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Abstract

We construct monotone numerical schemes for a class of nonlinear PDE for elliptic
and initial value problems for parabolic problems. The elliptic part is closely con-
nected to a linear elliptic operator, which we discretize by monotone schemes, and
solve the nonlinear problem by iteration. We assume that the elliptic differential
operator is in the divergence form, with measurable coefficients satisfying the strict
ellipticity condition, and that the right hand side is a positive Radon measure. The
numerical schemes are not derived from finite difference operators approximating
differential operators, but rather from a general principle which ensures the con-
vergence of approximate solutions. The main feature of these schemes is that they
possess stencils stretching far from basic grid-rectangles, thus leading to system
matrices which are related to M-matrices.
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1 INTRODUCTION

There is a number of interesting phenomena in engineering problems that
lead to equations of the form Qu — 37;; G;a;;u Oju = p, where a;; define a
diffusion tensor with a general structure, mostly degenerate. These problems
range from laminated plates, composite materials, polymer production and

* Corresponding author.
Email addresses: nlimic@math.hr (N. Limi¢), rogina@math.hr (M. Rogina).
URLs: www.math.hr/~1limic (N. Limi¢), www.math.hr/"rogina (M. Rogina).
I Supported by Grant 037-1193086-2771, by the Ministry of science, education and
sports of the Republic of Croatia.

Preprint submitted to Nonlinear analysis 9 February 2009



porous media to electrochemistry and, recently, mathematical biology. It is
common for most of them that they originate from the method of homog-
enization, frequently involving non-smooth diffusion tensor, and sometimes
right hand sides which are only measures. To mention just a few interesting
problems to which the method can be applied, let us mention diffusion of gases
in polymers [12], diffusion of ions through solution of charged molecules [5],
advection-diffusion problems arising in deterministic approach to aggregating
populations in mathematical biology [11] or anisotropic diffusion in image pro-
cessing [14]. Finally, the classic problem of dispersion of polutants in the sea
and lakes, where diffusion tensor can be evaluated from measured components
of velocity of the fluid is also in the same class, though in this case the oper-
ator is linear. In what follows, we propose a new numerical scheme for such
problems with a desirable property of yielding a positive approximation to
solution for which the right hand side may be as weak as a positive Radon
measure.

In Section 2 we define the abstract setting for the problem in question, func-
tional spaces needed, and a specific discretization on a numerical grid. In
Section 3 we briefly describe basic properties of the linear elliptic problem
and its parabolic counterpart. These are followed by an explicit construction
of the system matrix for discretized problem in Section 4, and results on
convergence can be found in Section 5. Finally, two examples with nonlinear
PDE, one elliptic and one parabolic, illustrate the efficiency of the proposed
numerical scheme.

2 DEFINITION OF THE PROBLEM

Let 15 be the indicator of S C R?, i.e. 1g(x) = 1 for & € S, and zero otherwise.
We say that f on R? is piecewise continuous if f = Zle Jilp,, where D; are
measurable and mutually disjoint, and f; are bounded, uniformly continuous
functions on R?. A bounded domain D C R? is called a Lipschitz domain if D
is an open set and its boundary 9D is a Lipschitz boundary [10]. Although
our interest is in Lipschitz domains, often we express results for the case of
the whole Euclidean space R?, whence we write D = R?. The closure of a set

S is denoted by S or cls(S).

Banach spaces of functions C®(r?), C*®)(D) are defined as usual. The clo-
sure of functions with compact supports in C®)(R?) determines the subspace
ci (RY). The closure of functions in C'(D) with supports in D determines the
subspace C'(D), and then C (D) = CM(D)NC(D). The L,-spaces, as well as
Sobolev Wpl—spaces, are defined in a standard way [10,13], their norms being
||l and |- |1, respectively. The completion in the norm of W (D) of functions

in C(D) is denoted by W}(D). Let X be a Banach space and XT its dual.



Then the value of f € XT at u € X is denoted by ( f|u). Let R(D) be the con-
vex set of positive Radon measures p on B(D). Then (v | u) = [ v(x)u(dx) is
well defined for v € Wolo(D) We say that a sequence of u,, € R(D) converges
weakly to u € R(D) if lim, (v|pu, ) = (v|p) for each v € C(D).

Nonlinear elliptic and parabolic problems for which we construct monotone
schemes are defined in terms of the linear 2"4-order elliptic operator on R,

d d
— > Owgi(x)0; + D bi(®)0; + c(x), (1)
ij=1 j=1
where a;; = aji, b, (i,j = 1,2,...,d) and ¢ are piecewise continuous on R?,

¢ >0, and a;;(x) must converge to constant values as |z| increases. We also re-
quire strict ellipticity, i.e. that there exist positive numbers 0 < M < M, such
that M |z|* < 3. a;(x)zz; < M |x|*. In addition, divb = 0 in the gen-
eralized sense. The differential operator Ay(z) = — 3¢ =1 0saij(x)0; is called
the main part of A(x). Then A(x) = Ag(x)+ L(x), where L(x) is a lower order
differential operator. A real bilinear form on W (D) x W)(D), 1/p+1/q =1,
defined by a(v,u) = X7, [pay(2)dv(x)d;u(z)de + (v|Lu) is associated
with (1). For each pair v € WX(D), v € WD) n {Au € (WXD))'},
1 < p < oo, we have a(v,u) = (v|Au), this also being true for each pair
v e WL(D), ue WH(D)Nn{Au € R(D)}.

We consider a class of nonlinear operators defined by (z, u(x)) — A(x,u(x))=
— > Oiagj(x)u(x)*0; + L(x)u(x), a > 0, so that A(zx, 1) coincides with (1).
The corresponding analogue of the bilinear form af(,-) is

d

a(u;v,u) = Y / a;j(x) u(x)® Ov(x) dju(x) de + (v|Lu). (2)

In this work we study numerical methods for BVPs and IVPs for the second
order parabolic linear and nonlinear PDE. Results for linear BVPs are ex-

pressed in terms of properties of solutions of the variational formulation for a
solution u € W (D):

Molu) + a(v,u) = (vlu), for any e WL(D), (3)
where A > 0, and the inhomogeneous term p is a positive Radon measure. For

D = R% we replace v € WL (D) with v € WL (R?) N Cy(R%). Nonlinear BVPs
are also formulated by using a variational formulation:

Molu) + a(u;v,u) = (vlp), for any ve WL(D). (4)



The aim is to study discrete approximations to the solution v € C(Ry, W, (D))
of IVP’s which are defined in terms of the variational equalities:

(v(t)|u(t)) = (v(0)|u(0)) = fods (Dsv(s)|u(s))
+ [y dsa(u(s);v(s),u(s)) = ([3 v(s)ds|p), t>0, (5)
for any v € CO (R, WL (D)),

where p is a positive Radon measure and the initial condition uy € Wpl(D)
Problem (3) is called auxiliary to the problem (4). The Euler-Lagrange equa-
tions of (3), (4) or (5) are called formal linear (nonlinear) elliptic and parabolic
problems, respectively.

The orthogonal coordinate system in R? is determined by unit vectors e;.
Discretizations of R? are defined by the grids G,, := {x = h(n) 20, ke, : k €
Z}, where h(n) = 27" is the grid-step, usually denoted by h, and the elements
of Gy, are grid-knots. The subgrids G, (D) = G,, N D are discretizations of D.
The index set of grid-knots @ € G,,(D) is J,(D).

A mapping from G, or G,(D) — R is called a grid function, and the linear
space of grid functions on G,, or G, (D) is denoted by (G, (D)) or I[(G,). The
initial condition and measure in Problems (4), (5), are discretized by grid-
functions uy,, p,,, respectively, The differential operator (1) is discretized by
a matrix A, with the index set J,(D) x J,(D); such a matrix A, obtained
from discretization is called the system matriz.

The discretizations of Problem (4) have the following forms:

M+ A,(uy))uw, = p,. (6)

Similarly, discretizations of Problem (5) have the form:

u, (1) + An(ua()un(t) = p,, uu(0) = uon. (7)

Apparently, Problems (6) are algebraic linear or nonlinear systems, while Prob-
lems (7) are IVP for systems of linear or nonlinear ODE. We say that Problems
(6) and (7) define monotone schemes of the original problems (4) and (5) if
the matrices A,, = A,,(u,(t)),t > 0 have the following structure:

(An)n > O, for i € Jn(D) .
(An)z] Z 0 for J € Jn(D>
(An>1] < 07 for 4 7é j7 i€Jn (D)



We say that a matrix A, with such properties has the compartmental struc-
ture. Naturally, the system matrices A, with the compartmental structure
are the main object in this work. Let us mention that the transpose A” of a
compartmental matrix is a M-matrix if A~! exists.

An element (column) u,, € I[(G,,) can be associated with a continuous function
on R? in various ways. Here we utilize a mapping I(G,) — C(R?) defined in
terms of hat functions. Let y be the canonical hat function on R, centered at
the origin and having the support [—1,1]. Then z — ¢(h,z,2) = x(h~(z —
hz)) is the hat function on R, centered at x € R with support [z—h, x+h|. The
functions z +— ¢r(z) = T1%, ¢(h, s, 2),x; = hk;, define d-dimensional hat
functions with supports S,,(1, ®) = [1;[z;—h, z;+h]. The functions ¢ (-) € G,
span a linear space, denoted by E,(R?). Let u,, € I(G,,) have the entries w,;, =
(). Then the function u(n) = Y pe;. Unkdr belongs to E,(R?) and defines an
imbedding of grid-functions into the space of continuous functions. We denote
the corresponding mapping by @, : I(G,) — E,(R?). Obviously, there exists
o1 E,(RY) — I(G,) and the spaces [(G,) and E,(R?) are isomorphic with
respect to the pair of mappings ®,, ® 1. It is clear that FE,(R?) C E, (R
and the space of functions U, F,(R?) is dense in L,(R?),p € [1,0), as well as
in C'(R%). Let us mention that >4 ¢ = 1 on RY.

Grid-solutions u,(t),u, of (7) and (6) are imbedded into the space of hat
functions and the functions u(n,t) = ®,u,(t),u(n) = d,u, in E,(D) are
called the approximate solutions of respective Problems (7) and (6).

3 GROUND FOR NUMERICAL APPROACH

Let us start with a description of certain properties of the linear operator A(x)
and the corresponding problem (3). The inverse of the differential operator
M + A(x) on RY, as well as the inverse of this operator on a Lipschitz domain
with the homogeneous boundary conditions on 9D, are denoted by T(\, A)
and T'(\, Ap), respectively. We say that the operator T'(\, A) exists if the dif-
ferential equation (A + A(z))u(x) = f(x) has a unique solution u € Ly j,.(R?)
for any f € Co(R?). We say that the operator T'(\, Ap) exists if the BVP (3)
has a unique solution u € L;(D). By using the defined objects we can prove
the following theorem [2,6]:

THEOREM 3.1 Let D be a bounded domain with a Lipshitz boundary, u €
R(D) and T'(\, A) exist. Let a sequence of functions 4 = {u(n) : n € N} C
Li(D) converge to u weakly. Then the sequence of functions ¥ = {v(n) :
n € N} C Wpl(D), where v(n) = T(\, A)u(n), converges strongly in WI}(D) to
T\, A)p for eachp <1+1/(d—1).



A numerical approach to the linear problem (3) on D with a Radon measure
on right hand side is based on Theorem 3.1. The method is described in [7,8].
In addition, this result satisfies our needs for theoretical grounds of nonlin-
ear BVPs to be studied in Sections 5, 6. Defined nonlinear BVPs on D of
mentioned sections are transformed to equivalent nonlinear BVPs of the form
Ap(x)u(x) + L(u(x)) = p(x) with the corresponding boundary conditions,
where u — L(u) is a simple nonlinear operator.

Nonlinear IVPs (5) cannot be transformed to equivalent nonlinear IVPs with
a linear term involving the second order derivatives. Thus a linear IVP repre-
senting a counterpart of (5) is omitted from our analysis. For nonlinear IVP
(5) a general result can be used [9], Section 12. of Chpt. 1. and Section 3. of
Chpt. 2.

THEOREM 3.2 Let ug € Wy *(D) and pu € W, (D) where g = (24 ) /(1 +
a), a > 0. Then there exists a unique solution u € L***((0,,) x D), t, > 0, to
the problem (5) in which a(u(s);v(s),u(s)) is replaced with a(|u(s)|;v(s), u(s)).

If stronger conditions are imposed, for instance, ug € Lo(D) and u € Ly(D), pu >
0, then a smoother solution to the problem (5) exists: u € Loo((0,7), L2(D)),

u? € Ly((0,T), W3 (D)) and du/dt € Ly((0,T), W, (D)) [3,9]. In the case

of ¢ > d/2 we can use an iterative process for the construction of solution to

(5), as proposed in [1].

4 CONSTRUCTION OF THE SYSTEM MATRIX

Discretized nonlinear problems (6) and (7) are numerically solved by itera-
tions. In each iteration a linear problem is solved for which the system matrix
must have the compartmental structure. Therefore, in this section we describe
constructions of matrices A, discretizing the linear differential operator (1).

Construction of discretizations in this section is possible if certain conditions
on a;; are fulfilled. The required conditions are stronger than the assumed
ones in Section 2. By relaxing them gradually as n — oo we obtain discretiza-
tions for a general A(a) which is defined in Section 2. In order to make our
presentation brief, we assume that  +— a(x) is a continuous tensor valued
function on RY.

To a given diffusion tensor a = {a;;}{¢ we associate an auxiliary tensor a
defined by the components a;; = a;;, a;; = —|a;;|, @ # j. Also, we need sets

S(qa iB) = ?:1[51"1' - hqiv i + h’ql]

Assumption 4.1 The auziliary diffusion tensor a is strictly positive definite



on R%. There exists ¢ € N such that for each x € G,, there is a parameter
r(x) € N satisfying:

inf a;(z)— Y ! sup |a,~m(z)|} > 0.

inf min inf
i {T’i CC) z€S(q,x) m#i rm<;1;) z€S(q,x)

n 7 T

This Assumption is crucial in the construction of discretizations A,, possessing
the compartmental structure. For two-dimensional problems it always holds,
but for a dimension d > 3 it is not fulfilled in all the cases, thus limiting the
proposed numerical scheme. The scheme can be extended to a larger class of
diffusion tensors a = {a;;}{¢ after performing rotation of coordinate axes.

Contrary to the standard approach in developing discretizations of Ag(x),
we construct methods based on the general principle which is not a priori
related to the forward/backward finite difference formulee. One such method
is described here, which follows from basic principles discussed in [7].

Discretizations A,, are defined in terms of its matrix entries (A, )g, where
hk, hl € G,,. For a fixed x = hk € (G, the set of all the grid-knots y = hl such
that (A,)r # 0 is denoted by N (x) and called the numerical neighbourhood
of A, at € G,,. A set N'(x) contains always a ”cross” consisting of & and 2d
elements +hr;e;. Additional elements of N () depend on the sign of a;;,7 # j.

Let us consider the two-dimensional case and assume a possibility of a parti-
tion of R? as described in the following. There exists a finite index set £ and
a partition RY = U;D;. The set £ is split into the subsets L+, where | € £_
means that a;; <0 on D; and [ € L means a;; > 0 on D;. To each D, there
is associated a parameter r(l) € N%. Now we define D, (—) = Ujee_D; and
D, (+) = D,(—)¢. The subgrids G, (F) are defined by G,(—) = G,, N D,(—)
and G,(+) = G, Ncls(D,(+)). The convex set {tx + (1 —t)y : t € [0,1]}
is called segment. The subgrids G,(+) are characterized by the following
property. Let @ € cls(D;), y = x + h(n)ri(l)e; and I(x,y) be the corre-
sponding segment. Then « € G, (+) if I(x,y) C cls(D,(+)). It follows that
each € GG, must be contained in one of sets G,,(F) and each of segments
Ii(x,y),y =« + h(n)r;(l)e;,i = 1,2 must have both of its end points x,y in
some G, (F). Some grid-knots and some segments are contained in both sets,
Gn(F) and cls(D,,(F)), respectively. The subgrids G, (1, F) = G,(F)ND, cover
G, and some of them may have common grid-knots. For measurable functions
a;; on R? which have constant values outside a bounded set the described de-
composition is possible after smoothing the functions a,; with a sequence of
mollifiers as described in [8].

In order to write down the entries of A,, we need the abbreviations:



Fig. 1. Numerical neighbourhoods

a2 <0

(IZ:-?JF(’I") = QU (CL‘ + g(:‘: re; + TQ@Q)), CL;§7<'T') = Qi (33 + %(ﬂ: re; — 7”262)),
a5 (1) = an(a + B(ries + o) — hey), @y (r) = ali (r),
a5 (1) = ana(@ + B(ries +mes) — hes),  aly (1) = aly ) (r).

For each & € G, N int(D;) nontrivial off-diagonal entries of A,, have a simple
structure. The entries on the ”cross” are:

r(l) .
L et ) - 1()|a§§+>(r(z))|for a1y < 0,

(Adiise, = =7 ot
I P éi Al ) foran >0 (3)
Ao, = 75 [0 = 2 a5 ) ]

while the entries in the directions w® (1) = r;(1)e; £ r;(1)e; are:

1 +7)
(An)k:kj:wF)(l) = T T (Nl |a§2:F (r(0)] for an <0on Dy,
h Tl(ll)ﬁ(l) (9)

++
(An) ety = 00 aly " (r())| for ap >0on D

For grid-knots @ = hk € D, such that the numerical neighborhood N () has
points outside of cls(D;) the entries have a complex structure. Their structure
follows from the corresponding discretized forms [7,8]. The diagonal entries
are the negative sums of off-diagonal entries. The numerical neighbourhoods
of discretizations A,, defined by (8), (9) are illustrated in Fig. 1. The quantities
dgxﬂ )in (8) can be replaced with a,(;?ﬂ ). However, the quantities agfﬂ ) should not
be replaced with a;;(hk) since the resulting (A, )x would be discretizations of

Zij aij(‘?i@j.

Discretizations A, of (8) and (9) are obtained by applying the variational
calculus to certain bilinear forms (v,,u,) — a,(v,, u,) which discretize the
original bilinear form a(1;-,-) [7,8]. These forms can be expressed as the sums
of backward /forward finite difference formulae with various step sizes.



Construction of discretizations A,, with the compartmental structure for d > 3
is based on the reduction to two-dimensional problems, and one can prove [7,8]:

THEOREM 4.1 Let Assumption 4.1 be valid. There exists ng € N such that
for n > ng the discretizations A, are symmetric matrices having the compart-
mental structure.

The differential operator L(x) = Y b;(x)0; is discretized on G,, by matrices
L,, which are obtained by applying the standard upwind scheme to each grid-
knot x € G,,. If the functions b; are constant, then the obtained discretizations
A,+L,, have the compartmental structure. For a general vector valued function
b the matrices A, + L, do not have the compartmental structure. In this
article divb = 0, so that the column sums of A, + L,, can have negative values
converging to zero as n — oo. If A~ exists, then the transpose AL + L1 is an
M-matrix, implying A, > 0.

5 CONVERGENCE OF APPROXIMATE SOLUTIONS

Let A = 0, and let the linear boundary value problem (3) be discretized by
systems (6), A,u, = u,, where A,, have the compartmental structure. The
discretizations w,, € I(G,(D)) of a measure u € R(D) are defined by p =
|pr|l7'{ Dk | 1t ) Pr. The following result holds [7,8]:

THEOREM 5.1 Let D C RY be a bounded domain with a Lipshitz bound-
ary, and let 4 = {u(n) : n € N} C E,(D) be a sequence of approximate
solutions, u(n) = ®,u,, where u, are grid-solutions to Problem (6). For each
p € [1,d/(d — 1)) there exists a subset J(p) C N such that ' = {u(n) : n €

J(p)} converges to the unique solution of (3), strongly in L,(D) and weakly
in W, (D).

Here we consider nonlinear BVPs for which 6, = 0,7+ = 1,2,...,d on D.
We do not know results on the existence of solutions to (4) with non-trivial
functions b; and a Radon measure on the right hand side. In the case of
b; = 0 nonlinear problems (4) can be rewritten by using an equivalent formu-
lation for which the main part of differential operator is u-independent. The
transformation is realized by using the substitution w = u!* and formulat-
ing the problem for w. The new form (v,u) — a(u;v,u) is now defined by
a(u;v,u) = (1+a) Y v|Agu) + (v|Lu'/+9) ) and the new problem (4) has a
simpler expression. It is discretized by systems A, (u,)u, = u,, for which the
system matrix is such that discretizations of Ay(x) have the form D,, — B,
where D,, are positive diagonal matrices and B,, are non-negative off-diagonal
matrices defined by (8) and (9). The lower order differential operator is dis-
cretized by a nonlinear function of u, resulting in a non-negative diagonal



matrix L(u,). Then the systems A,(u,)u, = p,, are solved by iterations:

(Do + Lu(ua(k)) un(k +1) = Buun(k) + g, (10)

where the initial iteration u,(0) > 0 is known in advance. This implies u,, (k) >
0 on G,(D).

THEOREM 5.2 Let D be a bounded domain with a Lipshitz boundary and
W, be discretizations of a positive Radon measure with the support in D. For
each p € (1,d/(d — 1)) there exists a constant p(p) such that the approzimate
solutions u(n) = ®,u, have the property ||u(n)|,n < p(p). The sequence
U ={u(n) :n € N} C E,(D) has a subsequence L' converging to a solution
of (4), strongly in L,(D) and weakly in Wpl(D)

PROOF: In the first step of proof we derive the inequality ||u(n)|,1 < p(p)
implying the existence of a weakly convergent subsequence 4. In the second
step we demonstrate that the weak limit of Y’ is a weak solution to (4).

A bound on |u,]|, is derived from the representation of grid solution u,, =
Atp, — A L, (u,) which follows directly from (6). From this representation
we have

(Volu,) = <Vn|A;1Nn> - <VH‘A;1Ln(un)>' (11)

Due to p,, > 0 on G,(D) we have also u,, > 0. Let us consider the grid-
function v,, defined by values at grid-knots as follows: vy, = h=% qui_l /|, |7]j_1,
where 1/p + 1/q = 1. Then h%|v, | = 1 and (vy|u,) = h=44|u,],. In or-
der to estimate two terms on the right hand side of (11) we need a bound
of |A,'vy|e. From Corollary 6.1 in [8] we have the following result. For
q > d the grid-functions w,, = A_'v, are bounded on G,, uniformly with re-
spect to n, i.e. |[Wyleo < [ where 3 is a positive number which does not
depend on n. An immediate consequence of this result is (v,|A;'p,) <
Blp, |1 Similarly we have |(v,|A 'L,(u,))] < B|Ln.(u,)]1 and we must
find out an upper bound on |L,(u,)]|:. Let ¢ be the supremum of values

c(x) in (1). Then |L,(u,)]1 < ¢ly/(u,)]:- By using the Holder inequality
we get |1/ (u,) ] < |un|11)/2N(2p*1)/(2p), where N is the number of grid-knots
in G,(D). From h?N < |D| we get a desired bound [{v,|A,'L,(u,))| <
¢Bh 4=/ CP)| D|2p=1)/Cp) [u,, | 12 After inserting the obtained bounds into
(11) we get the inequality:

h_d/qlunlp < Bl |1 +gﬁh—d@p—l)/(?p)|D|(2p—1)/(2p) |11n|,1,/2.

10



This inequality must be multiplied by h¢ in order to get h%?|u,|, < p(p)
where p(p) depends on p, |D|, u(D) and €. To finish the proof on the bound-
edness of u(n) = ®,u, in L,(D) one has to utilize the inequality ||u(n)||, <
h/p |u,|,. A similar proof can be carried out for U;u,. Thus the existence of
a weak limit u = lim () u(n) in Wpl(D) for some J(p) C N is proved. Let £,
be the discretizations of a function f € C'(D). Then

(£, | Apay ) + W (£, Ly(u,)) = (£, |wm, ).

The weak consistency (8], Section 6., implies lim ¢, h*(£,|A,u, ) = a(f, ).
The remaining two terms converge obviously to { f|L(u)) and ( f|u ), respec-
tively. Hence, u is a solution to (4). QED

For nonlinear IVP which are defined by (5) results on the existence of solu-
tion are given in Theorem 3.2. Various numerical methods are described in
[9], Chapter 4. One of such methods, a discretization of (5) by a system of
nonlinear ODE, is utilized in the next section.

6 EXAMPLES

To test the method numerically we need examples in which we know solutions
in closed forms. However, it is not easy to construct a single example demon-
strating all of the important properties of this numerical method. We thus give
two examples in R?, in the first one we consider a boundary value problem
for a diffusion-reaction operator with nonlinearity in the reaction term, and
in the second one an IVP with a measure on the right hand side. The differ-
ential operators are the same in both examples, as well as the diffusion tensor
a(x) = (120 f) Because ag < aja < aj; a monotone scheme can be obtained by
applying methods of Section 4 with a non-trivial choice of parameters r(x).
Examples are constructed by supposing solutions, applying the operators to
supposed solutions and calculating the right hand sides. The calculated right
hand sides are Radon measures, unfortunately, having both signs. They have
the structure as demanded by Theorem 3.2. For examples with a diffusion
with jumps, for the linear problem, see [6-8].

Next we compare numerical solutions to the solutions in the closed form in
terms of l1(G,(D)) and l(G,(D))-norms, denoted by | |1, | |, respec-
tively. The values of solutions at grid-knots u*(x;),x; € G,(D) determine
the grid-solutions u* with components u*(;). In both examples numerical
grid-solutions u are compared with u* by measuring the relative error:

B Ju—u*|;

g = ol oo = |Ju—1U"w- (12)

11



Table 1
Numerical results for the examples

h €1 o K t

BVP 5%x1073 | 0.04 | 0.009 | 1.2 x 10%
BVP | 2.5x1072 | 0.005 | 0.002 | 9.1 x 10*

IVP 5%x1073 | 0.004 | 0.003 | 5.9 x 10* | 0.15

IVP | 2.5x1073 | 0.003 | 0.002 | 1.9 x 10° | 0.11

ExXAMPLE 6.1 (Nonlinear elliptic problem) The boundary value problem
is defined on the domain D = (—1/2,1/2) x (—1/2,1/2), and the differential
operator is defined by u(x) — A(u(x))u(x) = —23,;; diau(x)0u(z)+cu(x),
where ¢ is a positive constant. The problem A(u(x))u(x) = p(x) with the
homogeneous Dirichlet boundary condition on 9D can be transformed to an
equivalent nonlinear problem:

— Y a0 u(x) + c\Ju(z) = p(x), x €D, (13)

ij=1

where p, ¢ and boundary conditions are as before.

Let z — ¢(z) be the hat function at zero with the unit support and u(xy, z5) =
@(x1)p(z2). For the differential operator A(x) = —3°,; 0;a;;0; + cy\/u(x) we
have A(x)u(x) = p(x) where the measure 1 is defined in terms of §-functions:
p(x) =206(z1) p(x) +26(22) @(21) — 4sign(zy)sign(xa) + c d(x1)? () /2.
Obviously, 1 is a Radon measure and u is a solution to (13). Since the operator
u +— A(u)u is monotone for non-negative functions, the solution v is unique.

Now we apply the developed monotone scheme of Section 5 to Problem (13)
where the parameters of the scheme are r; = 3,79 = 1. The discretized prob-
lems with the compartmental matrix u +— A, (u) are solved by iterations. We
write A,(u)u = D,u — B,u + ¢y/u where D,, and B, are described in Sec-
tion 4, and y/u is the grid-function with components y/(u);,i € J,(D). The
entries of D,, are denoted by d;;. The iterations are defined by

u(k+1) = Fy(u(k)) (Bau(k) + ),

where v — F,(v) is a diagonal matrix with the entries \/v;/(c + \/v;d;;). The
scheme is monotone and produces u(k) > 0 for p,, > 0. In our case p,, has
components with both signs, but nevertheless u(k) > 0.

We specify ¢ = 5 in (13) and discretize the domain D by choosing the spatial
step sizes h = 1/200 and h = 1/400. The comparison with exact solution in

12



terms of relative errors (12) is given in Table 1. The number of iterations K
is also given in Table 1.

EXAMPLE 6.2 (Nonlinear parabolic problem) Here we consider an IVP
of the form (5) with the differential operator as in Example 6.1. For a non-
negative initial condition and g as in Example 6.1, we get asymptotically
u(t) — Uso, Where uso(x) = ¢(21)"/2¢(22)"/2. A numerical test of this fact is
carried out by using the same discretizations of D, and A(x) as in the pre-
vious example. The time discretization is carried out by using Forward Euler
method with a temporal grid size of the same order as the CFL-condition.
The scheme is:

a(k+1) = Fu(ur(k) uk) + 7 Boulk)? + 7,

where u; = max{u,0}, and v — F,(v) is the diagonal matrix with entries
1 — 7d;v; — 7¢ and the temporal step size is generally variable. Thus for
h = 1/400 and larger values of k& we have 7 = 107%. Since the scheme is
monotone, grid-solutions are non-negative for p,, > 0. In our case the grid-
functions p,, have components with both signs. Still, grid-solutions are positive
asymptotically on G,,(D), i.e. for larger value of k we have u(k) > 0 on G,,(D).

Some results are given in Table 1 for times ¢ which are written in the last
column of table. After the specified time ¢ further iterations do not change
the numerical solution u(n,t, ) = ®,u(k), tp = X<, 7j, i.e. the numerical
asymptotic value is reached for the given times ¢.

In the above two examples nonlinear algebraic systems (NLS) and ODE which
result in the process of discretizations of respective BVPs and IVPs have
system matrices A, of the order Ny,s = h~=2 where h is the spatial step size.
The matrices A,, are band matrices with bandwidth ~ 1/h. For h = 1/400
we get Ngys > 1.5 X 10° with bandwidth > 400. This fact forced us to use
iterative methods in solving NLS and explicit methods in solving ODE. An
implicit method or a mixed method based on the band structure of A, is
difficult to apply to ODE with system matrices of such huge order, unless
there is enough information on the sparsity structure of the system matrix.
However, the sparsity is influenced by the diffusion tensor, thus performing
fast LU-decomposition does not seem to be easy. At the present level of our
knowledge we do not know how to implement an efficient implicit method on
a single processor machine to problems involving non-homogeneous diffusion
on arbitrary domains. On parallel architectures the possibility of constructing
such methods should be a matter of further research.
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7 DISCUSSION

Monotone schemes in Section 4 are constructed in terms of system matrices
A,,. For bounded domains these matrices are simultaneously M-matrices and
compartmental matrices. We give the construction for linearized problems, in
such a way that they can be applied in computation of solutions to nonlinear
PDE by iterations. In the case of dimension d = 2, we can apply the proposed
monotone schemes to problems with a general diffusion coefficients a;;(x),
whereas for d > 3 this can be done ony if an additional condition holds, as
formulated in the Assumption 4.1. If this condition breaks down, we can still
make use of the schemes after the rotation of coordinates, but this possibility
was not analyzed here. Although we analyze schemes for PDE with nonlinear
diffusion, we can also apply them to PDE with linear diffusion and nonlinear
lower order differential operators. In this case, we must discretize the lower
order operators by upwinding.
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