostat model

2. Equilibrium

JF (x , y) =

[
y − 2 x − 2
−1 4− 2y

]
JF (E2) = JF (2,3) =

[
1 0
−1 −2

]
Saddle.

λ2 = −2, v2 = e2

JF − λ1I =

[
0 0
−1 −3

]
⇒ x − 1 = −3x2 ⇒ v1 =

[
−3
1

]

115 / 120



Analysis of systems of differential equations Phase portrait for chemostat model

2. Equilibrium

JF (x , y) =

[
y − 2 x − 2
−1 4− 2y

]
JF (E2) = JF (2,3) =

[
1 0
−1 −2

]
Saddle.

λ2 = −2, v2 = e2

JF − λ1I =

[
0 0
−1 −3

]
⇒ x − 1 = −3x2 ⇒ v1 =

[
−3
1

]

115 / 120



Analysis of systems of differential equations Phase portrait for chemostat model

2. Equilibrium

JF (x , y) =

[
y − 2 x − 2
−1 4− 2y

]
JF (E2) = JF (2,3) =

[
1 0
−1 −2

]
Saddle.

λ2 = −2, v2 = e2

JF − λ1I =

[
0 0
−1 −3

]

⇒ x − 1 = −3x2 ⇒ v1 =

[
−3
1

]

115 / 120



Analysis of systems of differential equations Phase portrait for chemostat model

2. Equilibrium

JF (x , y) =

[
y − 2 x − 2
−1 4− 2y

]
JF (E2) = JF (2,3) =

[
1 0
−1 −2

]
Saddle.

λ2 = −2, v2 = e2

JF − λ1I =

[
0 0
−1 −3

]
⇒ x − 1 = −3x2

⇒ v1 =

[
−3
1

]

115 / 120



Analysis of systems of differential equations Phase portrait for chemostat model

2. Equilibrium

JF (x , y) =

[
y − 2 x − 2
−1 4− 2y

]
JF (E2) = JF (2,3) =

[
1 0
−1 −2

]
Saddle.

λ2 = −2, v2 = e2

JF − λ1I =

[
0 0
−1 −3

]
⇒ x − 1 = −3x2 ⇒ v1 =

[
−3
1

]

115 / 120



Analysis of systems of differential equations Phase portrait for chemostat model

2. Equilibrium

JF (x , y) =

[
y − 2 x − 2
−1 4− 2y

]
JF (E2) = JF (2,3) =

[
1 0
−1 −2

]
Saddle.

λ2 = −2, v2 = e2

JF − λ1I =

[
0 0
−1 −3

]
⇒ x − 1 = −3x2 ⇒ v1 =

[
−3
1

]

115 / 120



Analysis of systems of differential equations Phase portrait for chemostat model

1 2 3 4
x0

1

2

3

4
y

116 / 120



Analysis of systems of differential equations Phase portrait for chemostat model

3. Equilibrium

JF (x , y) =

[
y − 2 x − 2
−1 4− 2y

]
JF (E3) = JF (2,1) =

[
−1 0
−1 2

]

Saddle.

λ2 = 2, v2 = e2

JF − λ1I =

[
0 0
−1 3

]
⇒ x − 1 = 3x2 ⇒ v1 =

[
3
1

]

117 / 120



Analysis of systems of differential equations Phase portrait for chemostat model

3. Equilibrium

JF (x , y) =

[
y − 2 x − 2
−1 4− 2y

]
JF (E3) = JF (2,1) =

[
−1 0
−1 2

]
Saddle.

λ2 = 2, v2 = e2

JF − λ1I =

[
0 0
−1 3

]
⇒ x − 1 = 3x2 ⇒ v1 =

[
3
1

]

117 / 120



Analysis of systems of differential equations Phase portrait for chemostat model

3. Equilibrium

JF (x , y) =

[
y − 2 x − 2
−1 4− 2y

]
JF (E3) = JF (2,1) =

[
−1 0
−1 2

]
Saddle.

λ2 = 2, v2 = e2

JF − λ1I =

[
0 0
−1 3

]
⇒ x − 1 = 3x2 ⇒ v1 =

[
3
1

]

117 / 120



Analysis of systems of differential equations Phase portrait for chemostat model

3. Equilibrium

JF (x , y) =

[
y − 2 x − 2
−1 4− 2y

]
JF (E3) = JF (2,1) =

[
−1 0
−1 2

]
Saddle.

λ2 = 2, v2 = e2

JF − λ1I =

[
0 0
−1 3

]

⇒ x − 1 = 3x2 ⇒ v1 =

[
3
1

]

117 / 120



Analysis of systems of differential equations Phase portrait for chemostat model

3. Equilibrium

JF (x , y) =

[
y − 2 x − 2
−1 4− 2y

]
JF (E3) = JF (2,1) =

[
−1 0
−1 2

]
Saddle.

λ2 = 2, v2 = e2

JF − λ1I =

[
0 0
−1 3

]
⇒ x − 1 = 3x2

⇒ v1 =

[
3
1

]

117 / 120



Analysis of systems of differential equations Phase portrait for chemostat model

3. Equilibrium

JF (x , y) =

[
y − 2 x − 2
−1 4− 2y

]
JF (E3) = JF (2,1) =

[
−1 0
−1 2

]
Saddle.

λ2 = 2, v2 = e2

JF − λ1I =

[
0 0
−1 3

]
⇒ x − 1 = 3x2 ⇒ v1 =

[
3
1

]

117 / 120



Analysis of systems of differential equations Phase portrait for chemostat model

1 2 3 4
x0

1

2

3

4
y

118 / 120



Analysis of systems of differential equations Phase portrait for chemostat model

Sketch of the phase portrait
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Phase portrait
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