
MREZA I MREZNE FUNKCIJE

1 Grids and associated functions

Let the orthogonal coordinate system in R
d be determined by unit vectors ei, and let us

define the set Gn by:

Gn = {x = h(n)

d∑

l=1

kl el : kl ∈ Z}, (1)

where h(n) = 2−n is called the grid-step. A grid-step is usually denoted by h and only if
necessary by h(n) or h(n) = 2−n. Elements of Gn are called grid-knots and the constructed
sets Gn, n ∈ N are called grids. Sometimes we say that Gn discretize R

d. Accordingly, the
subgrids Gn(D) ⊂ Gn defiend by Gn(D) = Gn ∩D are called discretizations of D. To each

v ∈ Gn there corresponds a grid-cube Cn(1,v) =
∏d

1 [vj , vj + h), where vj are coordinates

of v ∈ Gn. Cubes Cn(1,v) define a decomposition of R
d into disjoint sets. Appart from the

basic cubes, Cn(1,v),v ∈ Gn, we need for constructions larger sets. Let p ∈ N
d. Then

Cn(p,v) =

d∏

i=1

[vi, vi + hpi)

are apparently rectangles with ”lower left” vertices v and edges of size hpi. These rectangles
define a partition of R

d as well. The considered cubes Cn(1,v) and rectangles Cn(p,v) are
semi-closed in the sense that they contain only one of their 2d vertices.

Basic cubes are defiend by their ”lower left” corners. Appart from these basic cubes for
our constructions we need closed rectangles,

Sn(p,v) =

d∏

i=1

[vi − hpi , vi + hpi], (2)

which are defined by central grid-knots v. Apparently, Sn(p,v) is the union of closures of
those basic cubes Cn(p,x) which share the grid-knot v.

The grids Gn of (1) are homogeneous with respect to translations in the direction of
coordinate axes, i.e x ∈ Gn, t = hpiei ⇒ x + t ∈ Gn for any i ∈ {1, 2, . . . , d} and pi ∈ Z.
There exist subsets of Gn which are also homogeneous in the defiend sense. Let r0 ∈ Gn
and r = (r1, r2, . . . , rd) ∈ N

d be fixed. The set

Gn(r0, r) = {r0 + h

d∑

l=1

kl rl el : kl ∈ Z} (3)

is a subsets of Gn with the following feature x ∈ Gn(r0, r), t = hpiri ei ⇒ x+t ∈ Gn(r0, r).
A grid (3) is denoted by Gn(R), where R stands shortly for the 2d parameters r0, r.

Let h0 = 2−n0 for some n0 ∈ N, p ∈ N
d and let D be a connected set with the structure

D = ∪v∈Fn
Cn(p,v), where Fn ⊂ Gn. For the subgrid Gn(D) = D∩Gn(R) the set Gn(D) is

discrete and therefore its interior, closure and boundary are defined indirectly, int
(
Gn(D)

)
=

Gn(D)∩ int(D), cls
(
Gn(D)

)
= Gn(R)∩Dl and bnd

(
Gn(D)

)
is the difference of cls

(
Gn(D)

)

and int
(
Gn(l)

)
. Apparently, int

(
Gn(D)

)
⊆ Gn(D) ⊆ cls

(
Gn(D)

)
. Let a finite collection of

sets Dl, l ∈ L makes a partition of R
d, where each Dl has the structure like the described

set D. Then G(l) = Dl ∩Gn(R) make a partition of Gn.
Each x ∈ Gn can be indexed by m ∈ R

d, where x = hm. Similarily, we index grid-knots
of Gn(r0, r) by those m ∈ Z

d for which there holds x = r0 + h
∑

lmlrlel. Therefore, we

define the sets In = Z
d and In(R) ⊂ In, indexing the grid-knots of Gn and Gn(R). In

this work frequently utilized grids and the respective index sets are Gn, In,Gn(R), In(R),
Gn(l), In(l), Gn(R,D), In(R,D).
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The shift operator Z(x),x ∈ R
d, acting on functions f : R

d 7→ R, is defined by(
Z(x)f

)
(x) = f(x+z). Similarly we define the discretized shift operator by

(
Zn(r, i)un

)
k

=
(un)l, where l = k + rhei.

Discretization of differential operators. A function u ∈ C(1)(Rd) has continuous
partial derivatives ∂iu, i = 1, 2, . . . .d. With respect to a grid step h, the partial derivatives
are discretized by forward/backward finite difference operators in the usual way,

i(t)u(x) = 1
t

(
u(x + tei) − u(x)

)
,

̂
i(t)u(x) = 1

t

(
u(x) − u(x − tei)

)
,

x ∈ R
d, t 6= 0. (4)

Let r ∈ Z \ {0}. Discretizations of the functions ∂iu on Gn, denoted by Ui(r)un, Vi(r)un,
are defined by:

(
Ui(r)un

)
m

= i

(
rh

)
u(xm),

(
Vi(r)un

)
m

= ̂
i

(
rh

)
u(xm).

Then
Ui(r) = (rh)−1(Zn(r, i) − I),
Vi(r) = (rh)−1

(
I − Zn(−r, i)

)
= Ui(−r) = −Ui(r)

T .

Therefore we have Ui(−r) = Ui(r)Zn(−r, i) = Zn(−r, i)Ui(r), and similarly for Vi(r).
In accordance with the previous terminology, we say that ∂i,

∑
ij ∂iaij∂j etc. are differ-

ential operators on R
d or D. We say that their discretizations are defined on Gn or Gn(D).

In particular, discretizations of the differential operator A(x) are denoted by An. Naturally,
matrices An are the main object in this work.

1.1 Relations between l(G
n
(R)) and W 1

2 -spaces

The discretization of a function u ∈ C(Rd) on Gn is denoted by un and defined by val-
ues at grid-knots,

(
un

)
m

= u(xm) where xm = (m1h,m2h, . . . ,mdh) ∈ Gn, and m =
(m1,m2, . . . ,md) is a multi-index. The function un is usually called a grid function. We
denote the linear spaces of discretizations by l(Gn) or l(Gn(D)). Elements of l(Gn) are also
called columns. The corresponding Lp-spaces are denoted by lp(Gn) or lp(Gn(D)), and their
norms by · p. The duality pairing of v ∈ lq(Gn) and u ∈ lp(Gn) is denoted by 〈v|u 〉. The
scalar product in l2(Gn) is denoted by 〈 ·|· 〉 and sometimes by (·|·). The norm of lp(Gn(R))
is denoted by · Rp. For p ∈ [1,∞) this norm is defined by:

u Rp =
[
vol(R)

∑

k∈In(R)

|uk|p
]1/p

,

where vol(R) =
∏d
i=1 ri. Finally, for p = ∞ we have u R∞ = sup{|uk| : k ∈ In(R)}.

Let us define the quadratic functional on l(Gn) by q(u) =
∑d

i Uiu
2
2 and qR(u) =

vol(R)
∑d
i Ui(ri)u

2
R2 on l(Gn(R)). It is understood qR = q for Gn(R) = Gn. There exist

symmetric matrices Qn on Gn such that qR(u) = 〈u|Qnu 〉. A discrete analog of W 1
2 -spaces

is the spaces w1
2(Gn(R)) of those un ∈ l(Gn(R)) for which the norm · R2,1:

u 2
R2,1 = u 2

R2 + qR(u), (5)

is finite. By convention · 2,1 = · R2,1 for ri = 1. The subspace of grid-functions u ∈
w1

2(Gn(R)) for which un = 1Gn(D)un is denoted by w1
2(Gn(R,D)). Hence, w1

2(Gn(R,D))
for r = 1 is denoted by w1

2(Gn(D)). The restriction of qR on Gn(R,D) is represented as
qR(u) = 〈u|Qn(D)u 〉, where Qn(D) is a symmetric matrix on Gn(R,D).

LEMMA 1.1 Let D be bounded. Then the norms · 2,1 and qR(·)1/2 are equivalent in
w1

2(Gn(R,D)),
qR(·)1/2 ≥ β · R2,1,

where β is independent of n.
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Proof: Ovo su pretpostavke D ⊂ S1(s,0) za neki s ∈ Gn(R) tako da S1(s,0) ima
vrhove u skupu Gn(R) za sve n. Poliedar S1(s,0) ima stranice duzine 4si jedinica, jer je
zadan u mrezi G1 s korakom h = 1/2. Za svaki n imamo qi cvorova mreze Gn u smjeru ei
unutar poliedra. Ocito mora biti h(n)riqi < 4si. Sada imamo k = (k,k′) i

uk = hr
∑

l≤k

(U1(r)u)l−rk′ .

Iz CSB nejednakosti
u 2

R2 ≤ r2(q1h)
2 U1(r)u

2
R2.

Dakle je u R2 ≤ 4s1 U1(r)u R2. QED

Let us consider a norm · R2,1 on l(Gn(R)) defined by (5). Any such norm is a semi-norm
on l(Gn). Our object of interest are quadratic functionals:

u 2
avg,2,1 =

1

vol(R)

∑

R

u 2
R2,1

= u 2
2 +

1

vol(R)

d∑

i=1

Ui(ri)u
2
R2 ≤ u 2

2,1,

u ∈ l(Gn). (6)

Then · avg,2,1 is a norm on l(Gn). Unfortunately, it is not equivalent to · 2,1 uniformly
with respect to n.

An element (column) un ∈ l(Gn) can be associated to a continuous function on R
d in

various ways. Here is utilized a mapping l(Gn) 7→ C(Rd) which is defined in terms of hat
functions. Let χ be the canonical hat function on R, centered at the origin and having the
support [−1, 1]. Then z 7→ φ(h, x, z) = χ(h−1(z− hx)) is the hat function on R, centered at

x ∈ R with support [x− h, x+ h]. The functions z 7→ φk(z) =
∏d
i=1 φ(h, xi, zi), xi = hki,

define d-dimensional hat functions with supports Sn(1,x) =
∏
i[xi−h, xi+h]. The functions

φk(·) ∈ Gn, span a linear space, denoted by En(R
d). Let un ∈ l(Gn) have the entries unk =

(un)k. Then the function u(n) =
∑

k∈Z
d unkφk belongs to En(R

d) and defines imbedding of
grid-functions into the space of continuous functions. We denote the corresponding mapping
by Φn : l(Gn) 7→ En(Rd). Obviously that there exists Φ−1

n : En(Rd) 7→ l(Gn) and the spaces
l(Gn) and En(Rd) are isomorphic with respect to the pair of mappings Φn,Φ

−1
n . It is clear

that En(R
d) ⊂ En+1(R

d) and the space of functions ∪nEn(Rd) is dense in Lp(R
d), p ∈ [1,∞),

as well as in Ċ(Rd). Let us mention that
∑

k
φk = 1 on R

d.
Now we consider another collection of basis functions. To each x = hk ∈ Gn(R) there is

associated a d-dimensional hat function

ψk(x) =
d∏

i=1

χ

(
xi − hki
hri

)
,

obviously, with the support Sn(r,x) =
∏
i[xi − rih, xi + rih]. They span a linear space

denoted by En(R,R
d). Again we have

∑
k
ψk = 1 on R

d. The mappings Φn,Φ
−1
n cannot be

applied to elements of l(Gn(R)) and En(R,Rd), respectively. Therefore we define restrictions
Φn(R) : l(Gn(R)) → En(R,Rd) and Φ−1

n (R) by the following expression:

u(n) = Φn(R)un =
∑

k

(
un

)
k
ψk. (7)

If we have to underline that u(n) is related to a particular set of parameters R then we
use an extended denotation u(R, n). For two functions v(n), u(n) we have (v(n)|u(n)) =
vol(R)

∑
kl
sklvkuk where skl = ‖ψk‖−1

1 (ψk|ψl). Let us notice that
∑

l
skl = 1.

We cannot compare directly columns un with various n. An indirect comparision can be
made by using u(n) = Φn(R)un ∈ ∪nEn(R,Rd). To compare Ui(ri)un and ∂iu(n) we need
an additional expression. Let u and u(n) be related by (7) and ṡkl(i) = h−d(∂iψk|∂iψl).

Then, for a homogeneous grid Gn(R), r ∈ N
d, there must holds

∑

kl

vkul ṡkl(i) = − 1

2

∑

k r′ ri

(
vk+riei

− vk

) (
uk+r′+riei

− uk+r′

)
s′
0r′ ṡ0ri

, (8)
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where r′ = (r1, r2, . . . , ri−1, 0, ri+1, . . . , rd), ṡ0r = (∂iψ0|∂iψr) and s′
0r′ is the (d − 1)-

dimensional quantity skl. The statement follows from
∑

l
skl = 1 and consequently

∑
l
ṡkl =

0, after the sum is carried out over any particalr componet li of the index l. Thus we have

(∂iv(n) | ∂iu(n)) = ‖ψk‖1

∑

mik
′l′

sk′l′

(
Ui(ri)v

)
mik

′

(
Ui(ri)u

)
mil

′
, (9)

where the indices are defined by k′ = (k1, . . . , ki−1, ki+1, . . . , kd) and analogously l′.

LEMMA 1.2 Let sequences of functions v(n), u(n), n ∈ N, be defined by (7). Then

(i)
∣∣∣
∑d
i=1

(
∂iv(n) | ∂iu(n)

)∣∣∣ ≤ hd qR(v)1/2 qR(u)1/2.

(ii)
∣∣∣
(
∂iv(n) | ∂ju(n)

)
− hd vol(R)

∑
k∈In(R)

(
Ui(ri)v

)
k

(
Uj(rj)u

)
k

∣∣∣

≤ hd min

{
Ui(ri)v R2 sup

{
(Z(w, j) − I)Uj(rj)u R2 : |w| ≤ rjh

}

Uj(rj)u R2 sup
{

(Z(w, i) − I)Ui(ri)v R2 : |w| ≤ rih
}

Proof: After applying the CSB-inequality to (9) and using
∑

l
skl = 1 we get (i).

Assertion (ii) is proved for i = j = 1. In this proof ∂ = ∂1. By using (9) we can calculate
straight forwardly

(∂v(n) | ∂u(n)) = ‖ψk‖1

∑

k,r′

s0r′

(
Ui(ri)v

)
k

(
Ui(ri)u

)
k+r′

= hd
(
Ui(ri)v

∣∣Ui(ri)u
)
R

+ δ(n),

where
δ(n) = ‖ψk‖1

∑

k,r′

s0r′

(
Ui(ri)v

)
k

[(
Ui(ri)u

)
k+r′

−
(
Ui(ri)u

)
k

]
.

By using the CBS inequality the error term δ(n) can be estimated as expressed in Assertion
(ii). QED

LEMMA 1.3 Let Gn(R) be a homogeneous subgrid defined by (3). There exists σ2 ∈ (0, 1)
such that

(1 − σ2) hd un
2
R2 ≤ ‖ u(n) ‖2

2 ≤ hd un
2
R2

uniformly with respect to n ∈ N.

Proof: Let us consider first the one-dimensional case. The grid Gn(R) consists of
points xk = hrk ∈ R, k ∈ Z, and En(R,R) is spanned by the hat functions ψk centred at xk
with the supports [−hr + xk, xk + hr]. We define the matrix S(1) with entries:

skl =
1

hr
(ψk|ψl) =

{
(2/3) for k = l,
(1/6) for k = l ± r.

Obviously we have S(1) = I − (1/3)A, where the matrix A has the following structure
A = I + (1/2)(I+ + I−) and I± are the first upper and lower of diagonales. It is well
known that F has a purely continuous spectrum in [0, 2] so that S(1) has the spectrum
equal [1/3, 1]. Therefore

‖u(n)‖2
2 = h vol (R)

∑

kl

skl ukul ≥
1

3
h vol (R)

∑

k

u2
k =

1

3
h u 2

R2.

Hence, we have here 1 − σ2 = 1/3.
In order to generalize this proof to d-dimensional case we proceede as follows. The sym-

metric matrix S(d) with entries skl can be represented as the outer product of dmatrices S(1)

with entries as in the first part of proof. Therefore its spectrum is Sp(S(d)) =
∏d
i=1 Sp(S(1)).
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According to the first part of proof the matrix S(1) has its spectrum in the interval [1/3, 1],
implying minSp(d) ≥ 3−d. Hence, with σ2 = 1 − 3−d we have

vol(R)
∑

kl∈In(R)

skl uk ul ≥ (1 − σ2) u 2
R2, (10)

providing us with a proof of the general case. QED

Now we can get the following basic results involving the norm ‖u(n)‖2,1 and its averaged
value defined by:

‖u(n)‖2
avg,2,1 =

1

vol(R)

∑

R

‖u(R, n)‖2
2,1.

THEOREM 1.1 Let u(n) = Φn(R)un. There exists σ2 ∈ (0, 1), independent of n, such
that

(1 − σ2)hd un
2
R2,1 ≤ ‖u(R, n)‖2

2,1 ≤ hd un
2
R2,1,

(1 − σ2)hd un
2
avg,2,1 ≤ ‖u(n)‖2

avg,2,1 ≤ hd un
2
avg,2,1.

Proof: It is sufficient to prove the first double inequality. The estimates from above
are obvious. To get the estimates from bellow it sufficies to consider ∂iu. From Expression
(9) we have

‖∂iu(n)‖2
2 = ‖ψk‖1

∑

m

∑

k′l′

sk′l′

(
Ui(ri)u

)
k′

(
Ui(ri)u

)
l′
.

Then after applying (10) to the inner sum we get

‖∂u(n)‖2
2 ≥ (1 − σ2) ‖ψk‖1

∑

m,k′

(
Ui(ri)u

)2

mk′
= (1 − σ2)hd Ui(ri)u

2
R2,

from where follows the estimate from bellow. QED

An element u ∈W 1
2 (Rd) does not belong necessary to En(R,R

d). In order to approximate
u with elements of En(R,Rd) we define:

û(n) =
∑

k∈In(R)

‖ψk‖−1
1 (ψk|u)ψk. (11)

The numbers ‖ψk‖−1
1 (ψk|u) are called Fourier coefficients of u.

The basic result for our proof of convergence of approximate solutions is formulated by
using the quantity Γp(w, u) defined by:

Γp(w, u) = ‖ (Z(w) − I)u ‖p

The kernels

ωn(x,y) =
∑

k

1

‖ψk‖1
ψk(x)ψk(y) (12)

define an integral operator which is denoted by Kn. Actually, the kernels ωn define a δ-
sequance of functions on R

d × R
d and Kn converge strongly in Lp-spaces to unity:

COROLLARY 1.1 Let p ∈ [1,∞]. Then

(i) ‖Kn‖p ≤ 1.

(ii) There is a positive number κ(R), independent of n, such that ‖(I−Kn)u‖p ≤ κ(R) sup{Γp(w, u) :
|wi| ≤ hri}.

(iii) The operator Kn ∈ (L2(R
d), L2(R

d)) has the spectrum equal Sp(Kn) = {0} ∪ [3−d, 1].

Proof: Only (iii) has to be proved. The symmetric operatorKn is reduced byEn(R,R
d)

and representated by an integral operator with the kernel (12). It is zero operator in the
orthogonal complement En(R,Rd)⊥. With respect to the mapping Φn(R) the operator Kn

is mapped to the symmetric matrix K̂n = Φn(R)−1KnΦn(R) = S(d) in l2(In(R)). QED
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THEOREM 1.2 Let v, u ∈W 1
2 (Rd) and û(n), v̂(n) be defined by (11). Then

∣∣∣(v̂(n)|û(n)) − (v|u)
∣∣∣ ≤ c(R) min

{ ‖ u ‖2 sup|w|≤h|r| Γ2(w, v),

‖ v ‖2 sup|w|≤hr| Γ2(w, u),

∣∣∣(∂iv̂(n) | ∂j û(n)) − ( ∂iv | ∂ju )
∣∣∣ ≤ c(R) min






‖∂iv‖2

[
‖∂ju− ju‖2 + sup

|w|≤hr|

Γ2(w, ∂ju)

]
,

‖∂ju‖2

[
‖∂iv − iv‖2 + sup

|w|≤hr|

Γ2(w, ∂iv)

]
,

where c(R) is n-independent.

KOMPARTMENTALNI OPERATORI

2.

For a natural r the ratio of Gamma functions, c(k, r) = Γ(k + r)/
(
Γ(k + 1)Γ(r)

)
, is usually

denoted by
(
k+r−1
k

)
. In this monography the symbol

(
k+r−1
k

)
is also used for all r ∈ (0,∞).

Let K be a bounded operator in a Banach space L and let us assume that there exists m ∈ N

such that ‖Km‖ < 1. We wish to prove that the series:

(I − K)−α =
∞∑

k=0

(
k + α− 1

k

)
Kk (13)

converges in L.

LEMMA 1.4 Let K be bounded in a Banach space L. If ‖K‖ ≤ 1 and ρ = ‖Km‖ < 1 for
some m ∈ N, then (I −K)−α is defined in L by Expression (13) for each α > 0 and

‖(I − K)−α‖ ≤
∞∑

k=0

(
k + α− 1

k

)
‖Kk‖ ≤ ρ1/m−1 (1 − ρ1/m)−α,

Proof: Nakon prve ocjene na desnoj strani imamo za ρ = ‖Km‖ slijedecu ocjenu;

[
c(0, α) + c(1, α) + . . .+ c(m− 1, α)

]
ρ0 +[

c(m,α) + c(m+ 1, α) + . . .+ c(2m− 1, α)
]
ρ+

. . .[
c(rm, α) + c(rm+ 1, α) + . . .+ c((r − 1)m− 1, α)

]
ρr−1 +

. . . .

Sada definiramo s = ρ1/m i dobijemo za ovaj red ocjenu:

s−(m−1)
d∑

k=0

c(k, α, k) sk,

t.j.:
‖(I − K)−α‖ ≤ s−(m−1) (1 − s)−α = ρ1/m−1 (1 − ρ1/m)−α,

t.j. konvergenciju po normi. QED

LEMMA 1.5 (O potenciji inverza) Let A be a linear operator in a Banach space L sat-
isfying HY-conditions. Then there exists T (λ,A)α in L such that D(α) = T (λ,A)αL is
dense in L and there exists

(
λI +A

)α
on D(α) such that

(
λI +A

)α
T (λ,A)α = I.
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Proof: Let An = (1/n)I−n2T (n,A) be the Yoshida approximations of A. Then there
exists a sequence of bounded operators defined by:

T (λ,An)
α =

(
(λ + n) I − n2 T (λ,A)

)−α

=
1

(λ+ n)α

∞∑

k=0

c(k, α)

(
n

λ+ n

)k (
nT (n,A)

)k
,

(14)

where c(k, p) = Γ(k+ p)/
(
Γ(k+1)Γ(p)

)
. They converg strongly in L to a bounded operator

K(α). From ‖T (λ,An)
α‖ ≤ 1/λα there follows ‖K(α)‖ ≤ 1/λα. Let α = q/p, q, p ∈

N. Then
(
T (λ,An)

α
)p

= T (λ,An)
q implying K(α)p = T (λ,A)q. Hence, by definition

T (λ,A) = K(α) for α = q/p. However, α 7→ T (λ,An)α of (14) are analytic in ℜα > 0 so
that the established representation (14) is valid for all positive α. QED

3.

Sada promatramo operatore na Lp(D,µ), gdje je D otvoren skup, µ je ili Lebesqueova mjera
ili suma atomskih mjera naD. Definiramo pozitivnost za neki ograniceni opratorQ. Kazemo
Q ≥ 0 ako je Qu ≥ 0 na D za svaki u ≥ 0. Slicno definiramo Q > 0 na slijedeci nacin.
Operator Q je pozitivan, t.j. Qu > 0 na D ako za svaki u ∈ Lp(D,µ), u ≥ 0, ‖u‖p > 0
slijedi supp(Qu) = D. Ocito je Q > 0 na D akko 〈 v|u 〉 > 0 za svaki par v ∈ Lq(D,µ),
u ∈ Lp(D,µ), v, u ≥ 0, ‖v‖q > 0, ‖u‖p > 0. Ova se tvrdnja dokazuje pomocu pretpostavke
suprotnog za skup F = supp(Tu) ⊂ D i O = D \ F . Za njih se promatra v ∈ Lq(O,µ).

LEMMA 1.6 Let A be a linear operator in L(D,µ) satisfying HY-conditions. Then:

(i) If T (λ,A) ≥ 0 there exists a unique T (λ,A)α ≥ 0.

(ii) If L is a Hilbert space then the unique operator T (λ,A)α of (i) is positive definite.

Proof: From T (λ,A) ≥ 0 and (14) there follows K(α) ≥ 0. QED

DEFINITION 1.1 (Compartmental structure) A bounded operator A in L∞(D,µ)
is said to be of positive type if A = pI − B, p > 0, B ≥ 0 and ‖B‖∞ ≤ p. It is called
conservative if B1 = 1. A bounded operator A in L1(D,µ) is said to have the compartmental
structure if A = pI −B, B ≥ 0 and ‖B‖1 ≤ p. It is called conservative if for each u ≥ 0 on
D there holds ‖Bu‖1 = p‖u‖1.

In the case of l1(I) this definition and definition for matrices are in agreement.

Let us apply Lemma to compartmental operators A = pI −B = p(I −Q) and λI +A =
(λ + p)I − B. Hence, in the present case K = ρQ, where ρ = p/(p + λ). Therefore, the
operator

T (λ,A)α =

(
1

p+ λ

)α ∞∑

k=0

(
k + α− 1

k

)
ρk Qk (15)

is defined for any pair of numbers α > 0, λ > 0.
Let λ > 0. The r-th power of T (λ,A) has a representation (15). This is not the only

possible representation. However this is the unique representation for which entries are non-
negative. Other possibile representations can be derived from the spectral representation of
A.

LEMMA 1.7 Let A in L1(D,µ) be compartmental. If A is conservativ then ‖Bm‖1 = pm

for each m ∈ N.

Proof: If A is conservative then the equality ‖Bmu‖1 = pm‖u‖1 must be valid for each
u ≥ 0 implying the assertion. QED

7



4.

Definira se spektar operatora A i rezolventa R(λ,A) = T (λ,−A).

LEMMA 1.8 Let A in L1(D,µ) be a compartmental operator. Then 0 ∈ sp(A) iff A is
conservative.

Proof: Let A be conservative. We have to construct a sequance un ∈ L1(D,µ), ‖un‖1 =
1, such that Aun → 0 in L1(D,µ). It sufficies to consider the case A = I − B. Hence
‖Bmu0‖1 = 1 for each u0 ≥ 0, ‖u0‖1 = 1. Now we consider

un =
1

n

[
I +B +B2 + · · · +Bn−1

]
u0,

and calculate

‖un‖1 =
1

n

n∑

k=1

‖Bk−1u0‖1 = 1,

Bun − un = 1
n

[
Bnu0 − u0

]
→ 0.

Let us suppose now that 0 ∈ sp(A) while A is not conservative. There must exist m ∈ N

such that ρ = ‖Bm‖1 < 1. We have

(I −B)−1 =
[
I +B +B2 + · · · +Bm−1

] ∞∑

r=0

Bmr,

so that ‖(I − B)−1‖1 ≤ m/(1 − ρ). Hence A−1 is bounded on L1(D,µ) and 0 ∈ C belongs
to the resolvent set. QED

Primjer: Neka je F preslikavanje sa l2(Z) na L2(0, 2π) koje je ostvareno razvojem u
Fourierov red po bazi φk(x) = (2π)−1/2 exp(ikx). Promatramo A = I − (1/2)(I+ + I−) u
l2(Z) i Â u L2(0, 2π) definiran sa Â(x)u(x) = 2 sin2(x/2)u(x). Vrijedi slijedece

F A = Â F.

Ovo se dokazuje racunom (FAu)(x) =
∑
k φk(x)(Au)k = 2 sin2(x/2)u(x). Dakle A ima

neprekidni spektar u [0, 2].

5.

Let I be an index set and A = {aij}II be a matrix, A ≥ 0. We say that A is irreducible if
for any finite index subset J ⊂ I there exist m(J) ∈ N such that

1J

m(J)∑

r=0

Ar 1J > 0 on J.

The matrix I+ + I− is irreducible, while matrices I+r + I−r for r ≥ 2 are not irreducible.
For a compartmental matrix A = p(I − Q) we have T (λ,A) ≥ 0. If T (λ,A) > 0 on I

we say that the matrix A is irreducible. For instance A = I − (1/2)(I− + I−) is irreducible
while A = I − (1/2)I+r + I−r is not irreducible.

2 Classical elliptic operator

2.1 3. Approximate solutions and C(α)-convergence

For the differential operator A(x) = −∑
ij aij(x)∂i∂j +

∑
i bi(x)∂i + c(x) we consider the

following problem:
(λI +A(x))u(x) = µ(x), x ∈ D,
u|∂D = 0,

(16)
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where the bounded and open set D has the boundary ∂D of the class C(2+α). If the
coefficents aij , bi, c and the function µ are of the class C(α)(D) then Problem (16) is called
Dirichlet boundary value problem on D for a classical second order differential operator.
For a strictly elliptic tensor-valued function x 7→ a(x), c ≥ 0 and λ ≥ 0 this problem has a
solution u ∈ C(2+α)(D). This result is known as the Shauder theory.

Let the matrices An on Gn be discretizations of the considered differential operator A(x)
and let there be defined linear systems:

Anun = µn, (17)

where un,µn ∈ l(Gn(D)). We say that the system (17) numerically approximates the
boundary value problem (16). The columns un are called grid-solutions. Obviously, µn are
discretizations of µ.

DEFINITION 2.1 (Consistency) A matrix An with a finite band is called a consistent

discretization with the differential operator A(x) = −∑d
ij=1 aij(x)∂i∂j+

∑
i=1 bi(x)∂i+c(x)

if the equalities

(Au)(x) =
∑

l

(An)kl ul, x = hk, (18)

are valid for any polynomial x → u(x) of the second degree and the corresponding discretiza-
tions u defined by uk = u(hk).

For grid-solutions un = T (λ,An)µn the inverse matrix T (λ,An) has l∞-norms generaly
depending on n.

THEOREM 2.1 Let An be discretizations of the differential operator A(x) and un =
T (λ,An)µn such that T (λ,An) ∞ is bounded uniformly with respect to n ∈ N. If An
are consistent with A(x) then the sequence of functions U = {u(n) : n ∈ N} ⊂ ∪nEn(D)
converges in Ċ(α)(Rd) to the solution u = T (λ,A)µ to (16).

Proof: In this proof it is sufficient to consider the case A(x) = −∑d
ij=1 aij(x)∂i∂j .

For any function u ∈ C(2)(Rd) we have the following expression:

u(x + h) = u(x) + h · ∇u(x) +
1

2
(h|H(x)h) + urem(x), (19)

where H(x) = {∂i∂ju(x)}dd11 and the remainder urem(x) of Taylor expansion has the follow-
ing form:

urem(x) =

∫ 1

0

(1 − t)
[
(h|H(x + th)h) − (h|H(x)h)

]
dt.

For the proof of (19) one has to evaluate
∫
(1 − t)∂t(h|∇u(x + th))dt. We utilize (19) for

x,x + h ∈ Gn(D). In addition there must hold [x,x + h] ⊂ D.
Let u be discretizations of u ∈ C(2)(Rd). One easily verifies

A(x)u(x) −
(
An u

)
k

=
(
An urem

)
k
(x), (20)

where x = hk ∈ Gn, and h ∈ Gn. In this proof the unique solution to (16) is denoted by
u∗. If we replace u with u∗ and A(x)u(x)∗ with µ(x) in (20) we get

µ(x) −
(
An u∗

n

)
k

= (sn)k,

where sn = Anu
∗
rem. On the other hand the discretized equations can be rewritten as

µ(x) −
(
An un

)
k

= 0,

so that
An(u∗

n − un) = − sn,
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implying
u∗
n − un ∞ ≤ T (0, An) ∞ sn ∞,

where T (λ,A) ∞ < c(A) uniformly with respecy to n. Now we have to estimate sn . It
is easy to demonstrate that there exists a number γ(d), independent of n, so that

sn ≤ M γ(d)hα ‖ u∗ ‖(2+α)
∞ .

In order to calculate ‖u∗ − n(n)‖∞ we need an auxilliary result regarding the functions
u∗ and u∗(n) = Φnu

∗
n. The functions coincide at grid-knots of Gn(D), while their difference

elsewhere can be estimated as follows

|u∗(x) − u∗(n,x)| ≤ |h||p| ‖∇u∗‖∞.
Therefore we have

‖u∗ − u(n)‖∞ ≤ |h||p| ‖∇u∗‖∞ + M c(A) γ(d)hα ‖ u∗ ‖(2+α)
∞ .

2.2 Construction of discretizations

1. Standard approach

A standard approach to a generation of discretizations of differential operators is based on
utilization of finite difference operators approximating ∂i, ∂i∂j . So, by using the forward

and backward difference operators i(pihi), ̂ i(pihi) we can define various discretizations

ijf(x) of ∂i∂jf . Let ii = ˆ
i i so that the operator −aii(∂i)2 − ajj(∂j)

2 is approximated
by the standard central difference operators −aii ii − ajj jj with positive diagonal entries
and non-positive off-diagonal entries. For i 6= j finite differences are defined by:

∂i∂jf(x) → ijf(x) =
1

h1h2

{
f(x ± eihi ± ejhj) − f(x ± eihi) − f(x ± ejhj) + f(x),
−f(x± eihi ∓ ejhj) + f(x ± eihi) + f(x ∓ ejhj) − f(x).

(21)

If aij ≥ 0, then aij∂i∂j is approximated by the half sum of the first two possibilities,
otherwise by the half sum of the second two possibilities. Hence, for the d-dimensional case
and Gn ⊂ R

d we have

Akk±piei
= − 1

h2p2
i

[
aii(x) − ∑

m 6=i
pi

pm
|ami(x)|

]
,

Akk±(piei+pjej) = − 1
h2pipj

|aij(x)|, aij ≥ 0,

Akk±(piei−pjej) = − 1
h2pipj

|aij(x)|, aij ≤ 0,

x = hk, (22)

while the diagonal entries are calculated as the negative sum of off-diagonal ones.
Discretizations of B(x) =

∑
i bi(x)∂i + c(x) are simply constructed by the so called

upwind method:

Bn = c(x) I +

d∑

i=1

bi(x)

{
Ui(pi) for bi(x) ≤ 0,
Vi(pi) for bi(x) ≥ 0.

We say that a tensor-valued function x 7→ {aij(x)}dd11 is uniformly positive definite on a

set S ⊂ R
d if there exists a positive number M(a) such that M(a)|z|2 ≤ (z|a(x)z) for any

x ∈ S and z ∈ R
d. To a given diffusion tensor a(x) = {aij(x)}dd11 we associate an auxiliary

tensor â(x) defined by:
âii = aii, âij = −|aij | i 6= j.

By using the Perron theorem one can easily prove the following assertion.

LEMMA 2.1 There exist a parametr p ∈ N
d such that the matrix An defined by (22) is of

positive type iff the auxiliary diffusion tensor â(x) is uniformly positive definite on R
d.

In the case of d = 2 the tensors a, â are simultaneously positive definite or not. For
higher dimensions â can be indefinite although a is positive definite. Here is an example
for d = 3. The symmetric matrix a defined by aii = 1, a12 = a23 = −1/

√
2 has positive

eigenvalues for a13 > 0 and a negative eigenvalue for a13 < 0.
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2. General approach

Apart from this standard approach to discretizations of differential operators there can be
used constructions avoiding finite difference operators.

Let us consider first a differential operator with constant coefficients, A(x) = −∑d
ij=1 aij∂i∂j ,

and construct its discretizations An on Gn so that matrix entries (An)kl depend only on k−l.
We say that the correspondinh matrices An are homogeneous. By demanding additionaly
the symmetry of matrices An we have the following general stricture:

An =
∑

r∈J

pr Ir, pr = p−r, r ∈ J ⊂ Z
d,

where J is a finite index set and the real numbers pr have to fulfil the following three
conditions: ∑

r
pr = 0,∑

r
ri pr = 0, i = 1, 2, . . . , d,∑

r
rirj pr = − 2

h2 aij , i, j = 1, 2, . . . , d.
(23)

The first and second conditions imply the equality Anu = 0 for the discretizations u of any
polynomial of the second degree x, y 7→ u(x, y) on R

d. The third condition comes from the
following demand: If u(x, y) = αx2 + βy2 + γxy then

Anu = −2
(
αa11 + γa12 + βa22

)
1,

i.e. it coincides with the discretizations of A(x)u(x).

EXAMPLE 1 . The well known central differences of Laplacean A(x) = −σ2∆ are con-
tained in the described class of matrices An. The corresponding parameters are defined as
follows. J = {0,±ei : i = 1, 2, . . . , d} ⊂ Z

d, and

p0 =
2σ2d

h2
, p±ei

= − σ2d

h2
.

EXAMPLE 2 . Some other discretizations with peculiar features are also contained in the
considered class of discretizations. Let us consider the case d = 1 and discretizations with
p0 = 0. We can choose p = (p1, p2, p3) ∈ R

3
+ so that the system




1 1 1
1 2 3
1 4 9



 p =




0
0

−1





has a unique solution. This solution defines pr, |r| ≤ 3 of Sustem (23). In this example
the diagonal entries of An have zero values. Let us point out that the central difference
discretizations of Laplacean are of positive type while the discretizations of this peculiar
example are not of positive type.

For the differential operator A(x) = −∑d
ij=1 aij∂i∂j +

∑
i=1 bi∂i + c the system (23) is

replaced with the following one:

∑
r
pr = c,∑

r
ri pr = bi

h , i = 1, 2, . . . , d,∑
r
rirj pr = − 2

h2 aij , i, j = 1, 2, . . . , d.
(24)

For a general elliptic differential operator A(x) with nonconstant coefficients the con-
struction is analogous. One of possibilities is the following simple discretization of A0(x):

Akk±ei
= − 1

h2

[
aii(x) − ∑

m 6=i
ri

rm
|ami(x)|

]
,

Akk±(riei+rjej) = − 1
h2rirj

|aij(x)|, aij ≥ 0,

Akk±(riei−rjej) = − 1
h2rirj

|aij(x)|, aij ≤ 0,

(25)
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where ri, rj ∈ N. Of course, a convex combination of the system matrices (25) is again a
system matrix discretizing the classical differential operator A0 = −∑

ij aij(x)∂i∂j .
If we replace pi with ri in Lemma 2.1 we get a result about discretizations (25) of positive

type. In both cases the uniform positive definitness of â on R
d is a sufficient condition

ensuring the matrices An to be of positive type.
Discretizations An are defined in terms of its matrix entries (An)kl, where hk, hl ∈ Gn.

For a fixed x = hk ∈ Gn the set of all the grid-knots y = hl such that (An)kl 6= 0 is denoted
by N (x) and called the numerical neighbourhood of An at x ∈ Gn:

N (x) = {y ∈ Gn : x = hk, y = hl, (An)kl 6= 0}.

In the case of two dimensions the obtained structures of system matrix can be classified
into two groups by using the corresponding numerical neighborhoods. The grid Gn =
{h(ke1 + le2) : k, l ∈ Z} has the corresponding index set of indices k = (k, l). Possible
numerical neighborhoods N (x) for the respective methods (22), (25), are illustrated in
Figure 2.1.
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Figure 2.1

Discretizations An defined by (22) and (25) have at most 1 + d + d2 entries in each
row and the entries are linear combinations of aij(x) calculated at the respective grid-knot
x ∈ Gn.

3 Operators in divergence form

3.1 Rules of construction and convergence

1. Original and discretized problems

The variational formulation for a solution u ∈ Ẇ 1
2 (D) has the following form:

λ(v |u) + a(v, u) = 〈 v |µ 〉, for any v ∈ Ẇ 1
2 (D), (26)

where µ ∈ W−1
2 (D). In the case of a problem on R

d the variational problem is defined by
expression

λ(v |u) + a(v, u) = 〈 v |µ 〉, for any v ∈ Ẇ 1
2 (Rd), (27)

where µ ∈W−1
2 (Rd).

For the case of simplicity we consider the case of D = R
d and the problem with the form

λ(v|u)+ a(v, u), λ > 0, where W 1
2 (Rd)×W 1

2 (Rd) ∋ (v, u) 7→ a(v, u) is defined by coefficients
aij , bi, c on R

d in the usual way.

The form a on W 1
2 (Rd)×W 1

2 (Rd) is discretized by a sequence of forms an on En(Rd)×
En(R

d). Each form an(·, ·) determines a matrix An on Gn,

an(v, u) = 〈vn |An un 〉,

which is called a discretization of the original differential operator A(x). In this way we
arrive to the following result. The original variational problem is discretized by a sequence
of discretized variational equalities:

λ〈vn |un 〉 + an(v, u) = 〈vn |µn 〉, vn ∈ w2,1(Gn). (28)
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where µn are discretizations of the functional µ ∈ W−1
2 (Rd) (or W−1

2 (D)). The equalities
(28) have an equaivalent formulation

(λI + An)un = µn, (29)

where un,µn are grid functions on Gn in case of Problem (27) and grid-functions on Gn(D)
in case of Problems (26).

We cannot prove the W 1
2 (Rd)-convergence of approximate solutions without a discretized

version of the strict ellipticity. Descrete forms an(·, ·) on l0(Gn)×l0(Gn) are said to be strictly
elliptic unuformly with respect to n ∈ N if

M u 2
2,1 ≤ λ un

2
2 + an(un,un) ≤ M u 2

2,1, (30)

with some positive numbers M ≤M and all n ∈ N.

2. Discretizations of µ

First we have to demonstrate the existence of µn such that hd〈vn|µn 〉 → 〈 v|µ 〉.
Beside the functions ψk we consider the functions defined by:

χki±(x) = 1 [ki,ki±rih](xi)
∏

j 6=i

ψkj
(xj),

for all the possible i = 1, 2, . . . , d, and the linear space Fn(R,Rd) spanned by the defined
functions χki±. In particular we have

∂iψk =
1

rih

[
χki− − χki+

]
.

Obviously that Fn(R,R
d) is not a subspace of W 1

2 (Rd). Rather we consider it as a subspace
of W−1

2 (Rd) and endow it with the norm of W−1
2 (Rd)-space. Hence, it is necessary to

represent the elements of Fn(R,Rd) in the following form

f(n) = g0(n) +

d∑

i=1

∂igi(n), g0 ∈ Fn(R,R
d), gi ∈ En(R,R

d), (31)

and define the norm

‖f(n)‖2
2,−1 =

d∑

i=0

‖gi(n)‖2
2. (32)

Of course, that the representation (31) is not unique while the norm must be uniquely
defined. In such cases usually one defines the norm by using the minimum value of norms
for all the possible representations of the form (31). The following result is useful:

LEMMA 3.1 Let S ⊂ R
d and Fn(S,R,R

d) be the linear subspace of Fn(R,Rd) of the
functions in Fn(R,R

d) which are restricted to S. Then there exists a unique decomposition

Fn(S,R,R
d) = F

(0)
n (S,R,Rd) ⊕ F

(1)
n (S,R,Rd), where

F
(0)
n (S,R,Rd) =

{
f ∈ Fn(S,R,R

d) : (1|f) = 0
}
,

F
(1)
n (S,R,Rd) = Fn(S,R,Rd) ⊖ F

(0)
n (S,R,Rd).

Each element F
(1)
n (S,R,Rd) has a unique representation in the form

∑
i ∂igi(n), gi ∈ En(R,Rd)

and (32) is the norm of f(n) ∈ Fn(S,R,Rd).

Let us define the integral operators Kn,K
(i)
n with the respective kernels

ωn(x,y) =
∑

k

1
‖ψk‖1

ψk(x)ψk(y),

ω
(i)
n (x,y) =

∑
k

1
‖χ

ki+
‖1
χki+(x)χk(y) =

∑
k

1
‖ψ

k
‖1
χki−(x)χki−(y).
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The following result is valid

∂i
∑

k

1

‖ψk‖1
ψk(x)χki+(y) =

∑

k

1

‖ψk‖1
χki−(x)ψk(y) ∂i. (33)

Now we define grid-functions µ, f by their components:

µk = − 1

‖ψk‖1
(∂i ψk|f), fk = (χki+|f).

The grid function f is imbeded into En(R,Rd) in the usual way, f(n) = Φn(R)f . The grid
function µ is imbeded into the space Fn(R,R

d) by the mapping µ(n) = Ψn(R)µ, where
generally Ψn(R)v =

∑
k
χki+vk. By using (33) we get the basic equality

µ(n) = ∂i f(n),

so that ‖µ(n)‖2,−1 = ‖f(n)‖2. One calculates easily

∣∣∣‖f‖2 − ‖f(n)‖2

∣∣∣ ≤ (f |(I −K(i)
n )f)1/2 + ‖f‖2 sup

{
‖(Z(wee) − I, i)f‖2 : |w| ≤ ri

}
.

LEMMA 3.2 Let µ be a continuous linear functional on W 1
2 (Rd). There exists discretiza-

tions µn(R) ∈ l(Gn(R)) such that the functions µ(n) = Φn(R)µn(R) ∈ En(R,Rd) converge
strongly in W−1

2 (Rd) to µ and the following inequality is valid

〈u(n) |µ 〉 = hd 〈un |µn 〉 = ‖ψk‖1

∑

k

ukµk. (34)

Proof: It suffices to consider the case µ = ∂f, f ∈ L2(R
d), ‖µ‖2,−1 = ‖f‖2. Let us

define (
µn

)
k

= − ‖ψk‖−1
1 (∂ψk|f).

The strog convergence of µ(n) towards µ in W−1
2 (Rd) is already demonstrated and the

equality (34) is a result which follows straight forwardly from the definition of µn. QED

Because the sequence of functions µ(n) = Ψn(R)µn(R) ∈ Fn(R,R
d) converges strongly

in W−1
2 (Rd) to µ the sequence of numbers 〈 v(n)|µ(n) 〉 convergences to the number 〈 v|µ 〉

for any W 1
2 -weakly convergent sequence of functions v(n).

2. Discretized version of ellipticity

Descrete forms an(·, ·) on l0(Gn) × l0(Gn) are said to be strictly elliptic unuformly with
respect to n ∈ N if

M u 2
avg,2,1 ≤ λ un

2
2 + an(un,un) ≤ M u 2

avg,2,1. (35)

with some positive numbers M ≤M and all n ∈ N.

PROPOSITION 3.1 Let the discretizations An of A0(x) = −∑
∂iaij(x)∂j be constructed

by using either basic or extended schemes. If An have the compartmental structure then the
descrete forms v,u 7→ 〈v|Anu 〉R are strictly elliptic on l0(Gn(R)) × l0(Gn(R)) uniformly
with respect to n ∈ N.

3. W 1
2 -convergence of approximate solutions

Inequality (35) and the variational equalities (28) imply the first result towards our proof of
convergence of approximate solutions. If un solve (28) then (34) implies:

M un
2
avg,2,1 ≤ 〈un | (λI +An)un 〉 ≤ ‖u(n)‖2,1 ‖µ‖2,−1. (36)

By applying Theorem to the derived inequality on the left hand side we get ‖u(n)‖2,1 ≤
M−1‖µ‖2,−1. i.e. the boundedness of sequance U = {u(R, n) : n ∈ N} ⊂ ∪nEn(R,Rd).
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COROLLARY 3.1 Let un = T (λ,An)µn and u(R, n) = Φn(R)un. Then for each R there
exists a subsequence U′ ⊂ U = {u(R, n) : n ∈ N} ⊂ ∪nEn(R,Rd) converges weakly in
W 1

2 (Rd) to some u ∈ W 1
2 (Rd).

In order to prove the strong convergence of constructed sequence U to the unique solution
to (27) we need the consistency for the analized discretized forms an. This property is defined
in terms of sequences of functions with a particular structure:

V = {v(n) : n ∈ N} ⊂ ∪nEn(R,Rd),
U = {u(n) : n ∈ N} ⊂ ∪nEn(R,Rd).

(37)

DEFINITION 3.1 (Consistency) We say that forms an(·, ·) on En(R,R
d) × En(R,R

d)
are consistent with the form original form a on W 1

2 (Rd) ×W 1
2 (Rd) if

a(v, u) = lim
n
hd an(v(n), u(n))

is valid for any pair V,U of (37) such thta V is weakly converging in W 1
2 (Rd) to v and U is

strongly converging in W 1
2 (Rd) to u.

Let u∗ be the solution to (27). Then the sequence of functions û∗(n), defined by (11),
strongly converges to u∗ inW 1

2 . In the remaining part of this analysis we have to demonstrate
the expected property limn u(R, n) = limn û

∗(R, n) = u∗ for each R. We follow the well-
known finite element technique.

M hd un − û∗
n

2
avg,2,1 ≤ hd 〈un − û∗

n | (λI +An) (un − û∗
n) 〉

= hd 〈un − û∗
n | (λI +An)un 〉

− hd 〈un − û∗
n | (λI +An) û∗

n 〉
= hd 〈un − û∗

n |µn 〉 − hd 〈un − û∗
n | (λI +An) û∗

n 〉.
(38)

By Lemma 3.2 the first term on the right hand side converges to 〈u−u∗|µ 〉. If the consistency
property of Definition 3.1 is valid the second term converges to the same value. In this way
we come to the following result:

THEOREM 3.1 Let U be as in Corollary 3.1. If the discretized forms an(·, ·) are consistent
with the original form (TR) the sequence U converges W 1

2 (R)-strongly to the unique solution
u∗ to (27).

From this result, Lemma 3.2 and Lemma 1.1 we get another important result for λ = 0.

COROLLARY 3.2 Let D be a bounded domain with Lipsithz boundary and µ ∈ W−1
2 (D).

Let An(D) be the restriction to Gn(D) of An, µn on Gn(D) satisfy (34) and un = An(D)−1µn.
Then the sequence U converges strongly in Ẇ 1

2 (D) to the unique weak solution u of (26).
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