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Abstract

When fitting a parametric curve through a sequence of points, it is important in applications that the curve should not exhibit
unwanted oscillations. In this paper we take the view that a good curve is one that does not deviate too far from the data polygon:
the polygon formed by the data points. From this point of view, we study periodic cubic spline interpolation and derive bounds
on the deviation with respect to three common choices of parameterization: uniform, chordal, and centripetal. If one wants small
deviation, the centripetal spline is arguably the best choice among the three.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Cubic spline interpolation is a popular way to pass a smooth-looking curve through a sequence of points in arbitrary
dimension. Given a sequence of points p0,p1, . . . ,pn−1 in R

d , where d � 2 and pi and pi+1 are distinct, and defining
pn = p0, we can choose any parameter values t0 < t1 < · · · < tn in R and compute the unique periodic C2 cubic spline
curve s : [t0, tn] → R

d such that s(ti) = pi , i = 0,1, . . . , n. Thus s is a parametric cubic polynomial on each interval
[ti , ti+1], i = 0,1, . . . , n − 1, and is C2 at t1, . . . , tn−1 and s(k)(tn) = s(k)(t0), k = 1,2.

There remains the choice of parameter values t0, . . . , tn and it is well known that they have a large influence on
the shape of the resulting spline curve (Ahlberg et al., 1967; de Boor, 1978; Epstein, 1976; Farin, 1988; Floater 2005,
2006; Floater and Surazhsky, 2006; Foley and Nielson, 1989; Lee 1989, 1992; Marin, 1984; Penot, 1983). While some
parameterization methods involve optimization and considerable computation, a simple approach is used frequently
in practice: let t0 := 0 and for some α ∈ [0,1] let

ti+1 := ti + |pi+1 − pi |α, i = 0,1, . . . , n − 1,

where | · | denotes the Euclidean norm in R
d . The α-parameterizations with α = 0,1/2,1 are known respectively as

uniform, centripetal, and chordal (Ahlberg et al., 1967; Lee, 1989).
One advantage of the chordal spline is that it yields a fourth order approximation to a curve with a continuous fourth

derivative with respect to arc length (Floater, 2006) due to the fact that the chord length |pi+1 − pi | is a sufficiently
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Table 1
Maximum μi and μ

Parameterization μi μ

Uniform ∞ � 3/4
Centripetal 3/4 � 9/20
Chordal 3/4 3/4

close approximation to the length of the curve between pi and pi+1. Thus chordal spline interpolation has the same
order of accuracy as functional cubic spline interpolation (Beatson, 1986; Beatson and Chacko, 1992; Birkhoff and de
Boor, 1964; de Boor, 1978; Hall and Meyer, 1976; Sharma and Meir, 1966). In comparison, numerical examples show
that uniform and centripetal spline interpolation have second order accuracy at best. So approximation order puts the
chordal spline in a good light, but this is only an asymptotic property, and the question remains whether the chordal
spline is so effective when the points are sampled sparsely from a curve, or when the points are simply chosen by a
designer and approximation is no longer relevant. Based on numerical examples, Lee (1989) argues that the centripetal
spline often appears to stay closer to the data polygon (the polygon whose edges are [p0,p1], [p1,p2], . . . , [pn−1,p0])
than the chordal spline, but there does not seem to be any mathematical evidence in the literature to support this. We
note that the different but related issue of how far a Bezier or spline curve deviates from its control polygon has been
studied and bounds involving second order differences in the control points have been derived by Nairn et al. (1999).

The purpose of this paper is to view ‘deviation from the data polygon’ as a measure of badness of the interpolating
spline and to investigate how the three parameterizations: uniform, centripetal and chordal perform in this respect.
A natural measure of local deviation is the Hausdorff distance between the ith cubic piece s|[ti ,ti+1] and the associated
edge [pi ,pi+1]. But since we expect this distance to be proportional to the length of this edge, we will consider the
ratio

μi(s) = dist(s|[ti ,ti+1], [pi ,pi+1])
|pi+1 − pi | .

Alternatively we can study the global deviation of the spline, and measure it relative to the maximum edge length,

μ(s) = max0�i�n−1 dist(s|[ti ,ti+1], [pi ,pi+1])
max0�i�n−1 |pi+1 − pi | .

Note that μ(s) � maxi μi(s). We take the view that a spline s is ‘good’ if both its μi and μ values are low.
We show that the maximum μi value of both the chordal and centripetal splines is μi = 3/4. On the other hand, μi

for a uniform spline can be arbitrarily high. Thus in terms of local deviation, the chordal and centripetal splines are
equally good, and much better than the uniform one. We show that the maximum global deviation of the chordal spline
is similarly μ = 3/4 but the maximum value for the centripetal spline is at most 9/20 (and may be lower). Thus if one
wants a curve with both small local and global deviations, the centripetal spline is arguably the best choice among the
three. These findings are summarized in Table 1.

2. Preliminaries

The definitions of μi and μ involve Hausdorff distance. As is well known, if f : [a, b] → R
d and g : [c, d] → R

d

are two parametric curves, and φ : [a, b] → [c, d] is some continuous monotonically increasing function then

dist(f,g) � sup
a�u�b

∣∣f(u) − g
(
φ(u)

)∣∣.
Thus in studying the deviation between s and its data polygon, it helps to view the latter as a piecewise linear para-
metric curve, and we will use the representation p : [t0, tn] → R

d where

p(t) = (1 − u)pi + upi+1, ti � t � ti+1, (1)

and u = (t − ti )/(ti+1 − ti ), and the ti are the same parameter values used to define s. We will sometimes make use of
the first and second order divided differences

[ti , ti+1]p := pi+1 − pi
, [ti , ti+1, ti+2]p := [ti+1, ti+2]p − [ti , ti+1]p

.

ti+1 − ti ti+2 − ti
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There are two well known ways of computing the spline interpolant and we will use both in our analysis. Here, it
will help to use the Bernstein polynomials

Bi,k(x) =
(

k

i

)
xi(1 − x)k−i , 0 � x � 1, 0 � i � k,

and the properties that if

f (x) =
k∑

i=0

ciBi,k(x),

then f (0) = c0, f (1) = ck , and

f ′(x) = k

k−1∑
i=0

(ci+1 − ci)Bi,k−1(x). (2)

One method to find s is to represent it in each interval in terms of its values and first derivatives at the end points,
and solve a linear system with s′(t0), . . . , s′(tn−1) as the unknowns. Specifically, defining s′

i = s′(ti), we can express s
for t ∈ [ti , ti+1], as

s(t) = B0,3(u)pi + B1,3(u)(pi + �tis′
i/3) + B2,3(u)(pi+1 − �tis′

i+1/3) + B3,3(u)pi+1, (3)

with u as in (1) and �ti := ti+1 − ti . This is easily confirmed by differentiating, using (2) and the fact that
d/dt = (1/�ti)(d/du). Differentiation a second time and the assumption that s has a continuous second derivative
at t0, . . . , tn−1 then leads to the familiar linear system of equations

�ti

�ti−1 + �ti
s′
i−1 + 2s′

i + �ti−1

�ti−1 + �ti
s′
i+1 = bi , i = 0,1, . . . , n − 1, (4)

where

bi = 3
�ti[ti−1, ti]p + �ti−1[ti , ti+1]p

�ti−1 + �ti
.

Here, s−1 = s′
n−1, s′

n = s′
0, p−1 = pn−1, and t−1 = t0 + (tn − tn−1).

Alternatively, we can express s in each interval in terms of its values and second derivatives at the end points and
solve a linear system with s′′(t0), . . . , s′′(tn−1) as the unknowns. Letting s′′

i := s′′(ti), we have in [ti , ti+1],
s(t) = B0,3(u)pi + B1,3(u)

(
(2pi + pi+1)/3 − �t2

i (2s′′
i + s′′

i+1)/18
)

(5)

+ B2,3(u)
(
(pi + 2pi+1)/3 − �t2

i (s′′
i + 2s′′

i+1)/18
) + B3,3(u)pi+1. (6)

This can again be verified by differentiation and using (2). By the assumption that s has a continuous first derivative
at t0, . . . , tn−1, one arrives at another familiar linear system,

�ti−1

�ti−1 + �ti
s′′
i−1 + 2s′′

i + �ti

�ti−1 + �ti
s′′
i+1 = ci , i = 0,1, . . . , n − 1, (7)

where s′′−1 = s′′
n−1, s′′

n = s′′
0, and

ci = 6[ti−1, ti , ti+1]p.

3. Local deviation

We start by bounding the local deviation of the chordal and centripetal splines. We show that both splines share the
same property, that μi � 3/4.

Theorem 1. If s is a chordal spline then μi(s) � 3/4.

Proof. We use (3) to represent s in [ti , ti+1] in terms of its first derivatives. Due to the chordal parameterization,

∣∣[tj , tj+1]p
∣∣ = |pj+1 − pj | = 1,
tj+1 − tj
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and it follows that |bj | � 3 in (4). Thus, using a standard argument based on the diagonal dominance of the linear
system (4) (see for example (de Boor, 1978, pp. 43–44)), it follows that

max
0�j�n−1

|s′
j | � max

0�j�n−1
|bj | � 3. (8)

Now to bound the Hausdorff distance between s and p in the interval [ti , ti+1], it helps to represent p in the
parametric form q : [t0, tn] → R

d where for t ∈ [ti , ti+1],
q(t) = B0,3(u)pi + B1,3(u)pi + B2,3(u)pi+1 + B3,3(u)pi+1, (9)

with u as in (1), because due to (3), the error

e(t) := s(t) − q(t),

for t in [ti , ti+1] takes on the simple form

e(t) = �tiu(1 − u)
(
(1 − u)s′

i − us′
i+1

)
.

Therefore,∣∣e(t)∣∣ � �tiu(1 − u)max
{|s′

i |, |s′
i+1|

}
, (10)

and so∣∣e(t)∣∣ � 1

4
|pi+1 − pi |max

{|s′
i |, |s′

i+1|
}
,

and the result follows from (8). �
Next we show that the constant 3/4 is the least possible. For some integer m � 2 and real ω > 0, let n = 2m and

with pi = (pi, qi), let

pi = 0, qi =
m−1−i∑

j=0

(−ω)j , i = 0, . . . ,m − 1,

pi = 1, qi = q2m−1−i , i = m, . . . ,2m − 1, (11)

and consider the deviation of s from the edge [pm−1,pm] = [(0,1), (1,1)]. The chordal parameter values satisfy
�ti = ω|m−1−i| for 0 � i � 2m − 2 and �t2m−1 = 1. To obtain an extreme case of deviation suppose ω is small and
m is large. The third column of Fig. 2 shows the chordal spline when m = 4 for ω = 1/10,1/2,1,2,10 respectively.
With s(t) = (x(t), y(t)), the limit as ω → 0 of the system (4) with i = 0, . . . ,m − 1 in the y component is

2y′
0 + y′

1 = 3(−1)m, and y′
i−1 + 2y′

i = 3(−1)m−1−i , i = 1, . . . ,m − 1,

which has the unique solution

y′
i = 3(−1)m−1−i + 4(−1)m(−1/2)i , i = 0, . . . ,m − 1.

Thus y′
m−1 → 3 as m → ∞, and similarly y′

m → −3 as m → ∞, and putting these values into (3) in [tm−1, tm] with
t∗ = (tm−1 + tm)/2 means that s(t∗) → (1/2,1 + 3/4) as ω → 0 and m → ∞. We conclude that if ω is small enough
and m large enough, the distance between the point s(t∗) and the nearest point of the polygon, (1/2,1), is arbitrarily
close to 3/4. Next we consider centripetal splines.

Theorem 2. If s is a centripetal spline then μi(s) � 3/4.

Proof. We use the linear system in the second derivatives (7). Since

|cj | � 6
|[tj , tj+1]p| + |[tj−1, tj ]p|
(tj+1 − tj ) + (tj − tj−1)

,

and ∣∣[tj , tj+1]p
∣∣ = |pj+1 − pj | = |pj+1 − pj |1/2,
tj+1 − tj
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it follows that |cj | � 6 and therefore, by the same diagonal dominance argument used in the proof of the previous
theorem,

max
0�j�n−1

|s′′
j | � max

0�j�n−1
|cj | � 6. (12)

Now we can express the error as e(t) = s(t) − p(t), which implies that

e(t) = −�t2
i u(1 − u)

(
(1 − u)(2s′′

i + s′′
i+1) + u(s′′

i + 2s′′
i+1)

)
/6. (13)

Since
∣∣e(t)∣∣ � �t2

i u(1 − u)
1

2
max

{|s′′
i |, |s′′

i+1|
}
,

it follows that
∣∣e(t)∣∣ � 1

8
|pi+1 − pi |max

{|s′′
i |, |s′′

i+1|
}
,

and the result follows from (12). �
For testing the sharpness of the constant 3/4 in Theorem 2 we again use the data set (11) but consider large ω

as well as large m; see the second column of Fig. 2. The centripetal parameter values satisfy �ti = ω|m−1−i|/2 for
0 � i � 2m − 2 and �t2m−1 = 1 and the limit as ω → ∞ of the second component of (7) with i = 0, . . . ,m − 1 is

2y′′
0 + y′′

1 = 6(−1)m, and y′′
i−1 + 2y′′

i = 6(−1)m−i , i = 1, . . . ,m − 1,

which has the solution

y′′
i = 6(−1)m−i , i = 0, . . . ,m − 1.

We then have y′′
m−1 → −6 as m → ∞, and similarly y′′

m−1 → −6 as m → ∞, and putting these values into (5) implies
s(t∗) → (1/2,1+3/4) as ω → ∞ and m → ∞. Thus if ω and m are large enough, the distance between the point s(t∗)
and the nearest point of the polygon, (1/2,1), is arbitrarily close to 3/4.

What about the local deviation of the uniform spline? In fact μi is unbounded and so from the point of view of
local deviation one can firmly regard the uniform spline as inferior to the chordal and centripetal ones. To see this, let
p0, . . . ,pn−1 be any data set with n � 2, let s be the uniform spline interpolant, and consider the deviation of s from
the edge [p0,p1]. If we replace the data point p2 by p̃2 and call the resulting spline s̃, the difference d(t) = s̃(t) − s(t)
satisfies

d(t) = φ(t)(p̃2 − p2),

where φ : [0, n] → R is the periodic cardinal spline satisfying φ(i) = δi,2, 0 � i � n. A standard fact about cubic
cardinal splines is that they have no zeros between the knots and so the value φ(1/2) is non-zero, and so we can make
the difference vector d(1/2) arbitrarily large by simply changing p̃2. Hence the distance between the point s̃(1/2)

and s(1/2) can be made arbitrarily large, and so too the distance between s̃(1/2) and p(1/2).

4. Global deviation

We now consider the global deviation. Using the fact that μ(s) � μi(s) for any interpolant s, it follows from
Theorem 1 that if s is a chordal spline then μ(s) � 3/4. Moreover, if ω < 1 in Example (11) then the edge [pm−1,pm]
is the longest in the polygon (together with [pn−1,p0]) and so the example with small ω and large m shows that the
bound 3/4 is again optimal.

Similarly, Theorem 2 shows that if s is a centripetal spline then μ(s) � 3/4. However, we can reduce this constant
in the centripetal case. This might be expected because when Example (11) was used to show that 3/4 was optimal for
the relative local deviation, we took ω to be large, and in particular larger than 1 which means that the edge [pm−1,pm]
is shorter than neighbouring edges.

Theorem 3. If s is a centripetal spline then μ(s) � 9/20.
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Proof. Consider any interval [ti , ti+1]. Defining

λ = �ti−1

�ti−1 + �ti
, μ = �ti+1

�ti + �ti+1
,

we write the two equations of the linear system (7) corresponding to i and i + 1 in the form

2s′′
i + (1 − λ)s′′

i+1 = α, (14)

(1 − μ)s′′
i + 2s′′

i+1 = β, (15)

where α = ci − λs′′
i−1 and β = ci+1 − μs′′

i+2. Inequality (12) implies

|α| � 6(1 + λ), |β| � 6(1 + μ).

Now, solving the 2 × 2 linear system (14)–(15) gives

s′′
i = (

2α − (1 − λ)β
)
/D,

s′′
i+1 = (

2β − (1 − μ)α
)
/D,

where D = 4 − (1 − λ)(1 − μ). Therefore, with (13) in mind,

2s′′
i + s′′

i+1 = (
(3 + μ)α + 2λβ

)
/D,

s′′
i + 2s′′

i+1 = (
2μα + (3 + λ)β

)
/D,

and so

|2s′′
i + s′′

i+1| � 6(3 + 5λ + μ + 3λμ)/D, |s′′
i + 2s′′

i+1| � 6(3 + λ + 5μ + 3λμ)/D,

and putting these bounds into (13) implies that for t ∈ [ti , ti+1],
∣∣e(t)∣∣ � (�ti)

2 1

4D
max{3 + 5λ + μ + 3λμ,3 + λ + 5μ + 3λμ}.

Let us now suppose that λ � μ. Then
∣∣e(t)∣∣ � (�ti)

2 1

4D
(3 + 5λ + μ + 3λμ),

which we can rewrite as
∣∣e(t)∣∣ � (�ti)

2
(

1

4
+ λ(1 + μ)

3 + λ + μ − λμ

)
.

It is easy to check that the expression in the brackets, being a rational linear function in μ is increasing in μ and so
takes its maximum value when μ = λ, hence

∣∣e(t)∣∣ � (�ti)
2
(

1

4
+ λ

3 − λ

)
. (16)

Now notice that since λ � 1, setting λ = 1 in the above inequality gives again the 3/4 constant we had in Theorem 1.
But now we can do better by exploiting the fact that the μ depends on all the polygon edge lengths, and in particular
both |pi+1 − pi | and |pi − pi−1|. Thus, we consider the two cases λ � 1/2 and λ � 1/2. If λ � 1/2 we use (16)
directly, giving

∣∣e(t)∣∣ � (�ti)
2
(

1

4
+ 1

5

)
� 9

20
|pi+1 − pi |.

Conversely, if λ � 1/2, (16) gives
∣∣e(t)∣∣ � (�ti)

2 1

4
+ �ti�ti−1

1 − λ

3 − λ
� (�ti)

2 1

4
+ �ti�ti−1

1

5
� 9

20
max

j=i−1,i
|pj+1 − pj |.

We have thus established the bound∣∣e(t)∣∣ � 9
max |pj+1 − pj | (17)
20 0�j�n−1
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for t ∈ [ti , ti+1] for all λ ∈ [0,1] and all μ ∈ [0, λ]. The remaining case that μ � λ can be treated in the same way and
so the bound holds for all λ and μ in [0,1]. �

What can be said about the global deviation of the uniform spline? We next show that the global 3/4 bound extends
in fact to any α-parameterization in which 0 � α � 1, which includes the uniform case α = 0. However, as we have
already seen in the α = 1/2 case, the 3/4 bound is not optimal for general α.

Theorem 4. If s is a spline with any α-parameterization, 0 � α � 1, then μ(s) � 3/4.

Proof. With M := max0�j�n−1 |pj+1 − pj |, we have |[tj , tj+1]p| � M1−α and therefore

max
0�j�n−1

|s′
j | � max

0�j�n−1
|bj | � 3M1−α.

Then with q as in (9), Eq. (10) for t ∈ [ti , ti+1] gives
∣∣e(t)∣∣ � 1

4
Mα3M1−α. �

Thus μ � 3/4 for all three parameterizations: chordal, centripetal, and uniform, but the only parameterization for
which we know that 3/4 is optimal is the chordal one.

5. Numerical examples

The data set

x 0 0 5 10 13 14 15 30 40 40

y 0 10 20 10 10 14 14 8 5 0

where n = 10, was used to generate the three splines: uniform, centripetal, and chordal. The maximum local and
global deviations are:

Parameterization maxi μi μ

Uniform 1.166 0.120
Centripetal 0.265 0.084
Chordal 0.231 0.231

The three spline curves are shown in Fig. 1. Fig. 2 shows the three splines for the data set (11) with m = 4 and
n = 2m = 8, and ω = 1/10,1/2,1,2,10 respectively.

6. Final remarks

The bound μ � 9/20 for the centripetal spline may not be the least possible and a topic for future research is to try
to determine the least constant. Another question is whether there is some value of α, perhaps between 1/2 and 1, for
which the maximum μi is lower than 3/4.

Fig. 1. Example data: (a) uniform, (b) centripetal, and (c) chordal.
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Fig. 2. Data set (11) with, top to bottom: ω = 1/10,1/2,1,2,10 and left to right: uniform, centripetal, chordal.

One could also consider using the μi and μ values as measures of quality of other parametric interpolation methods.
One could argue that a good method should have a bounded μi . On the other hand one should be careful about trying
to minimize μi or μ. For example, if one fits a C1 cubic spline, one can achieve μi = 0 by forcing the spline to be
equal to the polygon by setting the first derivative at each knot to be zero. This cannot happen though for a C2 cubic
spline. It would be interesting to know whether spline interpolants of higher degree, for example C4 quintics, have a
bounded μi for various α-parameterizations.
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