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Abstract. We describe explicitly each stage of a numerically stable algorithm for
calculating with exponential tension B-splines with non-uniform choice of tension
parameters. These splines are piecewisely in the kernel of D2(D2 − p2), where D
stands for ordinary derivative, defined on arbitrary meshes, with a different choice
of the tension parameter p on each interval. The algorithm provides values of the
associated B-splines and their generalized and ordinary derivatives by performing
positive linear combinations of positive quantities, described as lower-order expo-
nential tension splines. We show that nothing else but the knot insertion algorithm
and good approximation of a few elementary functions is needed to achieve machine
accuracy. The underlying theory is that of splines based on Chebyshev canonical
systems which are not smooth enough to be ECC-systems. First, by de Boor al-
gorithm we construct Chebyshev exponential tension spline with known jumps in
the second derivative, and then use quasi-Oslo type algorithms to evaluate classical
non-uniform tension exponential splines.
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1. Introduction

Exponential tension splines have proved as a remarkable tool for solving
problems in which the solution is expected to grow exponentially, a situ-
ation where inferiority of polynomial splines is easily recognized. Three
major areas of application exist: projection methods for singularly
perturbed BVP’s and integral equations, monotone and convex data
fitting, and CAGD applications. There is a vast number of references
regarding projection methods, mostly collocation for singular perturba-
tion problems [10, 16, 17] and some for Volterra integral equations (see
[9] and references therein). It is common for these methods that they try
to determine the boundary or internal layer in which the solution grows
exponentially. To preserve consistency one must include polynomials,
and to catch the exponential growth one can add exponentials of the
form exp (±pix). The tension parameters pi > 0 are determined in
a certain way by the application, and numerical parameters such as
knot position and multiplicity also play an important role. In fact, one
can use variable meshes and polynomial splines for the same kind of
problems, or combine both approaches. The special choice of Shishkin
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