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Summary. Gauss elimination applied to an n • n matrix ,4 in floating point arith- 
metic produces (if successful) a factorization /-U which differs from A by no more 
than ~ ILl ] U I, for some ~ of order n times the unit roundoff. If A is totally positive, 
then both computed factors /~ and U are nonnegative for sufficiently small unit 
roundoff and one obtains pleasantly small bounds for the perturbation in A which 
would account for the rounding errors committed in solving A x = b for x by Gauss 
elimination without pivoting. It  follows that the banded linear system for the B-spline 
coefficients of an interpolating spline function can be solved safely by Gauss elimina- 
tion without pivoting. 

1. Introduction 

I t  is possible to state the result of Wilkinson's backward error analysis of 
Gauss elimination without pivoting as follows: The triangular factors L and 0 
for the given n • n matrix A, as computed in some t r-digit  floating point arith- 
metic, satisfy 

L U = A + E  with [El<vII-. [ tU[. (1) 

Here, y-=n u / ( l - -n  u), and u is the unit roundoff. Further, the solution s for 

A x = b, computed with the aid of the factorization L 0 ~ A, is the exact solution of 

( s  s  with IEI <:~,(1 + 7 )  ILl 10], (2) 
hence of 

( A + A A ) i = b  with ]AAI~_IEI§ (3) 

These bounds are meant  to be pointwise, i.e., 

B<=C i f f fora l l i ,  i, bq<=ci# 

and ]B] stands for the matrix of absolute values of the entries of B, 

]BI :=(Ib,;I). 
To be precise, we use the model of t r-digit  floating point arithmetic described 

in Forsythe and Moler [5] or in Stoer [8]: We assume that,  with a~ any of the 
four arithmetic operations +, --, *,/, the corresponding floating point operation 
& on the t r-digi t  floating point numbers IRt.~ satisfies 

xdoy=fl(xoJy)  for all x, yElRt, O 
with 
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a given map on the reals (e.g., rounding or chopping). We will ignore the possibility 
of overflow or underflow and will think of the unit roundo/[ 

u : =  sup {] fl x - -  xl /[ x[ , ] fl x - -  x[ /l fl x[ } 
xs 

as a number of the order of fl-*. 

These assumptions allow the conclusion that, for all x, yC1Rt, r there exist 
6, ~ E [1 -- u, 1 + u] such that 

x & y = ( x c o y )  d=(xcoy)/~ l, 

and, from this fact, one easily derives estimates like (t) and (2); see, e.g., Sections 
4.5 and 4.6 of Stoer [8]. Such arguments do show that  we can choose y = k  u/ 
(t --k u) in case the matrix A is (2k-- 1)-- banded. 

We note the fact (provable by induction on n) that if A is invertible and has 
a triangular factorization LU, then we can indeed compute L and 0 by Gauss 
elimination without pivoting for sufficiently small unit roundoff u, and 

L-+L,  U - + U  as u-+0.  (4) 

The formulation (t)-(3) leads to pleasantly small bounds on the perturbation 
matrices E and E in case A is totally positive since then both L and U are non- 
negative (for sufficiently small unit roundoff), and therefore ILl 10l = L  0 = A +E. 

I t  follows that the banded linear system for the B-spline coefficients of an 
interpolating spline function can be solved safely by Gauss elimination without 
pivoting. 

2. On Estimating I Ll l  [7] 
In the customary backward error analysis, the size of the two factors 1/21 and 

t UJ is considered separately. Partial or total pivoting is used to insure that the 
entries of I LI are all in [O, t ], so that IlL I[~ <_n. Then one is left to worry about 
just bow big the entries of I01 might be. Forsythe and Moler [5] follow Wilkinson 
and introduce the growth factor 0 in terms of which 

[a,; I _-<Q[IA[L. (5) 
Therefore 

HILl 101L ----IlL IL I10 IL ~- ~= Q I[ All| (6) 

Forsythe and Moler [5; Theorem 21.41] obtain from such considerations that 
is the exact solution of the linear system 

(A+AA)~----b with IlAAllo~<),(n'+3n)ellAlloo. (7) 

To be precise, a combination of (t) and (6) yields only 

liEIL -<-~ n,Q IlA L, 
while Forsythe and Moler [5] in fact prove 

II~IL --<~'o u IIAL. 
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This is connected with the fact that  (5) may be a poor bound since their ~ neces- 
sarily measures the relative size of all entries encountered during the various 
steps of Gauss elimination, not just the final entries. But their estimate of the 
error in backsolving is based on (6) and so makes that error the major contribu- 
tion to the bound (7). 

I t  is the underlying thesis of this note that it might be more profitable at 
times to consider the product 

A:=ILII01 
directly. (We are indebted to a referee for the observation that Erisman and 
Reid [4] also take this point of view.) 

Consider, for example, the case when A is symmetric and positive definite. 
The squareroot free form of the Cholesky decomposition for A then produces a 
computed factorization for A which satisfies 

U r I ) O = A + E  with IE[ ~,10rJ 310[ (19 
with 0 upper triangular and D:=(d iagO)- l>O as one shows as in the proof 
for (t). Since A :-----[Orl D [U] is positive definite, then m& x Id~jl = m a x  ~,,, and 
therefore ,, I 

II -~ Iloo < n max d,,. 
i 

On the other hand, diag .4 ----- diag ( U r D 0 ) = d i a g  (A +E) ,  hence 

aii= aii+ eii ~-- aii+7 aim 
by (t'), and so max dii < (t --7) -1 m a i n , .  This shows that (with 7 < t/4) the com- 

puted solution s to Ax=b solves exactly 

(A+AA) .~=b with []AA[[| ~_37nmaxa,~_37nllAL.  

The customary analysis merely shows that the growth factor 9 in (7) can be 
chosen to be I in this case. 

The customary analysis and our analysis here are both based on the assump- 
tion that the rounding errors are small enough so that the pivotal elements 
(which would be positive in infinite precision arithmetic) remain positive. Wil- 
kinson's much more detailed analysis [9] shows this to be the case provided 
20nu n~llA []~[IA-ih <a.  Such a result is possible since the Cholesky algorithm 
keeps the perturbation matrix E in (t') symmetric and since all symmetric 
matrices in a small enough ball around a positive definite matrix axe themselves 
positive definite. 

Consider now the special case 

ILl 101=lL01 
which arises, e.g., when both L and 0 are nonnegative. We then have ILl 101 = 

lL01-1A +El < IA[ +riLl 10b which implies 

ILl [0i <[AI/O--~,). 
On combining this inequality with (3), we obtain the following facts. 

33 Numer. Math., Bd. $t7 
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Proposition 1. Assume that the n •  matrix A is invertible and has a [actoriza- 
tion A = L U with L unit lower triangular and U upper triangular, so that we may 
solve A x = b  [or x by Gauss elimination without pivoting. Assume now that the unit 
roundo[[ u is so small that ~ : = n u/(l -- n u) <=t ]4 and that we can compute the cor- 
responding triangular [actors L and 0 /or A and then backsolve [or :~. I[ [. and 0 
are nonnegative, then s solves exactly 

( A + A A ) s  with JAAI<=3~JA I. 

This is to be compared  with (7) which gives the general est imate under the 
additional assumption tha t  pivot ing for size is used. 

While the assumption ILl ]O]=]LO I is very special, it is usually satisfied 
when A is totally positive, i.e., 

(il . . . . .  i,)>_O" for all r, il < ... < i,, j'~ < . . .  < i,, det A \ .  . . . . .  j.  _ 

Proposition 2. I[ A is totally positive and invertible, then A has a [actorization 
A = L U  into a unit lower triangular matrix L and an upper triangular matrix U. 
Further, [or i > i ,  l i i~O with equality i[ and only i/apq----0 [or p >=i, q<_i. Also, 
[or i < j, uii ~ 0 with equality i] and only i/apq----- 0 [or p <-- i, q >= ~. 

Proo[. Since A is to ta l ly  positive, we have  

0 <= detA "<= de tA detA \ k + t  , k = l  . . . . .  n 

by  Satz I I .8  of [61 (or see L e m m a  9.2 on p. 88 of [71). The invert ibi l i ty of A then 
t 

( t  . . . . .  : ) > 0  for k = t , . ,  n - - l ,  which is a well known implies tha t  de tA \1 . . . . .  ..j "' 

necessary and sufficient condition for the existence of the tr iangular  factoriza- 
t ion L U  for A with L unit  t r iangular  (see, e.g., Theorem 9.2 of [51). One finds 
easily tha t  

(, ..... ; - , , , ) /  ..... ::) 
for i >  i, l ~ j = d e t A  1 . . . .  j - - t , j  de tA t ,  , 

hence lii ~ 0 with equal i ty  iff de tA t,  , ~'-- t, i / =  0. But ,  by  the Hilfssatz 1 

on p. t08 of [6J (used in the proof of Satz II.8) (or see 10.G on p. 96 of [7~), this 
will happen  iff aix = "i'" = a i i  = 0. Finally, if ai l  . . . . .  ais = 0, then the invertibil i ty 
of A implies tha t  a i , = t = 0  for some r > j ,  and then, b y  the total  posi t iv i ty  of A, 
al ,  > 0 while 

O ~ d e t A  (i' Pl 
_ \q, r/  =a~qap,--ai,apq=--ai,apq for p > i  and q<=]'. 

Thus also a p q = 0  for p > i and q ~ j .  The s t a tement  about  the  nonnegat iv i ty  of U 
follows similarly. Ill 

This proposit ion allows the conclusion that ,  in su[[iciently high finite precision 
arithmetic, the computed triangular [actors L and 0 /or a totally positive invertible 
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matrix A are nonnegative. For, if l~j=0 for some i > i ,  then am=O, p ~ i ,  q ~--i by 
the proposition and we must have lpq=O, for p ~ i ,  q <:7" regardless of the size of 
the unit roundoff. Hence, L and g can only differ in the nonzero entries of L. 
Similarly, U and 0 only differ in the nonzero entries of U. But since L-+L, 0--+ U 
as u-+0 by (4), this implies that, for all sufficiently small unit roundoff u, all 
nonzero entries of/~ and U are actually positive. 

We pointed out earlier Wilkinson's result which gives quantitative informa- 
tion in the positive definite case as to when the unit roundoff is small enough to 
make the error analysis applicable. A correspondingly informative statement in 
the totally positive case seems impossible since the property of being totally 
positive is much more delicate than that of being positive definite. The limit 
relation (4) can certainly be quantified in terms of the nonzero minors of A. But 
the result is neither pretty nor, we think, very useful since one is not likely to 
know, in practice, (lower bounds for) these minors. At the same time, the property 
on which our error analysis is based, i.e., the nonnegativity of the computed 
triangular factors, is easily monitored during the calculation. 

Cryer [2, 3] has investigated the triangular factorization of totally positive 
matrices. Among his results is the remarkable fact that a matrix A is totally 
positive iff A = L U  for a totally positive lower triangular L and a totally positive 
upper triangular U, regardless of whether or not A is invertible. 

3. Application to Spline Interpolation 

Let t=(ti)~ +k be nondecreasing with ti<ti+k_ 1, all i, and let (Ni) ~ be the 
corresponding sequence of B-splines of order k with knot sequence t. Explicitly, 

N~(x) = (t~+k- t3 [t, . . . . .  t~+k] ( ' -  x)~ -t ,  

i.e., N i ( x  ) is (ti+~--ti) times the k-th divided difference at t,, ..., t~+ k of the 
function (t--x)~_-l: = (max {t--x, 0)) ~-x of t. We denote by 

the collection of all splines o/order k with knot sequence t. 
Consider the problem of interpolating to a given function g at the points 

~1 < . . .  < ~,~ by elements of $~,t. This leads to the linear system 

Nj (~) a i = g  (~), i = 1 . . . . .  n, (8) 
i=l 

for the B-spline coefficients of the interpolating spline. Its coefficient matrix 
(Ni (zi)) is invertible iff 

N~(~) @- O, i = 1 . . . . .  n, (9) 

according to the Schoenberg-Whitney theorem (see [t ] for a simple proof). 

Assume (9) to hold. Then, since 

N~=0 off (t i, t~+k), 
we have 

Ni (~ i )=0  for [i--i] >__k. 
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Hence (Nj(T~)) is (2k- - t ) -banded.  At the same time, (Nj(z~)) is total ly positive, 
by  a theorem due to Karlin (e.g., Lemma 4.2 on p. 524 of [7]). We conclude that  
we can solve (8) by Gauss elimination without pivoting, hence without  having to 
enlarge the bandwidth, and tha t  the resulting computed solution d is the exact 
solution of a linear system 

~. d i (Nj(z i )+e~i)=g(vi ) ,  i = t  . . . . .  n (10) 
i=1 

with 
]e,i] ~3 kuJN](~,)l, all i ,  i, (tt) 

provided k u --< 0.01. We stress the fact tha t  this bound does not depend on n. 

Similar results hold for the more general spline interpolation problem when a 
is to be determined so tha t  

n 

f q ~ , X a s N i = f  q~,g, i = t  . . . . .  n, (12) 

with (9i)~ the B-splines of some order r and for some knot  sequence (vi)~ +'. For, 
the coefficient matr ix in (t2) is again banded, and is total ly positive by  Karlin 's  
result and the Cauchy-Binet  formula for the minors of a product. In  particular, 
such results hold for least-squares approximation by  splines. 

Finally, we note tha t  totally positive matrices arise in other interpolation 
processes, such as interpolation or least squares approximation by  polynomials 
on [0, a], by  exponential  sums and by certain rational functions. I n  particular, 
the Hilbert matr ix is total ly positive. 
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