
Preface

Approximation methods are of vital importance in many challenging applica-

tions from computational science and engineering. This book collects papers

from world experts in a broad variety of relevant applications of approximation

theory, including pattern recognition and machine learning, multiscale model-

ling of fluid flow, metrology, geometric modelling, the solution of differential

equations, and signal and image processing, to mention a few.

The 30 papers in this volume document new trends in approximation

through recent theoretical developments, important computational aspects

and multidisciplinary applications, which makes it a perfect text for graduate

students and researchers from science and engineering who wish to understand

and develop numerical algorithms for solving their specific problems. An im-

portant feature of the book is to bring together modern methods from statis-

tics, mathematical modelling and numerical simulation for solving relevant

problems with a wide range of inherent scales. Industrial mathematicians, in-

cluding representatives from Microsoft and Schlumberger make contributions,

which fosters the transfer of the latest approximation methods to real-world

applications.

This book grew out of the fifth in the conference series on Algorithms

for Approximation, which took place from 17th to 21st July 2005, in the

beautiful city of Chester in England. The conference was supported by the

National Physical Laboratory and the London Mathematical Society, and had

around 90 delegates from over 20 different countries.

The book has been arranged in six parts:

Part I. Imaging and Data Mining;

Part II. Numerical Simulation;

Part III. Statistical Approximation Methods;

Part IV. Data Fitting and Modelling;

Part V. Differential and Integral Equations;

Part VI. Special Functions and Approximation on Manifolds.



VI Preface

Part I grew out of a workshop sponsored by the London Mathematical So-

ciety on Developments in Pattern Recognition and Data Mining and includes

contributions from Donald Wunsch, the President of the International Neural

Networks Society and Chris Burges from Microsoft. The numerical solution of

differential equations lies at the heart of practical application of approxima-

tion theory. The next two parts contain contributions in this direction. Part II

demonstrates the growing trend in the transfer of approximation theory tools

to the simulation of physical systems. In particular, radial basis functions are

gaining a foothold in this regard. Part III has papers concerning the solution

of differential equations, and especially delay differential equations. The reali-

sation that statistical Kriging methods and radial basis function interpolation

are two sides of the same coin has led to an increase in interest in statisti-

cal methods in the approximation community. Part IV reflects ongoing work

in this direction. Part V contains recent developments in traditional areas of

approximation theory, in the modelling of data using splines and radial basis

functions. Part VI is concerned with special functions and approximation on

manifolds such as spheres.

We are grateful to all the authors who have submitted for this volume, es-

pecially for their patience with the editors. The contributions to this volume

have all been refereed, and thanks go out to all the referees for their timely and

considered comments. Finally, we very much appreciate the cordial relation-

ship we have had with Springer-Verlag, Heidelberg, through Martin Peters.

Leicester, June 2006 Armin Iske

Jeremy Levesley
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Weighted Integrals of Polynomial Splines

Mladen Rogina

Department of Mathematics, University of Zagreb, 10002 Zagreb, Croatia,

rogina@math.hr

Summary. The construction of weighted splines by knot insertion techniques such

as de Boor and Oslo - type algorithms leads immediately to the problem of evaluat-

ing integrals of polynomial splines with respect to the positive measure possessing

piecewise constant density. It is for such purposes that we consider one possible way

for simple and fast evaluation of primitives of products of a polynomial B-spline and

a positive piecewise constant function.

1 Introduction and Motivation

Weighted splines appear in many applications, the most well-known being the

cubic version where they arise naturally in minimizing functionals like V (f) : =
∑n

i=1(wi

∫ ti+1

ti
[D2f(t)]2dt, wi > 0, sometimes also accompanied by the control of

first derivatives: V (f) : =
∑n

i=1(wi

∫ ti+1

ti
[D2f(t)]2dt + νi

∫ ti+1

ti
[Df(t)]2dt), νi ≥ 0,

wi > 0, see [6, 7, 9] and [11] for a bivariate version.

The parametric version is often used as a polynomial alternative to the exponen-

tial tension spline in computer-aided geometric design, and some shape-preserving

software systems (MONCON, TRANSPLINE) have been written for that pur-

pose [13, 9, 10]. It is known that the associated B-splines can be calculated by the

knot insertion algorithms. For the cubic version of weighted splines, explicit expres-

sions for the knot insertion matrices exist, which are of the very simple form [8, 14].

In the case of the knot insertion algorithms can in principle be obtained by special-

izing the general theory of Chebyshev blossoming [12].

Weighted splines can also be evaluated by an integrated version of the derivative

formula [15], which can also be used to define most general Chebyshev B-splines [1]:

B
n
i,dσ

(x) =
1

Cn−1(i)

∫ x

ti

B
n−1

i,dσ
(1)dσ2 −

1

Cn−1(i + 1)

∫ x

ti+1

B
n−1

i+1,dσ
(1)dσ2, (1)

where Bn
i,dσ

(x) is the nth–order Chebyshev spline, dσ = (dσ2 . . . dσn)T is the mea-

sure vector and dσ
(1) = (dσ3 . . . dσn)T is the measure vector with respect to the

first reduced system. We assume that dσi are some Stieltjes measures, and that all
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the B-splines in question are normalized so as to make a partition of unity. The con-

stants in the denominators are integrals of B-splines over its support, with respect

to the measure that is missing in the definition of dσ
(1):

Cn−1(i) : =

∫ ti+n−1

ti

B
n−1

i,dσ
(1)dσ2.

The numerical stability of (1) is doubtful (even for polynomial splines), so evaluation

by knot insertion is preferred. However, for weighted splines we need only very

simple measures, which are all but one Lebesgue measures, and the one that is not

has density which is piecewise constant and positive. To be more precise, weighted

B-splines are piecewisely spanned by the Chebyshev system of weighted powers:

u1(x) = 1,

u2(x) =

∫ x

a

dτ2,

u3(x) =

∫ x

a

dτ2

∫ τ2

a

dτ3

w(τ3)
,

...

uk(x) =

∫ x

a

dτ2

∫ τ2

a

dτ3

w(τ3)

∫ τ3

a

dτ4 · · ·

∫ τk−1

a

dτk.

Finally, one can use algorithms for ordinary polynomial splines and avoid explicit

mentioning of weighted splines, but even then integration of products of polynomial

splines and piecewise constant function must be performed, as shown by de Boor [3],

who also gives closed formulæ for some lower order splines.

2 Recurrence for Integrals of Polynomial B-Splines

Whatever approach we choose, in order to evaluate weighted splines we need to

calculate the integrals of ordinary polynomial B-splines

Ck(j) =

∫ tj+k

tj

B
k
j (τ)

dτ

w(τ)
.

In what follows, we assume that Bk
j are normalized so as to make the partition of

unity, and that the knot sequence {tj}, possibly containing multiple knots, coincides

with the breakpoint sequence for w. For notation purposes, let w|[ti,ti+1) = wi which

makes w right–continuous. We want to find a recurrence for primitives of polynomial

B-splines with respect to the piecewise constant positive function w, i.e.,

∫ x

ti

B
k
i (τ)

dτ

w(τ)
, x ∈ [ti, ti+k],

and, specially:
∫ tj+1

tj

B
k
i (τ)

dτ

w(τ)
, j = i, . . . , i + k − 1.

Let x ∈ [tj , tj+1), then
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∫ x

ti

B
k
i (τ)

dτ

w(τ)
=

j−1
∑

s=i

∫ ts+1

ts

B
k
i (τ)

1

ws

dτ +
1

wj

∫ x

tj

B
k
i (τ) dτ

=

j−1
∑

s=i

1

ws

(
∫ ts+1

ti

B
k
i (τ) dτ −

∫ ts

ti

B
k
i (τ) dτ

)

+
1

wj

(
∫ x

ti

B
k
i (τ) dτ −

∫ tj

ti

B
k
i (τ) dτ

)

=

j−1
∑

s=i

1

ws

ti+k − ti

k

(

s
∑

r=i

B
k+1
r (ts+1) −

s−1
∑

r=i

B
k+1
r (ts)

)

+
1

wj

ti+k − ti

k

(

j
∑

r=i

B
k+1
r (x) −

j−1
∑

r=i

B
k+1
r (tj)

)

, (2)

by the well known formula for integrals of polynomial splines [16, p. 200] and [2,

pp. 150-151]. Let

ᾱ
k+1
i,j+1(x) :=

j
∑

r=i

B
k+1
r (x) and α

k+1
i,j+1 := ᾱ

k+1
i,j+1(tj+1). (3)

Then in terms of ᾱ’s formula (2) can be written as

∫ x

ti

B
k
i (τ)

dτ

w(τ)
=

ti+k−ti

k

(

j−1
∑

s=i

1

ws

(

α
k+1
i,s+1−α

k+1
i,s

)

+
1

wj

(

ᾱ
k+1
i,j+1(x)−α

k+1
i,j

)

)

. (4)

We claim that ᾱk+1
i,j+1(x) can be evaluated as convex combination of lower order

quantities ᾱk
i,j(x). By de Boor–Cox recurrence

j
∑

r=i

B
k+1
r (x) =

j
∑

r=i

(

x − tr

tr+k − tr

B
k
r (x) +

tr+k+1 − x

tr+k+1 − tr+1
B

k
r+1(x)

)

=

j
∑

r=i

x − tr

tr+k − tr

B
k
r (x) +

j
∑

r=i

B
k
r+1(x) −

j
∑

r=i

x − tr+1

tr+k+1 − tr+1
B

k
r+1(x)

=

j
∑

r=i+1

(

x − tr

tr+k − tr

−
x − tr

tr+k − tr

)

B
k
r (x) +

x − ti

ti+k − ti

B
k
i (x) +

j−1
∑

r=i

B
k
r+1(x)

=
x − ti

ti+k − ti

B
k
i (x) +

j
∑

r=i+1

B
k
r (x) =

x − ti

ti+k − ti

B
k
i (x) + ᾱ

k
i+1,j+1(x),

because Bk
j+1(x) = 0 for x ∈ [tj , tj+1). Thus we have proved the recurrence

ᾱ
k+1
i,j+1(x) =

x − ti

ti+k − ti

B
k
i (x) + ᾱ

k
i+1,j+1(x), (5)

for x ∈ [tj , tj+1) and j = i, . . . , i + k − 1. We proceed to manipulate (5) to get a

more symmetric expression. Obviously,

ᾱ
k
i,j+1(x) =

j
∑

r=i

B
k
r (x) = B

k
i (x) +

j
∑

r=i+1

B
k
r (x)

= B
k
i (x) + ᾱ

k
i+1,j+1(x),
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whence Bk
i (x) = ᾱk

i,j+1(x) − ᾱk
i+1,j+1(x), which, when substituted in (5) gives

ᾱ
k+1
i,j+1(x) =

x − ti

ti+k − ti

(

ᾱ
k
i,j+1(x) − ᾱ

k
i+1,j+1(x)

)

+ ᾱ
k
i+1,j+1(x)

=
x − ti

ti+k − ti

ᾱ
k
i,j+1(x) + ᾱ

k
i+1,j+1(x)

(

1 −
x − ti

ti+k − ti

)

.

Finally, we have the recurrence

ᾱ
k+1
i,j+1(x) =

x − ti

ti+k − ti

ᾱ
k
i,j+1(x) +

ti+k − x

ti+k − ti

ᾱ
k
i+1,j+1(x), (6)

for x ∈ [tj , tj+1) and j = i, . . . , i + k − 1.

We need to evaluate

1

wj

ti+k − ti

k

(

j
∑

r=i

B
k+1
r (x) −

j−1
∑

r=i

B
k+1
r (tj)

)

=
ti+k − ti

k wj

(

ᾱ
k+1
i,j+1(x) − α

k+1
i,j

)

,

but have no way of telling whether the subtraction of ᾱ’s will result in dangerous

cancellation of significant digits; therefore we must find another way of evaluating

differences of ᾱ’s. To this end, let

δ̄
k+1
i,j (x) := ᾱ

k+1
i,j+1(x) − α

k+1
i,j .

From (6) we have

δ̄
k+1
i,j (x)

=
x − ti

ti+k − ti

ᾱ
k
i,j+1(x)+

ti+k − x

ti+k − ti

ᾱ
k
i+1,j+1(x)−

tj − ti

ti+k − ti

α
k
i,j−

ti+k − tj

ti+k − ti

α
k
i+1,j

=
tj − ti

ti+k − ti

δ̄
k
i,j(x) +

ti+k − x

ti+k − ti

δ̄
k
i+1,j(x) +

x − tj

ti+k − ti

(

ᾱ
k
i,j+1(x) − α

k
i+1,j

)

. (7)

Further,

ᾱ
k
i,j+1(x) − α

k
i+1,j = ᾱ

k
i,j+1(x) − ᾱ

k
i+1,j+1(x) + ᾱ

k
i+1,j+1(x) − α

k
i+1,j

= ᾱ
k
i,j+1(x) − ᾱ

k
i+1,j+1(x) + δ̄

k
i+1,j(x)

=

j
∑

r=i

B
k
r (x) −

j
∑

r=i+1

B
k
r (x) + δ̄

k
i+1,j(x)

= B
k
i (x) + δ̄

k
i+1,j(x), (8)

where the last line follows from the defining equation (3) for δ̄k
i+1,j(x). On substi-

tuting (8) in (7) we get

δ̄
k+1
i,j (x) =

tj − ti

ti+k − ti

δ̄
k
i,j(x) +

ti+k − tj

ti+k − ti

δ̄
k
i+1,j(x) +

x − tj

ti+k − ti

B
k
i (x),

for x ∈ [tj , tj+1) and j = i, . . . , i + k − 1. Finally, from (4) we have

k

ti+k − ti

∫ x

ti

B
k
i (τ)

dτ

w(τ)
=

j−1
∑

s=i

δk+1
i,s

ws

+
1

wj

δ̄
k+1
i,j (x), (9)
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with

δ
k+1
i,s := δ̄

k+1
i,s (ts+1),

x ∈ [tj , tj+1) and j = i, . . . , i + k − 1. Specially,

k

ti+k − ti

∫ ti+k

ti

B
k
i (τ)

dτ

w(τ)
=

i+k−1
∑

s=i

δk+1
i,s

ws

,

and by (9)

k

ti+k − ti

∫ tj+1

tj

B
k
i (τ)dτ = wj

(
∫ tj+1

ti

B
k
i (τ)

dτ

w(τ)
−

∫ tj

ti

B
k
i (τ)

dτ

w(τ)

)

= δ
k+1
i,j ,

where δk+1
i,j is calculated recursively:

δ
2
i,j =

{

1 for j = i,

0 for j 6= i,

δ
k+1
i,j =

tj − ti

ti+k − ti

δ
k
i,j +

ti+k − tj

ti+k − ti

δ
k
i+1,j +

tj+1 − tj

ti+k − ti

B
k
i (tj+1), (10)

for j = i, . . . , i + k − 1.

3 Conclusion

There are other ways of calculating weighted integrals of polynomial splines, like

Gaussian integration or conversion to Bezier form, and also some approximative

ones [17]. In fact, (10) is a special case of recurrence used to evaluate inner products

of B-splines ([4]) in which one of the B-splines is of order one. The proof given here

is more in the spirit of ‘B-splines without divided differences’ [5], contains some

new recurrences (5), and can be extended to obtain a recurrence for inner products.

For inner products though, the greater complexity (O(k4)) compared to Gaussian

integration (O(k3)) makes the recurrence seldom used, while for weighted splines it

is preferable, being of the same complexity and machine independent.
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