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Abstract  We prove a well known formula for the generalized derivatives of Cheby-
shev B—splines:
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in a purely algebraic fashion, and thus show that it holds for the most
general spaces of splines. The integration is performed with respect to
a certain measure associated in a natural way to the underlying Cheby-
shev system of functions. Next, we discuss the implications of the for-
mula for some special spline spaces, with an emphasis on those that are
not associated with ECC-systems.
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Introduction and preliminaries

The classic formula for the derivatives of polynomial B—splines
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may be written in the form:
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The same formula holds for Chebyshev splines if integration in (2) is per-
formed with respect to a certain measure associated in a natural way to
the underlying Chebyshev system of functions. In this way, we can define
Chebyshev B-splines recursively, and inductively prove their propereties.
To the best of our knowledge, the derivative formula for non—polynomial
splines first appeared in [9] for one—weight Chebyshev systems. Later,
special cases appear for various Chebyshev splines, like GB splines [4],
tension splines [3], and Chebyshev polynomial splines [10]. The gen-
eral version for Chebyshev splines, that appeared in [1], in the form of
a defining recurrence relation for B-splines, is based on an indirect ar-
gument, relying on induction and uniqueness of Chebyshev B-splines.
A direct proof, valid for CCC-systems and Lebesgue-Stieltjes measures,
follows.

1. The derivative formula

We begin by introducing some new notation and restating some known
facts, to make the proof of the derivative formula easier.

Let 6 C [a, b] be measurable with respect to Lebesgue - Stieltjes mea-
sures dog,...do,, and let P,y be n — 1 X n — 1 permutation matrix,
that we call duality:

(Pn—1)ij 1= 8in—j i1=1,...n—1; j=1,...n—1.

We shall use the following notation:

measure vector : da := (do2(6), . ..dan(5))T c R
reduced measure vectors: dal) ;= (dojtz,... dan)T e R
dual measure vector : P.,._.dz.

CCC-system S(n,d&) of order n is a set of functions L{1,uq,...u,}:

ug(z) = ul(ac)/axdag(tz),

un(x)' = u(a) /jdag(tg).../atn_l do (1)

(see [12] and references therein). If all of the measures do; are dominated

by the Lebesgue measure, then they possess densities z%’ 1=2,...n;if
p; are smooth, i.e. ]% 1= d;ti € C"*t1 the functions form an Extended

Complete ChebyshevlSystem (ECC-system). Reduction and duality de-
fine reduced, dual, and reduced dual Chebyshev systems as Chebyshev
systems defined, respectively, by appropriate measure vectors:
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B-Spline Deriwvative Formula 3

j—reduced system: S(n—5,déW) = {uj1,... ujn_;}
dual system: S(n, Pn_1d3) = {u},...uj}
j—reduced dual system: S(n — j, (Pn_ld&')(J)) ={uj1,...uj,_;}

We define the generalized derivatives as linear operators mapping the

Chebyshev space of functions spanned by S(n, d&) to the one spanned by

S(n—j, d&'(])) by L. ,z:=Dj--- Dy, where D; are measure derivatives:
J,d0

o L) = F()

§—0+ dojyq(z, 2+ )

D;f(x)

Generalized derivatives with respect to the dual measure vector are
known as dual generalized derivatives. For example, if n = 4:

S(4,dd) = {ur, ug, us, uqg} : S(4, P3dd) = {uj, ul, ui, uj}
1 1

fogg d0'2 (tz) foy d0'4(t4) .

Jo doa(ta) [y dos(ts) Jo doa(ts) [y daos(ts)

i doa(ta) [y dos(ts) fy doa(ts) | [y dos(ts) f,* dos(ts) [y° doa(tz)

S3,ddMy = {ur 1, 10,13} ¢ | S(3, (P3dd))) = {ul 1,07 5, ui 5}

1 1

fogg dO’g(tg) foy dO’g(tg)

fogg dO’g(tg) fgS d0'4(t4) foy dO’g(tg) fgS dO’Q(tz)
8(2,d5) = {ug1, uz 0} : S(2, (P3d3) ) = {uj,u3,} :
1 1

fogg d0'4(t4) foy dO’Q(tz)

S(1,d7)) = {uz 1} : S(1, (P3dd)?) = {u5} -

1 1

Note that the dual of the reduced system is different from the reduced
dual system, i.e.: Pp,_;_4 dz) + (Pn_ld(?)(]).
The function & ,z(x,y) : [a,b] x [a,b] = R defined by

[Pdoy [ .. [0 do, @ >y,
_ - y y y -
G”vdg(x’y) ) { 0 otherwise
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is called the Green’s function with respect to d&. It follows easily that

L; 15G, 45T, ) = Gn—i,dﬁ(i) (z,-), for i=1,...,n—1. (3)

We shall say that A = {zq,..., 211}, ¢ < 2; < bis the knot sequence if

a=29< 21 <2< ...$k<$k+1:b
and 7m = (ny,...,n;)7 is the multiplicity vector if n; are integers, and
1<n; <n.{ty...taptr} is an extended partition if

th=...=t, =
bpgkt1 = ... =tloppp = b
gl < oo Sl = T1ye o3 Ty e oy Thy oo oy T
N ng

The space of Chebyshev splines of order n associated with the knot
sequence A and vectors m and d& is denoted as S(n,m,dd, A). Next,
in order to define divided differences, we need to extend the Chebyshev
systems by one extra function, and that means involving an additional
artificial measure. To this end, let us define the extension operator

1 0

E;, = E; iRi%RH—l,
0 ... 1
0 ... 0

and the extended measure vector:
di = (doy, .. .do,,d\)" = E,_,d& + €,d\

where €, = [0...0,1]7 € R”, and dX is the artificial measure (usually
taken to be the Lebesgue one). The Chebyshev divided difference of order

n is then
D tlv"'7tn+1
. u17"'7un7f

[tl,.--tn-l—l] 7 f - '
S(n+1,dR) D ( t1y oy tpt1 )

Uy v oy Unt1

For definition of the determinants defining the divided differences, see
[12]. The important thing is the anihilation property, which we quote
for the sake of notation purposes:

[t17...7tn+1]5(n+17d5)u = 0 VUES(TQd&))
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B-Spline Deriwvative Formula 5

In this notation, divided differences satisfy the Miilbach’s recurrence [5]:

[tlv ) tn+1]5(n+17dﬁ).f =

[t2, .. ‘7t”+1]$(n,d5)f —[t1, .. -7tn]$(n,d5)f

[t27 L) tn+1]5(n7d5-’)un+1 - [tlv L) tn]s(md(}’)un—l—l '

Formula (4) can even be generalized to the complex case [6].
The un-normalized Chebyshev B-splines are then defined as

de(}*($) = (=1)"[t;, .. 'ti+”]$(n+1,dlz)Gn,dﬁ($v ).

k
. . n nt K . .
Let K = g n;. B—splines {Qi,dﬁ}1+ * are the basis for S(n,m, dd, A),
=1

and it is known [12] that they can be normalized so as to make a partition
of unity, i.e. there are constants o' (d&) > 0 such that

I 5(2) = i (d3) Q] z(2), (5)

=1
on the artificial measure, that is the extension operator F,_; needed to

define divided differences. Indeed,
D(Z;7t;tn )D(Z:ﬂl—lvéfﬁ-n—l)
a(dF) = 1 Upg 1 Upg
K3

D bitly -y bitn D biye ooy tign—1
Uy, ..Ul L7 Tt

D(ti7"'7ti+n )D(ti+17"'7ti+n—1)
ULy ey Unyy U, Uy
D bitly -y bitn D biyoo oy titn—1
U, ..U L7 Tt
D L, SRR ti-l—n
uy, ..., U, Gn,d/%’
1
D tiv"'7ti+n
b b
ULy ey Up iy

so that the determinants involving u},, cancel.

and Z?"’K T" =(x) = 1for z € [a,b]. Moreover, T?" ~(z) do not depend

and

Theorem 1.1. Let Ll,d&' be the first generalized derivative with respect

to the CCC-system S(n,d&), and let the multiplicity vector m satisfy
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6
n;<n—1fori=1,...k. Then for allx € [a,bl andi=1,....,n+ K:
Tn_—{(l) () 171 o (@

i,d0 i+1,d0
— i - _ i - , 6
(@) Cor(i))  Cosi(it 1) (6)

T
17d5Ti,d5

L

where

] titn—1 L
Cn_l(l) = / Tn__)(l)dO-Q.
t;

i,d0

PROOF. By Sylvester’s determinant identity [3, p.158]:

dea_»($) = (_1)n{[ti+17 Ty ti+n]5(n7Pn_1dﬁ)Gn7dE(x7 )
—[ti7 cee tH‘n_l]S(n,Pn_ld&)Gn,dE(x7 )}
If we apply the first generalized derivative and utilize (3), we obtain
L1,dETZ?d5($) = —(wiy1 — wi),
where
R n—1ry, .
w; 1= (—1) [t“ .. 't2+n_1]5(n7Pn—1da:)Gn—LdE(l) ($7 )

The Miilbach’s recurrence (4) reduces the order of divided differences:

(-1t
Wy = —"—""" { [ti-l-l? e 'tH'n_l]S(n—l Pn—2d5(1))Gn_1 4G

Vi
[tis. - titn—2] W}

.G .
S(n=1,P_»dd"y " n_1,46

where
V=l tivnalg, y p a0 tn =i s tin2lg | p 20t
Therefore, by Sylvester’s identity, w; = T:d_(;(l) (x)/7i, and it remains

to prove that v; = C,_1(¢). To this end, let d¢f:= E,,_3P,_2 da) 4
dX €,_1. Recurrence for divided differences in S(n,dq) applied to u
yields

[ti, .. 'ti+”_1]$(n,d§)u2 = (7)
[tit1, - 'ti+n—1]$(n_17Pn_2d5.’(1))u:; — [t . 'ti+n—2]$(n_17Pn_2d5.’(1))u;;

9

*
UTL

[tz-l-lv o 't2+n_1]$(n—1,Pn_2d5(l))U” [tu .. 't2+n_2]$(n—1,Pn_2d5(l))

where v} is an element of the extended dual reduced system:

vt (y) = /ay dan(sn)...[4 dos(ss)dss / dA(s2).
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B-Spline Deriwvative Formula 7
Equation (7) implies that

Vi = [t“ .. .ti+n—1]$(n,dq_) )U:; ’

*

Wit tivnalg o p g0 n [l tinlg  p a0 00}

By Peano representation of Chebyshev divided differences [12, p.382]

tifn—1
-1
[ti, .. 'ti'l'n_l]S(n,d(]_ju:; = /t Q?d(}'(l)l/n—l,d(f u:;dAv

and

Ly aq uydX\ = dos.

By yet another application of Sylvester’s determinant identity, the term
in {} can be identified with the normalization constant o2~ *(dg")). O

Theorem 1.1 may now be used to calculate, at least in theory, all
derivatives of a Chebyshev spline. Generalized derivative can be factor-
ized:

L for k=1,...4; i=1,...n—2, (8)

i+1,d0 — Li_k+17d5(k)Lk,dE
and this fact can be used inductively to find higher derivatives as linear
combination of lower order splines.

-1

Theorem 1.2. Let s(z) = Z @T;?dﬁ(x) be the B-representation

j=r—n+1

of a Chebyshev spline s € S(n,m,dd,A) for x € [t,,t;], 0 < r <

[ < k4 1. Then the B-representation of ils generalized derivative
L; 135 € S(n—i,1m,d6", A) is:

-1 ' '
L z5(x) = Z 5}T7d_(;(i) (x) for i=1,...n—-1- max ;.
j=r—n+i+1 I
(9)

The coefficients 5; can be calculated recursively:

5§ =4

i—1 i—1
sio_ % %
I Cn—z(]) 7

where

. titn—q i '
Cn-i(j) = T doig.
t

5 7,d0
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PROOF. We know that (9) holds for 7 = 1. Let us suppose that
ST Z 10
Z dU Z ],dO’ ( )

Equation (8) for k = i yields

L., ==L _uL.

1+1,d0 1,d0 i,da?
whence by (10)
Liprags(@) = L a0 (O 5ZT;d;()( z)). (11)
i

Theorem 1.1 may now be applied to 7" "—splines in (11) to obtain

n i—1 i+1pn—i—1
Li-l—l,dO' E C —(i—1) ($) E 5 T (i—1) (x) O
J

]dO'

Applications

We can define, and calculate (at least theoretically) Chebyshev B-
splines by a recurrence relation implied by the derivative formula:

1 v 1 ’
TRORS S Ry e N Y L
“dg( ) Chr—1(2) /t, ivdﬁ(l) ? Cn-1(i+1) /75i+1 i+1,d5(1) :

From the numerical point of view, the recurrence involves dangereous
subtractions resulting in the loss of significant digits, even for polyno-
mial splines. For Chebyshev splines the numerical instability sometimes
destroys the result. To illustrate it, we consider a CCC-system associ-
ated with the measure vector d& = (t;%dty, dts, dty)", where 0 < o < 1.
The system originates from the realistic problem concernig axially sym-
metric potentials, and is not an ECC-system, since the measures do not
posses smooth densities [8]. The Green’s function is

3—a 3—a y(l,2—o¢) _y2—a)

- + T >y
~(z,y)= 2(3—a) 2-o 2(1-a) 7 7=
g4’dg( 2 { 0 otherwise.

y2 (xl—a_yl—a)

The simplest case is that of the 4" order splines on triplets of knots, as
the first reduced system are ordinary powers, and therefore B-splines in
the first reduced system are scaled Bernstein polynomials.
The following simple Mathematica code generates some Chebyshev
1

B-splines for a = 3:
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B-Spline Deriwvative Formula 9

Bilx_] := ((b - x)/(b - a))"2;

B2[x_] := 2/(b - a)"2*(x - a)*(b - x);

a = 1000; b = 1001;

Cl1 = Simplify[Integrate[B1[t1*Sqrt[t], {t, a, b}]]

C2 = Simplify[Integrate[B2[t]1*Sqrt[t], {t, a, b}]]

first[x_] := Simplify[Integrate[B1[t]*Sqrt[t], {t, a, x}]1/C1];
second[x_] := Simplify[Integrate[B2[t]1*Sqrt[t], {t, a, x}1/C2];
Plot[first[x] - second[x], {x, a, b + (b - a)/3}]

Depending on @ and b (eg. if they are either away from 0 like in the above
example, or close to each other), this can lead to the loss of half of the
significant digits. Indeed, recalculation in 64-bit arithmetics shows that
only the first seven digits hold, and the error is shown in Fig. 1:

Figure 1. Roundoff error for the derivative formula (a = %)

20 ¢ ,40 . 60 80 °+, . 100
-5-107

-1-107f

Observe also that accuracy is lost if we calculate the normalization
constants on small intervals by analytic formulse. For example, the con-
stant C1 above is:

2 (—15a%+42a§b—35a%b2+8b%)
105 (a — b)* '

It is therefore better to use a Gaussian formula with the appropriate
weight. In special cases such as this, where only one measure is different
from the Lebesgue one, the derivative formula and knot insertion can
sometimes be used to obtain numericaly stable algorithms (at least for
rational a’s); Theorem 1.1 by itself is not enough.

The same qualitative behaviour also happens for some ECC-systems,
like tension powers, where the ECC-system is determined by the mea-

sure vector d& := (d/\,cosh(px)d/\,coshémdA)T, and p > 0 is known

as tension parameter. The tension parameter and interval length can
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be chosen so that straighforward application of the derivative formula
leads to loss of all significant digits. There is a way out through knot
insertion [11], but Theorem 1.1 still plays an important role in the con-
struction.

Finally, the first recorded proof of the famous de Boor-Cox recur-
rence [7] for polynomal splines is based on the derivative formula, plus
an additional algebraic fact, which does not hold in the Chebyshev set-
ting [2].
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