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Abstract. We propose a knot insertion algorithm for splines that are
piecewisely in L{1, x, sin x, cos x}. Since an ECC–system on [0, 2π] in
this case does not exist, we construct a CCC–system by choosing the
appropriate measures in the canonical representation. In this way, a
B-basis can be constructed in much the same way as for weighted and
tension splines. Thus we develop a corner cutting algorithm for lower
order cycloidal curves, though a straightforward generalization to higher
order curves, where ECC–systems exist, is more complex. The impor-
tant feature of the algorithm is high numerical stability and simple im-
plementation.

AMS subject classification: 41A50, 65D07, 65D17

1 Introduction and Preliminaries

Many objects around us come in the shapes of straight lines and circle arcs;
also, in industrial applications computer guided machines are able to cut
shapes like circles or helices. Therefore, it is useful to have curves piece-
wisely spanned by linear polynomials, sine and cosine, i.e. cycloidal splines
(also called helix splines) to approximate such objects [2, 4, 5, 7]. The paper
describes a stable algorithm for calculating with Bézier curves relying on this
special Chebyshev system.

∗Department of Mathematics, University of Zagreb, Bijenička cesta 30, 10000 Zagreb,
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2 1 INTRODUCTION AND PRELIMINARIES

For a given measure vector dσ : = (dσ2, . . . dσk)
T, and x ∈ [a, b] we can

define generalized powers (or Canonical Complete Chebyshev (CCC)–system)
{1, u2, . . . uk}:

u1(x) = 1,

u2(x) =

∫ x

a

dσ2(τ2),

...

uk(x) =

∫ x

a

dσ2(τ2) . . .

∫ τk−1

a

dσk(τk).

The i-th reduced system is defined to be a Chebyshev system corresponding
to the reduced measure vector, that is

dσ(i)(δ) : = (dσi+2(δ), . . . , dσk(δ))
T ∈ R

k−(i+1), i = 1, . . . k − 2,

for δ ⊂ [a, b] measurable with respect to all dσj . Generalized derivatives
Lj,d� : = Dj · · ·D1, where

Djf(x) : = lim
δ→0+

f(x + δ) − f(x)

σj+1(x + δ) − σj+1(x)
, j = 1, . . . , k − 1

for f ∈ S(k, dσ) : = span{1, u2, . . . uk}, are linear mappings S(k, dσ) →
S(k − j, dσ(j)).

For a partition ∆ = {xi}�+1
i=0, xi < xi+1, of an interval [a, b], given multi-

plicity vector m = (m1, . . . , m�), (0 < mi ≤ k), and M :=
∑�

i=1 mi, we shall
denote by {t1 . . . t2k+M}, an extended partition in the usual way:

t1 ≤ . . . ≤ tk = x0 = a,

tk+r = xi, r = 1 +
i−1∑
j=1

mj, . . . ,
i∑

j=1

mj , i = 1, 2, . . . , �,

b = x�+1 = tk+M+1 ≤ . . . ≤ t2k+M .

Elements of the extended partition are called knots, and S(k, m, dσ, ∆) is
the spline space spanned by functions being piecewise in S(k, dσ), with gen-

eralized derivatives up to (k−mi − 1)-th order joining continuously at xi for
i = 1, . . . , �. Chebyshev B-splines {T k

i,d�}k+M
i=1 ∈ S(k, m, dσ, ∆) are the basis

for S(k, m, dσ, ∆) possessing the compact support [ti, ti+k], and are unique
such splines if we assume that they are normalized in such a way to make a
partition of unity:

∑k+M
i=1 T k

i,d�(x) = 1.
In the general case, we do not have the deBoor–Cox type recurrence, so

we use the derivative formula [8, 9] instead:
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Theorem 1 Let L1,d� be the first generalized derivative with respect to CCC-
system S(k, dσ), and let the multiplicity vector m = (m1, . . . , m�) satisfy
mi ≤ k for i = 1, . . . , �. Then for x ∈ [a, b] and i = 1, . . . , k +

∑�
j=1 mj, the

following derivative formula holds:

L1,d�T k
i,d�(x) =

T k−1
i,d�(1)(x)

Ck−1(i)
−

T k−1
i+1,d�(1)(x)

Ck−1(i + 1)
, (1)

with Ck−1(i) : =

∫ ti+k−1

ti

T k−1
i,d�(1)dσ2.

We shall also implicitly make use of the following Corollary to the Lebes-
gue dominated convergence Theorem (the same type of argument was used
for special kind of Chebyshev splines in [11]):

Lemma 1 If the functions σi which define measures dσi are continuous for
each i = 2, . . . , k, then the integrals of B-splines with respect to the Lebesgue–
Stieltjes measure are continuous functions of their knots.

2 Knot insertion

Definition 1 Let the extended partitions T = {tj}n+k
j=1 , T̃ = {t̃i}m+k

i=1 be asso-

ciated with partitions ∆, ∆̃ of [a, b] and the multiplicity vectors m, m̃ respec-

tively, such that S(k, m, dσ, ∆) ⊂ S(k, m̃, dσ, ∆̃). Suppose that n � m, and

let T k
j,d�, T̃ k

i,d� be B-splines in S(k, m, dσ, ∆), S(k, m̃, dσ, ∆̃) respectively. A
spline f ∈ S(k, m, dσ, ∆) can be represented in this B-spline basis as

f(x) =

n∑
j=1

cjT
k
j,d�(x) =

m∑
i=1

diT̃
k
i,d�(x).

If we denote the coefficient vectors as c := (c1, . . . , cn)
T and d := (d1, . . . , dm)T,

then m × n matrix Γk
(d�,� ,�� )

= [γk
i,j]

m,n
i=1,j=1 such that

d = Γk
(d�,� ,�� )

c,

is called the knot insertion matrix of order k from T to T̃ .

We can calculate the non-trivial elements of the single knot insertion
matrix by following theorem:
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Theorem 2 Let T = (t1 ≤ t2 ≤ · · · ≤ tk−1 ≤ a = tk < tk+1 < · · · < tn <
tn+1 = b ≤ tn+2 ≤ · · · ≤ tn+k−1 ≤ tn+k) be an extended partition of [a, b]
with all interior knots of multiplicity one. Let Uk = {1, u2, . . . , uk} be the
CCC–system associated with the measure vector dσ := (dσ2, . . . , dσk)

T. For
t̄ ∈ (a, b), and i such that t̄ ∈ (ti, ti+1), let T̄ = T ∪ {t̄}. Then the nontrivial
elements of the knot insertion matrix Γ�

(d�(k−l),� ,�̄ )
= [γ�

i,j] of order � from T

to T̄ are:
γ1

j,j = 1 for j ≤ i,
γ1

j,j−1 = 1 for j ≥ i + 1,

for � = 1, and

γ�
j,j = 1 for j ≤ i − � + 1,

γ�
j,j = γ�−1

j,j
C̄�−1(j)
C�−1(j)

for i − � + 2 ≤ j ≤ i,

γ�
j,j−1 = γ�−1

j+1,j
C̄�−1(j + 1)

C�−1(j)
for i − � + 2 ≤ j ≤ i,

γ�
j,j−1 = 1 for j ≥ i + 1,

for � = 2, . . . , k, where

C�−1(j) :=

∫ tj+�−1

tj

T �−1
j,d�(k−�+1) dσk−�+2,

C̄�−1(j) :=

∫ t̄j+�−1

t̄j

T̄ �−1
j,d�(k−�+1) dσk−�+2,

for � = 2, . . . , k. B-splines T �−1
j,d�(k−�+1) and T̄ �−1

j,d�(k−�+1) are associated with the

extended partitions T and T̄ , respectively.

The proof can be found in [1]. All the other cases of T , i.e., when T does
not have all interior knots of multiplicity one, follow from Theorem 2, and
the continuity conclusion of Lemma 1.

For some special general knot insertion matrices two simple recurrences
exist:

Theorem 3 Let T be an extended partition of [a, b] with all interior knots
of multiplicity one. Let Uk = {1, u2, . . . , uk} be the CCC–system associated
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with the measure vector dσ := (dσ2, . . . , dσk)
T. Let T̃ = {t̃j} be an extended

partition with the same knots as T , but of arbitrary multiplicity. Then

γ�
j,i = γ�

j−1,i + C̃�−1(j)

(
γ�−1

j,i

C�−1(i)
− γ�−1

j,i+1

C�−1(i + 1)

)
, (2)

and

γ�
j,i =

∑
r�j

γ�−1
r,i C̃�−1(r)

C�−1(i)
−

∑
r�j

γ�−1
r,i+1C̃�−1(r)

C�−1(i + 1)
, (3)

with Γ�
(d�(k−l),� ,�� )

= [γ�
i,j] for � = 2, . . . , k, where

C�−1(j) :=

∫ tj+�−1

tj

T �−1
j,d�(k−�+1) dσk−�+2,

C̃�−1(j) :=

∫ t̃j+�−1

t̃j

T̄ �−1
j,d�(k−�+1) dσk−�+2.

B-splines T �−1
j,d�(k−�+1) and T̃ �−1

j,d�(k−�+1) are associated with the extended parti-

tions T and T̃ , respectively.

Proof: The proof of (2) is based on the properties of knot insertion ma-
trices, the derivative formula (1), and the proof of (3) follows by recursive
application of (2). �

Theorem 3 is a discrete version of the derivative formula, since γ�
j,i play

the role of discrete Chebyshev splines. Unlike the polynomial case, we do not
know of the stable recurrence. Further, the relations (2) and (3), have not
to be numerically stable in general. There are however, some special cases
where (3) can be rearranged to avoid potentially dangerous subtractions.
One of this cases is the ‘cubic’ case:

Lemma 2 Let T 3
i,d�(1) ∈ S(3, m(1), dσ(1), ∆) be a Chebyshev 3rd order spline

associated with the multiplicity vector m(1) = (1, . . . , 1)T, and let us assume

that T̃ 3
i,d�(1) ∈ S(3, m(2), dσ(1), ∆) are B-splines associated with multiplicity

vector m(2) = (2, . . . , 2) on the same knot sequence. If T = {tj}n+4
j=1 and

T̃ = {t̃j}2n
j=1, are the associated extended partitions, and r an index such that

ti = t̃r < t̃r+1, then for i = 2, . . . , n:

T 3
i,d�(1) =

C̃2(r)

C2(i)
T̃ 3

r,d�(1) + T̃ 3
r+1,d�(1) +

C̃2(r + 3)

C2(i + 1)
T̃ 3

r+2,d�(1).
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One of the consequences of the Theorem 2 is a possible generalization of
the well known deBoor algorithm [3]:

Algorithm 1 (Generalized 4th order de Boor algorithm) Let T ={tj}
be an extended partition associated with the partition ∆ and the multiplicity
vector m = (m1, m2, . . . , m�). Let t̄ ∈ (ti, ti+1) and ∆̄ := ∆∪ t̄, let T̄ = T ∪ t̄,

T̃ be associated with ∆̄ and the measure vector (m1, . . . , mi, 2, mi+1, . . . , m�),

were T̂ is associated with ∆̄ and (m1, . . . , mi, 3, mi+1, . . . , m�). The B-splines

associated with these extended partitions are denoted by T 4−�
j,d�(�), T̄ 4−�

j,d�(�), T̃ 4−�
j,d�(�),

T̂ 4−�
j,d�(�) for � = 0, . . . , 3, and their integrals by C4−�(j), C̄4−�(j), C̃4−�(j),

Ĉ4−�(j), respectively. For S(4, m, dσ, ∆) and given t̄ the algorithm can be
rearranged as

f(t̄) =

n∑
j=1

cjT
4
j (t̄) =

n+3∑
j=1

ĉjT̂
4
j (t̄) = ĉi,

with

ĉi = ci−3
Ĉ3(i + 1)C̃2(i + 1)C̄1(i + 1)

C1(i)C2(i − 1)C3(i − 2)
+ ci−2

(
Ĉ3(i + 1)C̃2(i + 1)C̄3(i − 2)

C̄2(i)C̄3(i − 1)C3(i − 2)

+
Ĉ3(i + 1)C̃3(i − 1)C̄2(i + 1)C̄3(i)

C̃3(i)C̄3(i − 1)C2(i)C3(i − 1)
+

Ĉ3(i)C̃3(i + 1)C̄2(i + 1)

C̃3(i)C2(i)C3(i − 1)

)

+ ci−1

(
Ĉ3(i + 1)C̃3(i − 1)C̄2(i − 1)

C̃3(i)C2(i − 1)C3(i − 1)
+

Ĉ3(i)C̃3(i + 1)C̄2(i − 1)C̄3(i − 1)

C̃3(i)C̄3(i)C2(i − 1)C3(i − 1)

+
Ĉ3(i)C̃2(i)C̄3(i + 1)

C̄2(i)C̄3(i)C3(i)

)
+ ci

Ĉ3(i)C̃2(i)C̄1(i)

C1(i)C2(i)C3(i)
. (4)

3 Equidistant cycloidal splines

Let ∆ = {xi}�+1
i=0 be a partition of [0, (� + 1)π

2
], such that xi = iπ

2
, and let

Cs : R → R be defined by

Cs(x) := cos (x − π

4
− i

π

2
)

for x ∈ [iπ
2
, (i + 1)π

2
], i ∈ Z. Cs is continuous, periodical extension of

cos (x − π
4
)|[0, π

2
]. Consider a CCC-system on R:

u1(x) = 1,
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u2(x) =

∫ x

0

dτ2,

u3(x) =

∫ x

0

dτ2

∫ τ2

0

Cs(τ3) dτ3,

u4(x) =

∫ x

0

dτ2

∫ τ2

0

Cs(τ3) dτ3

∫ τ3

0

1

Cs2(τ4)
dτ4.

One easily verifies that span{u1, u2, u3, u4} = span{1, x, sinx, cos x} on each
[iπ

2
, (i + 1)π

2
].

Let t̄ ∈ (ti, ti+1), where T , T̄ , T̃ , T̂ and the rest of the notation as in
Algorithm 1 with m = (1, . . . , 1). Then by Lemma 2

C1(j) =
sin hj

Cs(tj)Cs(tj+1)
, (5)

C2(j) = Cs(tj+1)
sin

hj+hj+1

2

cos
hj

2
cos

hj+1

2

, (6)

C3(j) = cos
hj+1

2

[
sin

hj

2

sin
hj+hj+1

2

(
hj − sin hj

2 sin2 hj

2

+
hj+1 − sin hj+1

2 sin2 hj+1

2

)

+
2

sin2 hj+1

2

(
sin

hj+1

2
− hj+1

2
cos

hj+1

2

)

+
sin

hj+2

2

sin
hj+1+hj+2

2

(
hj+1 − sin hj+1

2 sin2 hj+1

2

+
hj+2 − sin hj+2

2 sin2 hj+2

2

)]
. (7)

The cycloidal splines can now be calculated by deBoor algorithm (4). In
order to avoid redundant operations, and also to avoid inherent numerical
instabilities involved in calculating with special functions involved in (7), we
define functions CC1, CC2 and CC3 instead of C1, C2, C3:

CC1(x) := sin
x

2
, CC2(x, y) := sin

x + y

2
, (8)

CC3(x, y, z) :=
1

2
u
(x

2
,
y

2

)
(f(x) + f(y)) + 2g(

y

2
) +

1

2
u
(z

2
,
y

2

)
(f(y) + f(z)),

with

f(x) :=
x − sin x

sin2 x
2

, g(x) :=
sin x − x cos x

sin2 x
, u(x, y) :=

sin x

sin (x + y)
.

The function f has to be evaluated only on interval [0, π
2
], with limx→0 f(x) =

0, so it is not difficult to find a Padé approximation on the whole interval.



8 4 EQUIDISTANT BÉZIER CYCLOIDAL SPLINES

The same is true for g, which we only need on interval [0, π
4
], also with

limx→0 g(x) = 0. Because

lim
x→0

u(x, y) = 0, lim
y→0

u(x, y) = 1,

the function u is not continuous at (0, 0), what presents no difficulties since
from (8) it is obvious that u(0, 0) is then multiplied by zero.

This algorithm can also be carried out for t̄ = ti and even with ex-
tended partition which has knots with arbitrary multiplicities, just by apply-
ing Lemma 1 in (5), (6) and (7).

The continuity of the second generalized derivative is probably unnec-
essary; there is no such difficulty if we use the Bézier variant of cycloidal
splines.

4 Equidistant Bézier cycloidal splines

We will proceed with the Bézier case. Let t̄ ∈ (xi, xi+1) ⊂ [0, (�+1)π
2
], and let

T , T̄ , T̃ and T̂ be extended partitions of the interval [0, (�+1)π
2
] as in Algo-

rithm 1, only with m = (4, . . . , 4). We use the notation T̄ k
j , T̃ k

j , T̂ k
j , C̄k−1(j),

C̃k−1(j), Ĉk−1(j) for B-splines and their integrals accordingly. These inte-
grals are then calculated from (5), (6) and (7) according to Lemma 1 by
coalescing the knots. For computer implementation we use the generalized
deBoor algorithm joint with functions defined in (8), only now more argu-
ments are equal to zero.

Given splines are generalized Bézier splines, and analogous properties
hold. If we observe an interval [xi, xi+1] = [iπ

2
, (i+1)π

2
], and a parameterized

curve in R
2:[
x(t)
y(t)

]
= A T 4

4i+1(t) + B T 4
4i+2(t) + C T 4

4i+3 + D T 4
4(i+1)(t)

on a given interval, then for some index i and deBoor points A, B, C, D,
the curve passes through points A and D, i.e.[

x(xi)
y(xi)

]
= A,

[
x(xi+1)
y(xi+1)

]
= D,

Moreover, derivatives at the end points, by the derivative formula (1), (in
this case L(1,d�) = D), are[

ẋ(xi)
ẏ(xi)

]
=

1

C3(4i + 1)
(B − A),

[
ẋ(xi+1)
ẏ(xi+1)

]
=

1

C3(4i + 3)
(D − C).
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5 Nonequidistant Bézier cycloidal splines

Further generalization can be made in sense that, instead of taking an equidis-
tant partition, we take an arbitrary partition {xi}�+1

i=0 of [a, b], such that
0 < hi = xi+1 − xi � π

2
, and multiplicity vector m = (4, . . . , 4). Now,

Cs : [a, b] → R is defined by Cs(x) := cos (x − π
4
− xi) for x ∈ [xi, xi+1),

i = 0, . . . , � − 1 or x ∈ [x�, x�+1] for i = �. Generally, Cs is not continuous.

The algorithm from the previous section can be easily modified for this
case; we only need to replace the knots iπ

2
with given xi in (5),(6) and (7).

6 Conclusion

There are some comments as to the choice of the CCC–system in Sections
3 and 5. We know that ECC–system for span{1, x, sin x, cos x} exists only
on interval of length less than 2π (although there exists an ECC–space on
interval [a, a + 2π] which contains 1, x, sin x and cos x but of a higher di-
mension than 4, at least 6, see [2]). We have overcome this restriction by
substituting ECC–system with the CCC–system. The choice of the length
of the basic subinterval hi = π

2
and of the function Cs in Sections 3 and 4, is

somewhat arbitrary, taken because of the simple form of CCC–system and
reduced systems, and also to assure easy calculation and numerical stability.
In Section 5 we put the restriction hi � π

2
because in that case we can easily

generalize the algorithm from Section 4.

The problem of calculating cycloidal splines already attracted some of
attention, and although in [5, 6, 7] algorithms for calculating with cycloidal
splines have been developed based on general theory of Chebyshev blossom-
ing, the explicit algorithms involving only scalar products of positive quan-
tities, and evaluation of some special functions, have not yet been discussed.
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