
Logistic model Definition of the model

1.3. LOGISTIC MODEL

1.3.1.Definition of the model

Exponential growth is unbounded:

10 20 30 40 50 60 70

10

100

1000

104

Exponential model:
N ′ = αN

α - growth rate - constant
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Logistic model Definition of the model

Idea - growth rate not constant:

N ′ = g(N)N

For N = 0, g(0) = α

No growth for N = C → g(C) = 0.

C - carrying capacity

Simplest function g satisfying

g(0) = α i g(C) = 0

is

g(N) = α

(
1− N

C

)
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Logistic model Definition of the model

Logistic model:

N ′ = α

(
1− N

C

)
N

Model parameters: α, C

Alternative form of the model:

N ′ = aN − bN2
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Logistic model Definition of the model

Pierre Francois Verhulst

1804, Brussels, Belgium (French Empire at this time) - 1849, Brussels,
Belgium

Belgian mathematician, statistician and demographist. Worked on
population growth.

P.F. Verhulst (1845) Recherches mathématiques sur la loi
d´accroissement de la population. Nouv. mém. de l´Académie Royale
des Sci. et Belles-Lettres de Bruxelles 18:1–41.

Verhulst model. 4 / 80



Logistic model Definition of the model

Logistic model - Verhulst (1845) named the model without explanation.
He plotted (courbe logistique) together with courbe logarithmique
(exsponential curve)

Verhulst’s logistic equation being ignored for many years until

rediscovered in year 1920. by

Raymond Pearl (1879–1940)

Lowell J. Reed (1886–1966)

Pearl, R. and L. J. Reed (1920). On the rate of growth of the population
of the United States since 1870 and its mathematical representation.
Proceedings of the National Academy of Sciences 6, 275–288.

Chemical chain reactions: Wilhelm Ostwald, Germany, 1883.

Statistics - logit model/transformation, logistic regression, Joseph
Berkson, SAD, (1899–1982)

5 / 80



Logistic model Definition of the model

Solving differential equation

N ′ = α

(
1− N

C

)
N, N(0) = N0

N(t) =
1

1
C +

(
1

N0
− 1

C

)
e−αt
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Logistic model Definition of the model

Graph of logistic function

Logistic function (α = 1, C = 2, N0 = 0.01)
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Logistic model Definition of the model

Initial exponential growth

Comparison:
Exponential function, α = 1, N0 = 0.01
Logistic function, α = 1, C = 2, N0 = 0.01
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Logistic model Definition of the model

Comparison:
Exponential function, α = 1, N0 = 0.01
Logistic function, α = 1, C = 2, N0 = 0.01
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Logistic model Definition of the model

Impact of parameter N0

Logistic function, α = 1, C = 2

N0 = 0.01 N0 = 0.1 N0 = 0.5
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Logistic model Definition of the model

Impact of parameter C

Logistic function, α = 1

C = 1, N0 = 0.01 C = 2, N0 = 0.02 C = 3, N0 = 0.03
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Logistic model Definition of the model

Impact of parameter α

Logistic function, C = 1, N0 = 0.01

α = 1 α = 2 α = 3
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Logistic model Definition of the model

Problem
Function g(y) = 1− y/C is not the only one satisfying conditions
g(0) = 1 and g(C) = 0.
Find three different functions g satisfying g(0) = 1 and g(C) = 0.
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Logistic model Definition of the model

g(y) = 1− y

Model: y ′ = y (1− y)
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Logistic model Definition of the model

g(y) = (1− y)2

Model: y ′ = y(1− y)2
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Logistic model Definition of the model

g(y) = (1− y)3

Model: y ′ = y(1− y)3
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Logistic model Definition of the model

g(y) = cos
(π

2
y
)

Model: y ′ = y cos
(π

2
y
)
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Logistic model Definition of the model

g(y) = tg
(π

4
(1− y)

)
Model: y ′ = y tg

(π
4

(1− y)
)
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Logistic model Definition of the model

g(y) =
sh(1− y)

sh1

Model: y ′ = y
sh(1− y)

sh1
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Logistic model Definition of the model

Comparison.
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Logistic model Definition of the model

Problem
Obtain logistic model from the Taylor expansion of gain function using
an approximation by the polynomial of third degree.
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Logistic model Equilibrium

1.3.2. Equilibrium point.

Definition
For diferential equation

y ′ = f (y)

equilibrium point is a value y∗ such that (constant) function y(t) = y∗

is a solution of the differential equation.

Equilibria are sometimes called fixed points or steady states.
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Logistic model Equilibrium

Note, if the solution at some time obtain value y∗ (come to stady state),
then it remains in this state since y(t) = y∗ for t ≥ t0 is a solution of the
differential equation

y ′ = f (y), y(t0) = y∗.

y(t) = y∗ ⇒ y ′(t) = 0 ⇒ f (y) = f (y∗) = 0

Equilibrium point is a zero of function f .
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Logistic model Equilibrium

Example
Find equilibrium points for logistic model.

Solution.
Logistic model:

y ′ = αy
(

1− y
C

)
f (y) = αy

(
1− y

C

)
f (y) = 0 ⇒ αy

(
1− y

C

)
= 0

Equilibrium points:
y∗ = 0 i y∗ = C
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Logistic model Equilibrium

Equilibrium points for logistic model.

y ′ = y(1− y)
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Logistic model Equilibrium

Stability of equilibrium points.
Stability of equilibrium point - after the small change, a system is
returning to the equilibrium point

Globally stable equilibrium point - after every change, a system is
returning to the equilibrium point

Locally stable equilibrium point - after small change, a system is
returning to the equilibrium point

26 / 80



Logistic model Equilibrium

Definition
Equilibrium point y∗ is globally stable if for all y0 a solution of
differential equation

y ′ = f (y), y(t0) = y0

satisfies
lim

t→∞
y(t) = y∗.

Definition
Equilibrium point y∗ is locally stable if there exists a neighbourhood of
y∗ such that for all y0 from this neighbourhood a solution of differential
equation

y ′ = f (y), y(t0) = y0

satisfies
lim

t→∞
y(t) = y∗.
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Logistic model Equilibrium

Example
Check the stability of equilibrium point in the exponential model

y ′ = −αy ,

where α > 0.

Solution.

f (y) = −αy
f (y) = 0 ⇒ −αy = 0 ⇒ y = 0

Equilibrium point. y∗ = 0
Solution: y(t) = y0 e−αt

Stability:
lim

t→∞
y(t) = lim

t→∞
y0 e−αt = 0

for all y0.

Equilibrium point is globally stable.
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Logistic model Equilibrium

Stability of the equilibrium point in the exponential model

y ′ = −y
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y∗ = 0 je is globally stable equilibrium point.

29 / 80



Logistic model Equilibrium

Stability of the equilibrium point in the exponential model

y ′ = y
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Equilibrium point y∗ = 0 is not globally stable.

30 / 80



Logistic model Equilibrium

Problem
Check the stability of equilibrium points in the logistic model.

y ′ = αy
(

1− y
C

)
,

where α > 0 and C > 0.

Solution.

f (y) = αy
(

1− y
C

)
f (y) = 0 ⇒ αy

(
1− y

C

)
= 0 ⇒ y = 0 ili y = C

Equilibrium points: y∗ = 0 i y∗ = C.
Solution:

y(t) =
1

1
C +

(
1
y0
− 1

C

)
e−αt
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Logistic model Equilibrium

Stability:

1. y0 > C
1
y0
− 1

C
< 0

1
C

+

(
1
y0
− 1

C

)
e−αt > 0

lim
t→∞

y(t) = lim
t→∞

1
1
C +

(
1
y0
− 1

C

)
e−αt

= C
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Logistic model Equilibrium

2. 0 < y0 < C
1
y0
− 1

C
> 0

lim
t→∞

y(t) = lim
t→∞

1
1
C +

(
1
y0
− 1

C

)
e−αt

= C

3. y0 < 0
1
y0
− 1

C
< 0

Denominator is 0 for some t̄ > 0:

0 =
1
C

+

(
1
y0
− 1

C

)
e−αt ⇒ t̄ = −1

α
ln

y0

y0 − C
> 0

because of
0 <

y0

y0 − C
< 1.

Discontinuity at t̄ . Should be considered limt→t̄ y(t)(= −∞).
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Logistic model Equilibrium

Stability of equilibrium points in the logistic model

y ′ = y(1− y)
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Equilibrium point y∗ = 0 is not stable.

Equilibrium point y∗ = C = 1 is locally stable.
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Logistic model Equilibrium

Stability of equilibrium points in the logistic model

y ′ = y(1− y)
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Equilibrium point y∗ = 0 is not stable.

Equilibrium point y∗ = C = 1 is locally stable.

For y0 < 0 solution is discontinuous!
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Logistic model Linearisation of differential equation

1.3.3. Linearisation of differential equation

Consider differential equation

y ′ = f (y), y(0) = y0.

What is a behaviour of the solution when we start from the point close
to the equilibrium y∗ (f (y∗) = 0): y0 = y∗ + ε. Taylor series:

f (x) =
∞∑

k=0

f (k)(a)

k !
(x − a)k .

Taylor polynomial:
f (x) ≈ f (a) + f ′(a)(x − a)

If we start with small perturbation, we obtain a solution yε:

y ′ε = f (yε), yε(0) = y∗ + ε.

Define function ε(t): yε(t) = y∗ + ε(t)
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Logistic model Linearisation of differential equation

How far is yε(t) from y∗?

d
dt

yε(t) = f (yε(t)),⇒

d
dt

yε(t) =
d
dt

(y∗ + ε(t)) =
d
dt

y∗ +
d
dt
ε(t) =

d
dt
ε(t)

On the other hand,

d
dt

yε(t) = f (yε(t)) = f (y∗ + ε(t)) ≈ f (y∗) + f ′(y∗)ε(t) = f ′(y∗)ε(t)

⇒ d
dt
ε(t) = f ′(y∗)ε(t)

Solution is exponential function.
If f ′(y∗) > 0 equilibrium point y∗ is not locally stable
If f ′(y∗) < 0 equilibrium point y∗ is locally stable
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Logistic model Linearisation of differential equation

Problem
Check the stability of equilibrium points in the logistic model.

y ′ = αy
(

1− y
C

)
,

where α > 0 and C > 0.

Solution.

f (y) = αy
(

1− y
C

)
⇒ Equilibrium points y∗ = 0, y∗ = C

f ′(y) = α
(

1− y
C

)
− α y

C
f ′(0) = α > 0, f ′(C) = −α < 0.

Equilibrium point 0 is not stable

Equilibrium point C is stablej.
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Logistic model MATHEMATICA

1.3.4. MATHEMATICA

Example
Using Mathematica.

File: math1.nb

Example
More examples.

File: math3.nb
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Logistic model Determination of model parameters

1.3.5. Determination of model parameters

Podaci
yi - measured quantity (number of cells, volume ...) at time ti

n measurements

(ti , yi), i = 1, . . . ,n
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Logistic model Determination of model parameters

Which one is the best for description of data?
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Logistic model Determination of model parameters

Distance between a curve and a point.

Ht0, y0L
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5
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Logistic model Determination of model parameters

Distance between a curve and a point.

d

Ht0, y0L

1 2 3 4 5

1
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5

d = min
t

[
(t − t0)2 + (y(t)− y0)2

]
It is not easy to calculate a distance..
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Logistic model Determination of model parameters

Distance between a curve and a point.

d1d2

d3d3

0 1 2 3 4 5
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5

Like here, for example.
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Logistic model Determination of model parameters

Discrepancy of a curve to the point.

r

Ht0, y0L

Ht0, yHt0LL

0 1 2 3 4 5

1

2

3

4

5

Discrepancy: r = y(t0)− y0

Absolute discrepancy: |y(t0)− y0|

Quadratic discrepancy: (y(t0)− y0)2
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Logistic model Determination of model parameters

Discrepancy of a curve to the data.

Data: (ti , yi)

n points

Total quadratic discrepancy:
n∑

i=1

(y(ti)− yi)
2

Mean quadratic discrepancy:
1
n

n∑
i=1

(y(ti)− yi)
2

’Best’ curve → curve with the least total quadratic discrepancy.
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Logistic model Determination of model parameters

Example: Exponential model.

y ′ = α y , y(0) = y0

Solution:
y(t) = y0 eα t = y(t ;α, y0)

y depends on model parameters (α, y0).

Total quadratic discrepancy:

Φ(α, y0) =
n∑

i=1

(
y0 eα ti −yi

)2

depends on model parameters (α, y0).
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Logistic model Determination of model parameters

’Best’ curve → ODetermine parameters α∗, y∗0 such that

Φ(α∗, y∗0 ) ≤ Φ(α, y0) ∀α, y0 (≥ 0)

(α∗, y∗0 ) is minimum point of function Φ.

Determination of parameters:

Φ(α, y0) =
n∑

i=1

(
y0 eα ti −yi

)2 α,y0−−→ min
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Logistic model Determination of model parameters

Least squares method
Model

y ′ = f (y ; p1, . . . ,pk ), y(0) = y0

p1, . . . ,pk , y0 - model parameters

Parameters are determined from the condition that they minimize
functional

Φ(p1, . . . ,pk , y0) =
n∑

i=1

(y(ti ; p1, . . . ,pk , y0)− yi)
2 p1,...,pk ,y0−−−−−−→ min

This approach to the determination of model parameters is called least
squares method.
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Logistic model Determination of model parameters

Minimum of functional Φ may be obtained by use of the methods for
numerical minimization.

Most popular methods are:
Nelder-Meado simplex method

Newton method

gradient method

quasi-Newton methods
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Logistic model Determination of model parameters

Example

Determine a constant that best describes data (xi , yi), i = 1, . . . ,n in
the sense of least squares.

Solution.
Model: y(x) = c
Constant c is determined from the condition

Φ(c) =
n∑

i=1

(c − yi)
2 c−→ min

Point of minimum is obtained from Φ′(c) = 0:

⇒ 0 =
n∑

i=1

2(c − yi) ⇒ 0 =
n∑

i=1

c −
n∑

i=1

yi = nc −
n∑

i=1

yi

⇒ c =
1
n

n∑
i=1

yi
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Logistic model Determination of model parameters

Note. Observe that Φ ∈ C2:

Φ(c) =
n∑

i=1

(c − yi)
2

If we use absolute discrepancy, function

Φa(c) =
n∑

i=1

|c − yi |

is not differentiable.
This is the reason why mean quadratic discrepancy (i.e. least squares
method) is used.
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Logistic model Determination of model parameters

Necessary condition for the minimum of a function
of several variables.

In the case of several parameters, p = (p1,p2, . . . ,pk ), gradient is
defined as

∇Φ(p) =



∂Φ
∂p1

(p)

∂Φ
∂p2

(p)

...
∂Φ
∂pk

(p)


Necessary condition for the minimum (extrema):

∇Φ(p) = 0
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Logistic model Determination of model parameters

Problem
Find all partial derivatives for the following expressions

1 x + y2

2 ax − x
a

3 sin(ax) + x eb

4 axy

Solution.
1.

∂

∂x
(x + y2) = 1,

(
∂

∂x
y2 = 0

)
∂

∂y
(x + y2) = 2y
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Logistic model Determination of model parameters

2.
∂

∂x

(
a x − x

a

)
= a− 1

a
∂

∂a

(
a x − x

a

)
= x +

x
a2

3 .
∂

∂x

(
sin(a x) + x eb

)
= a cos(a x) + eb

∂

∂a

(
sin(a x) + x eb

)
= x cos(a x)

∂

∂b

(
sin(a x) + x eb

)
= x eb
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Logistic model Determination of model parameters

4.
∂

∂x
(a xy ) = a y xy−1 za y 6= 0

∂

∂y
(a xy ) = a xy ln x

∂

∂a
(a xy ) = xy
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Logistic model Determination of model parameters

Problem
Find a linear function that best describes the data (xi , yi), i = 1, . . . ,n.

Solution.
Model:

y(x) = a + b x

Φ(a,b) =
n∑

i=1

(a + b xi − yi)
2

0 =
∂Φ

∂a
=

n∑
i=1

2(a + b xi − yi) ⇒ n a + b
n∑

i=1

xi −
n∑

i=1

yi = 0

0 =
∂Φ

∂b
=

n∑
i=1

2(a + b xi − yi)xi ⇒ a
n∑

i=1

xi + b
n∑

i=1

x2
i −

n∑
i=1

xiyi = 0
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Logistic model Determination of model parameters

System of linear equations:

a +
1
n

n∑
i=1

xi b =
1
n

n∑
i=1

yi = 0

1
n

n∑
i=1

xi a +
1
n

n∑
i=1

x2
i b =

1
n

n∑
i=1

xiyi

- System of normal equations
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Logistic model Determination of model parameters

Problem
Find a exponential function (y = β eα x ) that best describes the data
(xi , yi), i = 1, . . . ,n.

Solution.
Model:

y(x) = β eα x

Φ(a,b) =
n∑

i=1

(β eα xi −yi)
2

Nonlinear system of equations:

0 =
∂Φ

∂α
=

n∑
i=1

2 (β eα xi −yi)β xi eα xi

0 =
∂Φ

∂β
=

n∑
i=1

2 (β eα xi −yi) eα xi
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Logistic model Determination of model parameters

Function Φ should be minimized by some numerical method.

In Mathematica:
NonlinearModelFit

FindFit

LinearModelFit

Linear least squares problem

Nonlinear least squares problem
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Logistic model Determination of model parameters

Linearisation of the model.
Determine parameters on logarithmically transformed data:

zi = ln yi

z(x) = ln y(x)

Now

Φ =
n∑

i=1

(z(xi)− zi)
2 =

n∑
i=1

(ln y(xi)− ln yi)
2

For exponential model:

y(x) = β eα x ⇒ z(x) = lnβ + α x = b + α x

- linear model
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Logistic model Determination of model parameters

Homework

Determine doubling time from the tumour spheroids growth data:

Time Volume
(days) (mm3)
4.56 0.0016308
5.66 0.0032148
6.68 0.005614
7.89 0.0118598
8.81 0.02015
9.79 0.027538

10.99 0.034546
11.99 0.06608
12.86 0.078932
15.17 0.155
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Logistic model Modelling population loss

1.3.6. Modelling population loss

Limited life time (death)

Each specie lives exactly τ time units

Species born at the time point t − τ die at the time point t

Death rate at time t is equal to birth rate at time t − τ

Exponential model: birth rate = αN(t)

growth rate = birth rate - death rate

N ′(t) = αN(t)− αN(t − τ)

Note, differential equation is not of the form y ′ = f (t , y)

→ delayed differential equation
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Logistic model Modelling population loss

Solving differential equation N ′(t) = αN(t)− αN(t − τ)

Consider solution in the form

N(t) = c eb t

Determine b and c to satisfy the differential equation.

cb eb t = αc eb t −αc eb (t−τ)

⇒ b = α− α e−b τ

⇒ b
1− e−b τ = α ⇒ b τ

1− e−b τ = α τ

Does a solution of the nonlinear equation exist?

Consider function
h(x) =

x
1− e−x
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Logistic model Modelling population loss

Graph of function h:

-2 -1 1 2 3 4 5
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h is strictly increasing ⇒ bijection ⇒ inverse function exists

⇒ an unique solution of equation exists: b = h−1(ατ)/τ

c is determined from the initial condition.

Solution is an exponential function:

N(t) = c eb t
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Logistic model Modelling population loss

Remark. By substitution

w = τ(b − α),

nonlinear equation is transformed to

w ew = T .

Solutions of this equation defines Lambert W function.

Equation has infinite number of complex solutions.

⇒ A general solution of the delayed differential equation is more
complex then an exponential function.
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Logistic model Modelling population loss

Death is modeled by −βN(t).

For exponential model:

N ′ = αN − βN = (α− β)N = ᾱN

Unrestricted growth + limited lifetime of species
⇒ exponential model
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Logistic model Modelling population loss

Harvesting of population.
total increase rate = growth rate - harvesting rate

Growth without harvesting:

N ′ = f (N)

Constant harvesting.
Harvesting with fixed quota.

Fixed amount of species is harvested in time unit.

⇒ Harvesting rate is constant. ⇒ Harvesting rate = K .

Model:
N ′ = f (N)− K
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Logistic model Modelling population loss

Example
Suppose that a growth of fish population without harvesting is
described by logistic model. Let a part of fish population is harvested
by the fishing with a constant rate K . Then, population growth with
harvesting is described by

N ′ = αN
(

1− N
C

)
− K

Remark. Right side can be factorized and equation becomes

N ′ = a(b − N)(c + N)
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Logistic model Modelling population loss

Impact of harvesting

Equilibrium points for y ′ = y(1− y) and y ′ = y(1− y)− 0.1

0.0 0.2 0.4 0.6 0.8 1.0

-0.1
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B
rz
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a

ra
st

a

What is the largest possible yield that will not decrease population
size? Population size increases ⇒

N ′ = αN
(

1− N
C

)
− K ≥ 0.
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Solve equation

αN
(

1− N
C

)
− K = 0

For a population of size N0, maximal yield is

Kmax = αN0

(
1− N0

C

)
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Maximal sustainable yield

What is a largest possible yield that will not cause a total loss of
population?

(Population size may decrease!)

Largest yield is possible when a population growth rate is highest.

N ′ = αN
(

1− N
C

)
− K

On the right side is a quadratic function; maximum is achieved for

N =
C
2

N ′ = 0 ⇒ KMSY = α
C
2

(
1−

C
2
C

)
=
αC
4
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Constant yield

N ′ = N(1− N)− K , N(0) = 0.3, Kmax = 0.21

K = 0 K = 0.1 K = 0.215
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For K > Kmax population disappeared!
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Maximal sustainable yield

N ′ = N(1− N)− KMSY = N(1− N)− 0.25, N(0) = N0

N0 = 1.2 N0 = 0.8 N0 = 0.6 N0 = 0.4
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For N0 <
C
2 = 0.5 population disappeared!
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Constant effort harvesting

Assumption: fish is fished with a constant effort

Limmited number of licences, ships, days on the sea, ...

Catch is proportional to the effort and population size.

⇒ Harvesting rate = e N.

Model:
N ′ = f (N)− e N

For logistic model

N ′ = αN
(

1− N
C

)
− e N
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N ′ = (α− e)N − αN
N
C

=

= (α− e)N
(

1− N
C(1− e/α)

)
=

= aN
(

1− N
C̄

)
- Logistic model.

Effects of harvesting:
Growt rate decreases
Carrying capacity decreases

Stable equilibrium point

N∗ = C
(

1− e
α

)
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Harvest rate for N = N∗ is

eN∗ = C e
(

1− e
α

)

Small effort → small catch

Increase of effort results with the increase of a catch, but
population size increases → smaller catch

Optimal effort (that maximizes yield):

eopt =
α

2

Optimal harvest rate

eoptN∗ =
C α

4
The same as in fixed quota!
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What is a difference between the models?

If catch size is (accidentally or intentionally) to large:
Constant yield model - population extinction

Constant effort mode - yield increases, but stable equilibrium
remains unchanged (with smaller population)

It can be shown: in the case of an unexpected damage of a population
constant effort model provides faster recovery
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Constant effort

N ′ = N(1− N)− e N, N(0) = 0.3

e = 0 e = 0.2 e = 0.5 e = 0.8
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Optimal yield

N ′ = N(1− N)− eopt = N(1− N)− 0.25N, N(0) = N0

N0 = 1.2 N0 = 0.7 N0 = 0.3 N0 = 0.1
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