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MAKING THE OSLO ALGORITHM MORE EFFICIENT*

T. LYCHEf AND K. MORKENf

Abstract. The Oslo Algorithm is a general method for adding knots to a B-spline curve or tensor product
B-spline surface. The method provides a framework in computer aided geometric design for both manipulat-
ing and rendering spine curves and surfaces, and is derived from properties of discrete B-splines. In this
paper we prove that all discrete B-splines which are nonzero at a particular point can in general be considered
as lower order discrete B-splines on a subset of the knots. We also give necessary and sufficient conditions
for a discrete B-spline to be a continuous function of its parameters. These results are used to improve on
the original Oslo algorithms.
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1. Introduction. The Oslo Algorithm is a general method for adding knots to a
B-spline curve or tensor product surface. The method provides a framework in computer
aided geometric design for both manipulating and rendering spline curves and surfaces.

The Oslo Algorithm was derived in [3] using the theory of discrete B-splines. In
general, discrete B-splines occur as coefficients when expressing a kth order divided
difference at some points as a sum of divided differences over a refinement of the
original points. More specifically, suppose (tj)_oo is a nondecreasing, bi-infinite
sequence ofreal numbers and k a positive integer. Let be a subsequence of containing
at least k + 1 elements. Then for any suitable integer and a sufficiently smooth function

f we have

(1.1) (%+k-- ’i)[%, ", Zi+k]f= ai,k(j)(tj+k-- 6)[t, ", t+k]f.

The existence of a formula like (1.1) with nonnegative weights Oti,k(j) Oli,k,z,t(j), goes
back to [7, p. 7]. Equation (1.1) is a discrete analogue of the Peano integral representa-
tion for divided differences

(1.2) (r+k-- %)[,, ", ri+k]f I Jk)(x)B"k(X) dx/(k- 1)[,

where Bi,k is a B-spline of order k with knots r,. ., Ti+k. For this reason the name
discrete B-spline was used for a.k in [1]. With an appropriate choice off in (1.1) we
obtain for all possible values of i,

(1.3) ni,k E a,,k,.,,(j) N,k,
J

where/V,k is also a B-spline of order k but with knots b," ", tJ+k- In knot refinement
applications t is a new knot sequence obtained by adding knots to "r. Equation (1.3)
gives the transformation from the basis {Bi,k} for splines on x to the basis {N,k} for
splines on t. The existence of a formula like (1.3) follows a priori from the fact that

S, span {Bi,k} c_ Sk,, span

Discrete B-splines on a uniform t-sequence were introduced in [9] and studied
further in [6]. The generalization to an arbitrary t-sequence was given in [1, p. 15].
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The numerical value of Oli,k(j) can be computed by means of a recurrence relation
similar to the recurrence relation for B-splines ([3, p. 97], see also [2] for the case of
adding one knot to ,r). Several other properties of B-splines carry over to the discrete
case. In particular, discrete B-splines are nonnegative and Yi ti,k(j) 1. Total positivity
properties were given in [5], and in [10, p. 355] for the case of a uniform t-sequence.
On the other hand, except for in the uniform case [6], [9], 10], the piecewise polynomial
nature of ai.k(j) is not clear.

In this paper we investigate more closely the dependence of aj,k(j) on ’j, , "l’i+ k
and b,’", tJ/k" We give necessary and sufficient conditions for ti,k(j) to depend
continuously on these parameters, and show that for a given j the discrete B-spline
ai,k(j) can in general be considered as a lower order discrete B-spline on a subset of
the knots. This provides a basis for reducing the number of operations in the Oslo
Algorithm.

There are in fact two algorithms which qualify for the name the "Oslo Algorithm".
These are called Algorithm 1 and Algorithm 2 in [3]. Since both algorithms are useful,
we will refer to them as "Oslo Algorithm 1" and "Oslo Algorithm 2".

We develop detailed improved versions of Oslo Algorithms 1 and 2. Algorithm 1
now uses only linear combinations of positive quantities with positive weights and is
unconditionally stable. In the new Algorithm 2 only strict convex combinations of
B-spline coefficients are used. We also remove some problems which can occur near
the ends of finite knot vectors.

The content of this paper is as follows. Section 2 contains the mathematical results
mentioned above, while the improved Oslo Algorithms are given in 3. In 4 we
collect some remarks.

2. Discrete B-splines. Let the positive integer k be given, and let t (b) be a
nondecreasing bi-infinite sequence of real numbers with b < b/k for all j. Let be a
subsequence of t containing at least k / 1 elements. Let

(y--tj/) (y--tj/k_) ifk>l;
,k(Y)

1 if k- 1;

and let for any a b, b/k),
if y > a,(2.1) I.k(y)

0 otherwise.

Let B,k and N,k denote B-splines on ,r and t respectively, right continuous and
normalized to sum to 1. If b < t/k for all j, then it was shown in [1] and [3] that (1.3)
holds with

(2.2) ai,.,t(j) (’ri+k "ri)[’ri, , "t’i+k]a,k.

For convenience we also define a..,.,(j) for z z+ and tj t+,

r+k](y-- tj)k+-1 if t 6+k and z < r,+k,(2.3) a,.k.,,,(j)
0 if Z, ,+k.

A number x is a strict convex combination of two numbers a and b if x Aa + (1- A)b for some
weight A with 0 < A < 1. It is known that negative weights can occur in Oslo algorithm 2. However, it can

be shown that these negative weights do not contribute to the final result (see remark in [4]). Nevertheless,
the possibility of negative weights is somewhat annoying.
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Here

ify> b,
otherwise.

We call ai,k.,t the ith discrete B-spline of order k on with knots r.
In the rest of this paper it is convenient to think ofj as a fixed integer. Consider

tj+l,"’, tj+k- on which gg,k in (2.1) depends. These knots can be divided into two
groups, the "old" knots and the "new" knots. More precisely, suppose that

times

(2.4) t+,’’’, t+k-l= Zl,’’’, Z, Zh, Zh

where z <... < Zh. If Zi occurs si times in the whole r-sequence, then the integer
and the new knots Sl, s% are defined by

u times
(2.5) 1, t, 1,""", 1,""", Zh,’’’, Zh

where vi max (r-&, 0) for i= 1,..., h. The remaining knots among tj+l, ", 6+k_
are the old knots tol, ", tok-l-. We assume that the :’s and to’s have been arranged
in nondecreasing order.

Example 2.1. Suppose that k-4, and let the knot vectors r and be given by
(r,. ., rs) (0, 0, 0, 0, 1, 2, 2, 2), and (q,. ., qo) (0, 0, 0, 0, 1, 1, 1, 2, 2, 2). Find the
new and old knots among b+l, tj+2, tj+3 for j 1, 2,..., 6.

DiscussioN. There are no new knots among b+, tj+2, tj+3 for j 1, 2, 6. Thus,
for these values ofj, we have v 0 and top tj+p for p 1, 2, 3. For j 3 we have v 1,
:1 1, tol 0, and toE 1. If j 4 then v 2, : :2- 1, and to 1. Finally, for j 5
we have v 1, 1---tol "-1, and to2-" 2.

For fixed j, let x’ and t’ denote the sequences obtained by removing the old knots
to, , tok-l- from x and t respectively. (In the example above we have tol toE to3
0 for j- 1, so that x’- (0, 1,2,2,2) and t’- (0, 1, 1, 1,2,2,2) for this j.)

We can now state the main result of this paper.
THEOREM 2.2. Let j be a fixed integer and suppose that there are v new knots

1," v among b+," tJ+k-l" Then for all

(2.6) ai,k,-,t(j) Oq, v+l,z’,t’(j)

where r’ and t’ are defined above. Moreover

Cq,k,,,,(j) > 0 for
and zero otherwise. Here tx’ is the unique integer such that

(2.7)

For the proof of Theorem 2.2 it is convenient to define polynomials q,o and qe by

qo, (Y) (Y to1) (Y tog-,-,),

ge(Y) (Y- Sl) (Y- s%).

We also define for any ag tg, ty+k),

g’e(Y) if y > aj,e(Y)
0 otherwise,

7r,(y) (y ri+l) (y r+k-,).
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Since b, b+k) [ tj, t++), we have

,.+.,.,,(j)=( -;)[’/’i+v"l-1 q’i, q’i+v+l]

for any a [ b, b+k).
LEMMA 2.3. Equation (2.6) holds for all such that #/,o is a factor of
Proof. Suppose that is such that $,o is a factor of 7ri. Then the numbers z, , ,’i’i+ k

can be arranged in some order Xo, , Xk such that xp top+l for p 0, 1, , k- 2- v.
Since d/,o(y)- (y-Xo)"" (y-Xk-2-), we have by properties of divided differences

[Xo,’’’,Xp]O,o=p,k_i_ forp=0, 1," ", k.

Applying Leibniz’ rule for divided differences we find for any aj [ b, tJ+k)
[z, , z+]. [Xo,.’’, x](4,,)

k

Y [Xo,’",x,],[x,"’,
p=O

=[x__, .,x] [z,.. 7"i+ v+ ](I).
By assumption z’ is obtained from z by removing k- 1 v of 7’i+1, "l’i+k_ 1. Therefore

and we have"fi+k "l’i "/’i+v+l ’i

(,+-,)[,,..., ,+]% (++,-)[;,...,

which is (2.6).
In order to show that (2.6) also holds for those values of for which k, is not a

factor of ri, we need several lemmas. These lemmas also give some properties of
discrete B-splines that we need for the algorithms in the next section. We start by
giving a recurrence relation for discrete B-splines similar to (cf. [3, p. 97])

(2.8) ai,k(j) tj+k-I i)fli,k-, (j) + i+k tj+k-,)fli+ ,.k-,(j),

where /3.k(j) is defined below. (For an alternative proof of (2.8) see [8].)
LEMMA 2.4. Suppose that is a new knot among t+,. ., t+k- and that t < t+k.

Let t denote the knot vector obtainedfrom t by reducing the number of occurrences of
by one. Then for all

(2.9) ai,k,.,,(j) i)fli,k-,,.,t(j) + (’r+ )fli+ l,k-,,.,t(j),

where for k >- 2

(2.10) i’k-l"r’(J)={i’k-l’’r’(j)/(7"i+k-l-7"i) otherwise;ifzi+k-l>r"
and

ti’’’t(J)= { lo ifr’-<<z+l’otherwise.
Proof. We apply Leibniz’ rule for divided differences to the product dPj,k(y)=

(Y--),k(Y) where ,k(Y) is obtained from ,k(Y) by removing the factor y-:.
Arguing as in [3, p. 97] we obtain (2.9) and (2.10). lq

The assumption that sc is a new knot ensures that z will be a subsequence of .
LEMMA 2.5. Suppose t+,. ., tj+k- are all new knots. Then

(2.11) r. < tj+ . tj+k_ < T/z+

for some integer IX. Moreover Oti.k,..,(j) > 0 for tx k + 1," , Ix, and zero otherwise.
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Proof. Clearly t+, # Zq for p 1, 2,..., k-1 and any integer q, for otherwise
b+,’", t+k- could not all be new knots in the above sense. Since also ,r is a
subsequence of t, the inequalities (2.11) follow.

For the proof of the positivity we use (2.9) with : t+k- and induction on k. If
k= 1 and tj < tj+ then a,(j)= 1 >0 for i=
denote the sequence obtained from t by reducing the number of occurrences of sr by
one. Since

’/’/ < +1 +k-2 < "F/x+I and tj t < tj+k tj+k-1

we have by the induction hypothesis that fl.k-.,t(j) > 0 for tz k + 2, ,/z. Since

t+k- > z for <--/z and Z+k > t+k- for =>/z k + 1, we obtain the positivity result by
(2.9). l]

Let/z be an integer such that

(2.12)

In the next lemma we relate/ to the integer/z’ in Theorem 2.2. We also show that
the old knots among tj+,..., t+k- can be identified as r,,+, , z,,+k--.

LEMMA 2.6. Let Iz and Iz’ be integers given by (2.12) and (2.7) respectively. Then

{tz iftj<tj+l,
(2.13) /

#--min (r, s) ift t+,

where r is given by (2.4) and s is the number of occurrences of t+ in z. Moreover

(2.14) Oo,(Y) (y z,,+), (y z,’+k--)

and

,<r<(2.15) ’,,= ’, z,,+ z,,+k_ for r 1, .
Proof. We consider two cases.
(i) r -> s. In this case we have r s new knots at z, and we obtain z’ by removing

all the s occurrences of z from z. But then /z’=max (pl <z) and we remove

z,,+, , r,,+, from z. Since to,. ., tOk_l_ are consecutive elements of z, equation
(2.14) hold. Suppose ti ti+. Then/z max {pl. z,} and/z’ =/z r since we remove
then/z =/z’. Thus (2.13) holds in this case.

(ii) r < s. There are no new knots at Zl. If t < t/ then/x =/z’, and (2.13) and
(2.14) hold. Suppose t t+. Then/z max {p[zp z} and tz’=/z- r since we remove

r knots equal to Zl from z. Thus (2.13) and (2.14) follow.
It remains to prove (2.15). Since we obtain x’ from by removing

’,,+1, z,,+k--, we have z,, -, and z,,+ Z,,+k-. Also srp tj+p forp 1, u.

But then (2.15) follows from Lemma 2.5. l-1

We define

r,(j) max {plt+p_ t},
/,(j) max {Plb-p+ b}.

The integers rt(j) and lt(j) are called respectively the right and left multiplicity of t.
In the next lemma we want to show that a.k(j) 0 for < tz’-- u and >/z’. Consider
equation (1.3). From local support, linear independence, and continuity properties of
B-splines, it follows that Oti,k(j)--Oti,k,,t(j)=0 unless the support Itj, tj+k] of Nj,k is
properly contained in the support [zi, Zi+k] of Bi,k. By definition, this means that the
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following four conditions must be satisfied:

(2.16)

(2.17) tj z,=:> r,(j) <= r,(i),

(2.18) t+k --< r+k,

(2.19) t+k Zi+k l,(j + k) <- l,( + k).

Equations (2.17) and (2.19) say that if b ’(b+k ’i+k) then N,k should have at least
as many continuous derivatives at t(t/k) as B,k.

LEMMA 2.7. Let tz’ be given by (2.13). If < Ix’- v or i> tx’ then a,k,,,,(j) =0.
Proof It is enough to show that for =/z’+ 1 and =/x’- v- 1 the support of N,k

is not properly contained in the support of B,k. Consider =/z’+ 1. Since by (2.14) we
have tj =< to1 %,,+1, it is enough to show that t %,’/1 implies rt(j) > p r,(/z’+ 1). By
(2.14) we have t+h Oh %,’+h for h 1,. ., p. But then t t+p so that rt(j) > p.
The proof for =/x’-v-1 is similar.

Proof of Theorem 2.2. In Lemma 2.4 we proved (2.6) for all such that q,o is a
factor 7r. By (2.14), the polynomial qo, is a factor of 7ri for i=/z’-v,...,/z’. By
Lemma 2.5 and Lemma 2.7, both sides of (2.6) are zero for > tz’ or </z’- v. Thus
equation (2.6) holds for all i. Since t/p= p for p= 1,..., v, we have by (2.15)

< t+l < < ( Z/x,+l. V, by Lemmaz,, t+ Therefore a ,,+l,,-,t,(j) > 0 for
2.5. Equation (2.6) now gives the positivity result.

Let r/be a real number, and let t.J {r/} denote the sequence obtained by adding
r/to . If r/is already an element of z, the number of occurrences of r/in - is increased
by one in zU{rt}. Similarly, if rt is an element of z, let \{rt} denote the sequence
obtained by decreasing the number of occurrences of r/by one. With this convenient
abuse of notation we may state the following corollary.

COROLLARY 2.8. Let j be a given integer, and let rl be any real number in tj,
Then for all

(2.20) a,.k.,.,(j)

If is a new knot among tj+l, tj+k_ then

(2.21) a ,,k,,O{,},,(j) ai,k-l,-,,\{)(j).

Proof By Theorem 2.2 we have

Oti,k...t(j) Oti,v+l,z,,t,(j),

where as before, the old knots tO1, Ok_l_ have been removed from x and t in
order to obtain ,r’ and t’. Let t=tt.J{r/} and ,=[.J{r/}. Since r/[b, t+k], the old
knots among +1," ", +k are tOl,’’ ", tOk-l-, r/. Therefore ’=t’ and ,’= x’ so that

a,,k+,,,t(j) a,,+,,,,,,,(j)=

for all i. Equation (2.21) is a simple consequence of (2.20).
Let and be as before except that we may have t t+k for one or more values

of j. It is of interest to determine whether the problem of computing a,k(j) given by
(2.2) and (2.3) is properly posed. In the next theorem we give the exact conditions
under which a.k(j) depends continuously on the sequences "r and t.

THEOREM 2.9. Let andj be given integers. The value ofoti,k(j) depends continuously
on i," ’l’i+k and t, tj+k if and only if the following condition is satisfied:
(2.22) If tj tj+k --X then x occurs at most k-1 times in the sequence ri,. , "l’i+ k.
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Proof. We first show that if (2.22) holds then Oti,k(j) is a continuous function of
x and t. Let (tP) be a sequence of nondecreasing bi-infinite sequences tp= (te.j/j

such that limp_, t tj for each j. For each p, let xP be a subsequence of tp containing
at least k 4-1 elements and sucn that limp_ zP ’i for each i. For every pair of integers
and j we have a sequence of discrete B-spline values (Crk(j))p=l, where Crag(j)=

ai,k,P,tP(j). Given and j satisfying (2.22), we want to show that (ak(j)) converges
to oti,k(j)= ai,k,,t(j). We distinguish between two cases:

(i) b<b+. Choose s{j,j+l,...,j+k-1} such that ts<ts+l. Since discrete
B-splines are nonnegative and sum to one, they are uniformly bounded. We can
therefore find subsequences (uP) and (vP) of (zP) and (tP) respectively, such that

lim a,k,,,’,,,"(q) pq
poO

exists for q= s+ l-k,..., s. Choosing any x (ts, t+l), we have by (2.6) and [10,
Thm. 4.26]

q=s+l-k
a,,k(q)Nq,k(X) B,,k(X)= lim B,,k,u(X)

p-oo

ti,k,uP,o(q)Nq,k,v(X)

q=s+l-k

Here B,k, and Nq,k,v denote normalized B-splines on the knot sequences up and vp

respectively. By linear independence we have Oti,k(q)= Oq for q s+ 1-k,..., s. In
particular pj a,k(j) for any limit point pj of (ak(j))p=l.

(ii) b tj+k X. We use induction on k. The theorem clearly holds for k 1 since
then x # z and x # Z+l.

Suppose that k>_-2. Consider first the case where x occurs at most k-2 times
among r,. ., Zi+k. By the recurrence relation (2.8) we have

P Pak(j) P]+k-, 7, ,,k-, (j) + ZSk t]+k-,) flP+ ,,k-, (j).

Since - < Ti+k_ and z+ < "/’i+k we obtain by induction

(2.23) lim ak(j) t+k-1- Z,)fl,,k-l(j) + (r+k t+k-1)fl,+l,k-l(j)

a,,k(j).

If X Occurs exactly k-1 times among z,. , Ti+k there are three possibilities.
P(a) x ’ r+k-2 < Zi+k-1 < r+k. In this case t+k-1 ’ 0 and k-(j) remains

bounded since r < r+k-1, while /3P+l,k_l(j) fli+l,k-l(j) by induction. Hence (2.23)
holds even in this case.

(b) - < x r+l Z+k 1 < Z+k. By (2.3) we have t,k,,,(j) Bi,k(X) 1. It will
therefore be enough to show that

i+k-r

(2.24) lim E a,(j)=l for r=l,2,..., k.
poo q=

Without loss of generality we may assume that "rPq, tsPE(’riP, 7"/P+k) for q=
+ 1, + k- 1 and s =j,- j + k. Then precisely one of a,(j), , a+_,(j)
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is equal to 1. Thus (2.24) holds for r= 1. Suppose that r>_-2. By (2.8) we have

i+k-r i+k-r

q=i q=i
[( t+,_, z)fl.,_,(j) + (’+ t+,_,)q+,,_,(j)]P

i+k-r

fl,+k-,+,,r-l(J) + E(tJ?+r_l "t’f)pi,r_l(j) + (7"iP+k Ptj+r-) P

q=i+l

Therefore, since ty+r-1 ’rf- i+r-1 ri and r,P+ Ptj+r-1 --> ’l’i+k "J’i+k-r+l we find

i+k-r i+k-r+l

lim aPq,r(j)=lim a,-l(j)
p- q p q

and (2.24) follows by induction.
(C) T < "/’i+1 < X--" ’/’i+2 "/’i+k" This case is similar to case (a).
In order to complete the proof of the theorem, we give examples showing that

ai.k(j) does not depend continuously on " and if condition (2.22) is violated, i.e., if
the number x =tj tj+k occurs k or k+ 1 times in the sequence -i,..., Z+k. Again
there are three cases:

(1) T, < r,+ Ti+k X. We have a,.k(j) B,k(x) 0 since Bi,k is right continuous.
pChoose "r

p
"r and tp such that t < x and t+ x. Then by Theorem 2.2 a ,(j) 1 for

all p.
(2) r r+_l X < T+. This case is similar to case (i).
(3) T r+k X. By definition ci,(j)=0 in this case. Choose zp and p such that

7"/p < ff’/P+k and r+q t+q for q 0,. ., k. Then OtPi,k(j)= 1 for all p. 1-1

The use of [10, Thm. 4.26] can be avoided if part (i) of the foregoing proof is
based on (1.1) instead of (1.3). We note that Theorem 2.9 assures the continuity of
a.k(j) in the cases z Zi+k-, Z+ Zi+k, and even z ’+k, as long as t < t+k.

3. Algorithms. In this section the knot vectors, and t will be finite sequences.
Let k, m and m2 be given integers with k positive and m < m2, and let t (6) m2+ki=m

be a nondecreasing sequence of real numbers with tj < t/ for j m, m+ 1,. , m2.
Let x (’) "2+k be a subsequence of t so that n2-n < m2-mi=n

Let j { ml, m + 1, , m2} be a fixed integer. We first want to give an algorithm
to compute

a,k.n,(j) for i= il, il+l,- ., i2

where

(3.1) il max (/z’- v, n), i2 min (/x’, n2),

and/x’ and u are given by (2.7) and (2.5) respectively. These are the discrete B-splines
of order k which are nonzero for a given j.2

In any of the four situations

(3.2) t < r.,,

(3.3) t ., and r,(j) > r.(n),

(3.4) t+k > ’,2+k,

(3.5) t+k ,+k and l,(j + k) > l,( n2 + k),

In order to handle the complications near the beginning and end of the knot vectors, it is convenient

to first extend "r and to bi-infinite sequences, apply the results in 3, and then restrict the range of the

indices to the original, finite sequences.
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the support of Ni,k is not properly contained in the support of Bi.k for any i
{nl, nl + 1,. , n2}. Therefore ai,k,,t(j)= 0 for all in these cases. For other values of
j we use Theorem 2.2. For p-<_ u + 1 and for fixed j, we define

i,p ti,p(J)= ti,p,’,,’(J)

where x’= (r) "=++t and t’ ’)m2+v+l
i=m =( j,j=,,, are obtained from x and t respectively by

removing the old knots r,,+l,"’, r,,+k-- among tj/,..., t+k-1. Using induction
on p and the recurrence relation (2.9) on , t, we find that for p 1, , v + 1

(3.6) a,p,,,,(j) > 0 for/=max (/z’-p+ 1, n),... ,min (/x’, n2+ v+ l-p),

and zero otherwise These positive c’s can be arranged in a polygonal shaped scheme.
If n + v <_-/x’_-< n2 the scheme is triangular,

(3.7) a,,.-,2

where by (2.9)

(3.8)

where

t ’,1

O M,’,2

(3.9) %,p
sp z and p

z+p p
,’l-i+p ,’Fi ’7"i+p ,I-

Since

z ifi_-</x’,
(3.10) zi

r+k- ifi>/z,

if =/x’--p;
if/z’--p < </z’;
if =/z"

by ’i_ and by ’l’i+p+k_r,_ in (3.9). The following detailedwe can replace ’/’i--1 7"+p
algorithm can now be given to compute

Oi,k,z,t(j) O’ for il,. i2.i,r,+

ALGORITHM 1. Letj {m,. ., mE}. Then no a,k(j) is nonzero if any of(3.2)-(3.5)
hold. Otherwise, let/x be such that r, _<-t < Z,+l. By performing the following steps
the entries of (3.7) are computed.

1. i=j+ l; /x’:=
2. while t(i) ’(/x’) and i<j+k do (i:= i+1;/x’:=/x’- 1;)
3. ih := l’ + l;
4. for p:= 1,2,. ., k-1

1. if (j +p) ’(ih) then ih := ih + 1
else (v:= v+ 1; s(v): t(j+p);)

5. ah(k, 1):= 1;
6. forp:=l,2,...,v

1. /31:=0; tj:= s(p);
2. if p >=/z’ then

/31 := (tj-r(nl)) ah(1 + k-’, p)/(z(p+ k- v) ’(nl));
3. il:=max(nl + 1, tz’-p+ 1); iu := min (/z’, n2+ v-p);
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4. for i:= il, il+ 1,..., iu
1. dl:= q-z(/); d2:= z(i+p+k- 9-1)- tj;
2. /3 := ah(i + k tz’, p)/(d 1 + d2);
3. ah(i+k-tz’-l,p+l):=d2. /3+/31;
4. /31 := dl /3;

5. ah(iu+k-tz’,p+l):=l;
6. if iu < tz’ then

ah( iu + k- tz’, p+ 1):=/31 + (z(n2+ k) tj) ah( iu + k- I’+ 1, p)
/(z(n2+ k)-r(iu+ 1));

Algorithm 1 requires two arrays :(1 :k- 1) and ah (1 :k, l:k) in addition to and
t. We have for p-<_ , + 1

ah(i+ k-tz’, p)= ai,p,,,t,(j) for/=max (ft’-p + 1, hi)," ,min (ft’, hE+ 9+ l-p).

If only the bottom line of (3.7) is of interest, it is possible to use a one-dimensional
array ah(l:k), by simply omitting the second subscript in all references to ah. By
Theorem 2.2 we then have

ah(i+ k-ft’) ai,+l,,,t,(j)= a,,k,,t(j) for i= il,..., i2,

where il and i2 are given by (3.1).
We note that by (2.15) the quantities ,p and y,p given by (3.9) satisfy 0< ,p < 1

and 0 < y,p < 1 for all values of and p in Algorithm 1. Since also the discrete B-spline
values involved are positive by (3.6), the algorithm is unconditionally stable. Moreover,
division by zero in statement 6.4.2 can never occur.

It may be of interest to try to relate the entries in (3.7) to those computed by
Algorithm 1 in [3]. There, the triangular scheme

(3.11)

O/.t -k+l,k

was computed, where ai,p oti,p,,,t(j and/z is given by (2.12). If tj+l,""", tj+k-1 are
all new knots, the two schemes (3.11) and (3.7) are identical. Consider now the general
case. In order to express a’i, ai,p,,.t,(j) as discrete B-splines with ,r as knot vector,
we first note that

(3.12)

where :t ",tj+t for 1," ,. This follows since the left-hand side is independent of
tJ+,. , t+. Applying Corollary 2.8 and (3.12) to a,p,,,,t,(j) we obtain

(3.13) i,p Ol i,p+k-l-,,’r,t\{p,...,}(j).

Thus a’. is a discrete B-spline of order p+ k-1-9 on t =t\{gp, :} (but not
necessarily on t) with knots ,r. Therefore we cannot in general recover (3.7) as a
subtriangle of (3.11).

By (3.13) Algorithm 1 can be interpreted as follows. We start with a.l
ai,k_v,z,t(j) t,,i, where t is obtained from t by removing all the new knots among
tj+l, ", tj+k-1. Using (2.9) we then compute a,,p+l ai,p+k_,,t/(j) from a’,p and
t i+l,p’ by adding : to tp for p 1, ,. When p , we have added all the new knots
and t+1 t.
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Algorithm 1 may be used to compute

i2 i2

(3.14) dj= E oz,.k...,(j)c,= E a.,.,+l(j)c,
i=il i=il

where cl,’’ ", c, are given numbers and il and i2 are given by (3.1). Alternatively,
we can follow a well-known procedure (see e.g. [3, p. 99]) and generate a triangular
scheme

(3.15)

[1]
Ix’--v Cl’--v+l

[2]
p,’--v+l

[1]eta,
[2]
/.’

+l]

where c1]= ci, and where by (3.9), (3.10), and (3.6)

c+] ( ,)c]+(,+-
,l’f+k_p T

e[+] (Note that *+k-p *+-n+’)Wehaved ,
A detailed algorithm may be as follows.
ALGORITHM 2. Let j {m, m+ 1,. ., m2}. If any of (3.2)-(3.5) hold then d 0.

Otherwise, let be such that , t < ,+. In order to compute d, perform the
following steps.

1. i:=j+l; ’:=;
2. while t(i) ,(’) and <j+ k do (i := + 1; ’:= ’- 1;)
3. ch(k):= if ’ n2 then c(’) else 0;
4. ih:=’+l; v:=0;
5. forp:=l,2,...,k-1

1. if t(j +p) ,( ih then ih := ih + 1
else begin
1. v:= v+l; (v):= t(j+p);
2. kv:= k- v; s:=0;
3. ch(kv):=if ’-v<nl or ’-v> n2

then 0 else c(’- v);
4. ,2 := if ’- v n2 then ,(’+ kv) else ,(n2 + k);
5. //:=max (’- v+ 1, nl); iu := min (’, n2+ v);
6. for i:= il, il + l, iu

1. s:= s+l; kv:= kv+l;
2. dl:= (s)-,(i); d2:= ,2-(s);
3. ch(kv):= (dl ch(kv)+ d2 ch(kv- 1))/(dl + d2);

end;
6. dj := ch(k);

gorithm 2 generates the entries of (3.15) diagonal-wise from fight to left in a
vector ch (1 k) with dg ch(k) at the end of the algorithm.

It follows from (2.15) that only strict convex combinations are used in generating
(3.15) by Algorithm 2. Moreover, division by zero in statement 5.1.6.3 can never occur.

The two algorithms are reasonably robust. They may fail if the computed g’ is
smaller than the exact ’. As an example of this, suppose that k=4, m 5, and, =t (1, 1, 1, 1, 2, 3, 3, 3, 3). Suppose that the machine representation gs of zs is greater
than the machine representation ?s of ts. For j 5 we find ’ 4 instead of ’= 5 and
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the computed value of d5 will be incorrect. Note that Algorithms 1 and 2 in [3] will
also fail if/ is computed as 4.

Let and be the machine representations of and t respectively. In order to
avoid such problems as the above, one should make sure that is a subsequence of
and that is nondecreasing.

We have assumed that tj < tj+k forj ml, , m2. It is possible that this condition
will not be satisfied for . In order to make the algorithms produce the value given by
(2.3), for t= t+k, we have added a test i<j/ k in statement 2 of both algorithms.
Thus, both algorithms work even if j+k for one or more values ofj. We do, however,
assume that < 7"/+k

4. Remarks. 1. In [2] a method is given for adding one (possibly multiple) knot
to a B-spline curve. By sequentially adding one knot at a time an alternative method
to Algorithm 2 is obtained. Our Algorithm 2 is similar to B/Shm’s method when t is
obtained from by adding one knot.

2. Algorithms 1 and 2 are amenable to parallel implementations.
3. Algorithms 1 and 2 can both be applied to computing d given by (3.14). In

general, Algorithm 1 requires fewer arithmetic operations than Alorithm 2 when the
spline coefficients are vectors. It is even more advantageous to use Algorithm 1 when
dealing with a tensor product B-spline surface.

4. In [5] it was shown that ai,k,,t(j) > 0 if and only ifthe support of N,k is properly
contained in the support of Bi,k. Theorem 2.2 gives an alternative formulation and
proof of this result.

5. Algorithms 1 and 2 reduce to standard B-spline algorithms in special eases.
Suppose % -< x < ,+1. Algorithm 1 can be used to compute the values of all nonzero
B-splines at x, of order <=k. This is achieved by forming t from by making x occur
precisely k-1 times in the t sequence. Let j be such that t+l tj+k-1 X. As
before, let u be the number oftimes we added x to ,r to obtain t, and let/’ =/ k+ 1 + u.
By the definition of discrete B-splines (2.2), and (3.13), we find that

OZ’i,p Bi,k-l-v+p(X)

The scheme (3.7) therefore reduces to

forp= 1,2, , u+l.

(4.1) B’-l"ks"+(x)
l,.,,_.(x)

np.’,k-u+l(X)

B,,k(X)
in this case. If u k- 1 and nl + k- 1/ n2 then Algorithm 1 is equivalent to 10,
Algorithm 5.5, p. 192]. If v < k- 1 then B,+l-r,r(x) 1 for r 1, 2,. ., k- u- 1. These
numbers plus the ones in (4.1) are precisely all the nonzero B-spline values at x.

Similarly, Algorithm 2 contains [10, Algorithm 5.8, p. 194] as a special case.

Acknowledgment. We would like to thank E. Cohen and R. Riesenfeld for valuable
comments.
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