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MAKING THE OSLO ALGORITHM MORE EFFICIENT*

T. LYCHEt AND K. M@RKENT

Abstract. The Oslo Algorithm is a general method for adding knots to a B-spline curve or tensor product
B-spline surface. The method provides a framework in computer aided geometric design for both manipulat-
ing and rendering spine curves and surfaces, and is derived from properties of discrete B-splines. In this
paper we prove that all discrete B-splines which are nonzero at a particular point can in general be considered
as lower order discrete B-splines on a subset of the knots. We also give necessary and sufficient conditions
for a discrete B-spline to be a continuous function of its parameters. These results are used to improve on
the original Oslo algorithms.
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1. Introduction. The Oslo Algorithm is a general method for adding knots to a
B-spline curve or tensor product surface. The method provides a framework in computer
aided geometric design for both manipulating and rendering spline curves and surfaces.

The Oslo Algorithm was derived in [3] using the theory of discrete B-splines. In
general, discrete B-splines occur as coefficients when expressing a kth order divided
difference at some points as a sum of divided differences over a refinement of the
original points. More specifically, suppose t=(#)Z, is a nondecreasing, bi-infinite
sequence of real numbers and k a positive integer. Let 7 be a subsequence of ¢ containing
at least k+ 1 elements. Then for any suitable integer i and a sufficiently smooth function
f we have

(1.1) (Tiek—7)T5 -+, Ti+k]f=z (G =), - - -, el S,

The existence of a formula like (1.1) with nonnegative weights a;,(j) = @i ...(j), goes
back to [7, p. 7]. Equation (1.1) is a discrete analogue of the Peano integral representa-
tion for divided differences

(1.2) (o= 77+ o, Tk f = J j(k)(x)B,;k(x) dx/(k—-1)!,

where B;, is a B-spline of order k with knots 7, - - -, 7.4, For this reason the name

discrete B-spline was used for a;; in [1]. With an appropriate choice of f in (1.1) we
obtain for all possible values of i,

(1.3) Bk =Y aikr(j) N
J

where N is also a B-spline of order k but with knots ¢, - - *, t;,.. In knot refinement

applications t is a new knot sequence obtained by adding knots to 7. Equation (1.3)

gives the transformation from the basis {B;,} for splines on = to the basis {Nj,} for

splines on t. The existence of a formula like (1.3) follows a priori from the fact that
Sk-=span {B;} = Sy, =span { N;,}.

Discrete B-splines on a uniform t-sequence were introduced in [9] and studied
further in [6]. The generalization to an arbitrary t-sequence was given in [1, p. 15].
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The numerical value of «;;(j) can be computed by means of a recurrence relation
similar to the recurrence relation for B-splines ([3, p. 97], see also [2] for the case of
adding one knot to 7). Several other properties of B-splines carry over to the discrete
case. In particular, discrete B-splines are nonnegative and }; a; (j) = 1. Total positivity
properties were given in [5], and in [10, p. 355] for the case of a uniform t-sequence.
On the other hand, except for in the uniform case [6], [9], [10], the piecewise polynomial
nature of a;,(j) is not clear.

In this paper we investigate more closely the dependence of a;,(j) on 7, * -, Titx
and ¢, -, ti.,. We give necessary and sufficient conditions for a;,(j) to depend
continuously on these parameters, and show that for a given j the discrete B-spline
a;x(j) can in general be considered as a lower order discrete B-spline on a subset of
the knots. This provides a basis for reducing the number of operations in the Oslo
Algorithm.

There are in fact two algorithms which qualify for the name the “Oslo Algorithm”.
These are called Algorithm 1 and Algorithm 2 in [3]. Since both algorithms are useful,
we will refer to them as “Oslo Algorithm 1” and “Oslo Algorithm 2”.

We develop detailed improved versions of Oslo Algorithms 1 and 2. Algorithm 1
now uses only linear combinations of positive quantities with positive weights and is
unconditionally stable. In the new Algorithm 2 only strict convex combinations' of
B-spline coefficients are used. We also remove some problems which can occur near
the ends of finite knot vectors.

The content of this paper is as follows. Section 2 contains the mathematical results
mentioned above, while the improved Oslo Algorithms are given in §3. In §4 we
collect some remarks.

2. Discrete B-splines. Let the positive integer k be given, and let t= (), be a
nondecreasing bi-infinite sequence of real numbers with ¢, <t for all j. Let v be a
subsequence of t containing at least k+1 elements. Let

_ (y_tj+l) e (y- j+k—1) ifk>1;
"’f’k(y)‘{l if k=1;
and let for any a;€[¢, t.x),
d’k(y) ify>a'9
2.1 D, ={7) Yy
21) k(Y) {0 otherwise.

Let B;; and N, denote B-splines on 7 and t respectively, right continuous and

normalized to sum to 1. If ¢; < ¢, for all j, then it was shown in [1] and [3] that (1.3)
holds with

2.2) Aitrt(F) = (T =176 s Tiak 1Pk

For convenience we also define a;.,(j) for 7= 7, and ¢; = t;,,,

(2.3) o (j)={(’fi+k'“7'i)[7i, ttt, Ti+k](y—tj)‘-:-—l iftj=tand 7, <74y,
Hent 0 if 7= Tippe

1 A number x is a strict convex combination of two numbers a and b if x=Aa+(1—2A)b for some
weight A with 0<A <1. It is known that negative weights can occur in Oslo algorithm 2. However, it can
be shown that these negative weights do not contribute to the final result (see remark in [4]). Nevertheless,
the possibility of negative weights is somewhat annoying.
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Here

o [=t)" ify>q
— 1)k 1={ j >
=5 0 otherwise.

We call a;, ., the ith discrete B-spline of order k on t with knots 7.

In the rest of this paper it is convenient to think of j as a fixed integer. Consider
i1, " * s k- on which ¢, in (2.1) depends. These knots can be divided into two
groups, the “old” knots and the “new” knots. More precisely, suppose that

r times r, times
(24) tj+1,"',tj+k—1=zl9'",21,°°',Zha"',zh

where z, <---<z, If z; occurs s; times in the whole 7-sequence, then the integer v
and the new knots &, - - -, £, are defined by

v, times v, times
(2'5) gl’...’§V=ZIQ...’zlﬁ.."zh’...izh

where »; =max (r;—s,0) for i=1, - - -, h. The remaining knots among .+, - * *, f4x—1
are the old knots w,, * -+, wx_,—,- We assume that the £&’s and »’s have been arranged
in nondecreasing order.

Example 2.1. Suppose that k=4, and let the knot vectors 7 and ¢ be given by
(7, +,75)=0(0,0,0,0,1,2,2,2),and (¢;, " -+, t;6)=(0,0,0,0,1,1, 1,2, 2, 2). Find the
new and old knots among ¢, ., 4.3 for j=1,2,---,6.

DiscussioN. There are no new knots among .1, %+, 4+ for j=1,2,6. Thus,
for these values of j, we have v =0 and w, = t;,, for p=1,2,3. For j=3 we have v =1,
&=1, w;=0, and w,=1. If j=4 then v=2, £, =§,=1, and w, = 1. Finally, for j=5
we have v=1, {,=w,; =1, and w,=2. O

For fixed j, let v’ and t' denote the sequences obtained by removing the old knots
w;,* **, Wx_1—, from 7 and trespectively. (In the example above we have w, = w, = w3 =
0 for j=1, so that +'=(0,1,2,2,2) and t'=(0, 1, 1, 1, 2, 2, 2) for this j.)

We can now state the main result of this paper.

THEOREM 2.2. Let j be a fixed integer and suppose that there are v new knots
&, -, & among ti,, -+, ti_y. Then forall i

(2:6) @it (J) = @ipir,r ()
where 7' and t' are defined above. Moreover
Uipere(j)>0 fori=p'—v,p'—v+1,---,
and zero otherwise. Here ' is the unique integer such that
2.7 T =T =4=1<Tpy.
For the proof of Theorem 2.2 it is convenient to define polynomials ¢,, and ¢, by
Yo (V)= -1 (¥ —0k-1-0),
be(¥)=(y—&) - (y—&).

We also define for any a; €[t 4..),

Ye(y) ify>a,
P =
2 {0 otherwise,

m(y)=(y—Tix1) * (¥~ Tisr-1)-
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Since [, tj+i) =[], tj+r+1), We have
ai,v+1,'r',l'(j) = (7£+v+1 - T,i)[T’i’ Y T;+v+l]¢£
for any a; €[t k).

LemmMA 2.3. Equation (2.6) holds for all i such that ¢, is a factor of ;.

Proof. Suppose that i is such that ¢,, is a factor of 7. Then the numbers 7, - - -, Tisi
can be arranged in some order Xy, - - -, X such that x, = w,, forp=0,1,- -+ , k—=2—w.
Since ¢, (y) =(y —xo) * * * (¥ —xx_2_,), We have by properties of divided differences

[xO’ Y xp]‘l’w = p,k—1—v fOI'P =09 1: Y k'
Applying Leibniz’ rule for divided differences we find for any a; €[t t.«)

[Ti’ Y Ti+k]q>j,k = [xO, T, xk](‘l’wq)f)
k
= ZO [XO, Y xp]‘l’w[xpa Y xk]q)g
p=

= [xk—l—va Y xk]q)f = [Té’ ttt, T;+v+l]¢£'

By assumption 7’ is obtained from 7 by removing k—1—wv of 7,4, * * *, Ti+x_;. Therefore
Tivk —Ti = Tisya1— T}, and we have

(Tive— 7T+, "'i+k]q)j,k =(Tlprr— T[T " -, T§+p+1]q)§
which is (2.6). 0O
In order to show that (2.6) also holds for those values of i for which ¢, is not a
factor of m;, we need several lemmas. These lemmas also give some properties of

discrete B-splines that we need for the algorithms in the next section. We start by
giving a recurrence relation for discrete B-splines similar to (cf. [3, p. 97])

(2.8) @ik (J) = (k1= T)Bik—1()) + (Tivk = tiri—1) Bis1,k-1(J),

where B, (j) is defined below. (For an alternative proof of (2.8) see [8].)
LEMMA 2.4. Suppose that £ is a new knot among t;,y, " * * , tix—y and that ; <t .

Let t denote the knot vector obtained from t by reducing the number of occurrences of &
by one. Then for all i

(2-9) ai,k,‘r,t(j) = (f - Ti)ﬂi,k—l,-r,t(j) + (Ti+k - f)ﬁiﬂ,k—l,r,t(j),
where for k=2
N ai,k—l,f,t‘(j)/(’fi+k—1 -n) frgaa>m
2.10) Busnt)={ e
and
( .)_{1 ifr,= ?j<7'i+1,
%1nfJ =10 otherwise.

Proof. We apply Leibniz’ rule for divided differences to the product ®;,(y)=
(y—f)@j,k(y) where éj,k(y) is obtained from ®;,(y) by removing the factor y—§.
Arguing as in [3, p. 97] we obtain (2.9) and (2.10). O

The assumption that £ is a new knot ensures that = will be a subsequence of i

LEMMA 2.5. Suppose tj,,," - -, tik—1 are all new knots. Then

(2.11) T <= Sl <Tun

for some integer u. Moreover a;; ,.,(j)>0 fori=u—k+1,- -, u, and zero otherwise.
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Proof. Clearly t.,,# 7, for p=1,2,---,k—1 and any integer g, for otherwise
tie1,* " * 5 tirk— could not all be new knots in the above sense. Since also = is a
subsequence of t, the inequalities (2.11) follow.

For the proof of the positivity we use (2.9) with £ =¢,,,_, and induction on k. If
k=1 and ¢;<t,, then a;,(j)=1>0 for i=pu, and zero otherwise. Let as before t
denote the sequence obtained from t by reducing the number of occurrences of ¢ by
one. Since

A Py a A
Tu < tj+1 == j+k—2< Tu+1 and tj = t] < tj+k = tj+k—l

we have by the induction hypothesis that B;;_; .+(j) >0fori=u—k+2,- - -, u. Since

Lyk—1> 7 for i=p and 7., > b4 for i= u — k+1, we obtain the positivity result by
(29). O

Let u be an integer such that
(2.12) T = l“’ < Tu+1-

In the next lemma we relate u to the integer u' in Theorem 2.2. We also show that
the old knots among ., * -, tj+x—: can be identified as 7,11, * *, Turk—1-0-
LEMMA 2.6. Let u and ' be integers given by (2.12) and (2.7) respectively. Then

ift, <t
(2.13) u'={“ . AR
w —min (ry, ;) ifti=t.,,

where r, is given by (2.4) and s, is the number of occurrences of t;,, in . Moreover

(2.14) YoP)= (¥ =Tus1), (V= Turtkm1-0)
and
(2.15) Tp.’= T:"»< §’<7';“,+1= Wit k—v forr:l’- CR 72

Proof. We consider two cases.

(i) r,= s;. Inthis case we have r, — s, new knots at z,, and we obtain 7’ by removing
all the s, occurrences of z, from 7. But then w’'=max {plrp < z,} and we remove
Turdls " *» Turss, fTOM 7. Since ,, * -+, wy_;—, are consecutive elements of 7, equation
(2.14) hold. Suppose t; = t;,,. Then u = max { p|7, = z,} and p’ = p — r, since we remove
then w = w'. Thus (2.13) holds in this case.

(ii) r,<s,. There are no new knots at z,. If t; <t then u=p', and (2.13) and
(2.14) hold. Suppose ¢; = t;,,. Then u = max {p|7p =z} and u' = u —r, since we remove
r, knots equal to z, from 7. Thus (2.13) and (2.14) follow.

It remains to prove (2.15). Since we obtain 7' from + by removing
Tursts* " s Turk—1—ps Wehave i, =7, and 7,1 = T iy Also &, =t} forp=1,- - -, .
But then (2.15) follows from Lemma 2.5. 0O

We define

r(j) = max {p|t;s,—1 = t;},

1(j) = max {p|t;_p+1=1;}.
The integers r,(j) and [,(j) are called respectively the right and left multiplicity of .
In the next lemma we want to show that a;;(j) =0 for i<u’—v and i> u'. Consider
equation (1.3). From local support, linear independence, and continuity properties of

B-splines, it follows that a;(j)= a;x..(j) =0 unless the support [, t;.,] of Nj, is
properly contained in the support [7, 7..x] of Bi; By definition, this means that the
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following four conditions must be satisfied:

(2.16) L=,

(2.17) t=7=r(j)=r.(),

(2.18) Lk = Tivks

(2.19) Gk =T =>L(j+ k) = L(i+ k).

Equations (2.17) and (2.19) say that if ¢ = 7;(#j+x = Tisx) then N, should have at least
as many continuous derivatives at £(#.x) as B,

LEMMA 2.7. Let u' be given by (2.13). If i<u'—v ori> pu' then a;; . ,(j)=0.

Proof. It is enough to show that for i=u'+1 and i = u'—» —1 the support of Nj;
is not properly contained in the support of B, ;. Consider i = u'+ 1. Since by (2.14) we
have t; = w; = 7,4, it is enough to show that ¢, = 7., implies r,(j) > p=r,(u'+1). By
(2.14) we have t;,, = w, = 7, forh=1,- - -, p. Butthen t; = - - - = t;,, so that r,(j) > p.
The proof for i=u'—v—1 is similar. 0O

Proof of Theorem 2.2. In Lemma 2.4 we proved (2.6) for all i such that ¢,, is a
factor 7. By (2.14), the polynomial ¢, is a factor of #; for i=u'—w,---,u’. By
Lemma 2.5 and Lemma 2.7, both sides of (2.6) are zero for i>pu' or i <u'—w. Thus
equation (2.6) holds for all i Since tj,,=¢, for p=1,---, v, we have by (2.15)
T <ty =-+-=t/,, <7, Therefore a;,., ,(j)>0fori=pu'—v,- -, u'by Lemma
2.5. Equation (2.6) now gives the positivity result. O

Let n be a real number, and let 7U {7} denote the sequence obtained by adding
7 to 7. If n is already an element of 7, the number of occurrences of 7 in 7 is increased
by one in 7U{n}. Similarly, if » is an element of 7, let 7\{n} denote the sequence
obtained by decreasing the number of occurrences of n by one. With this convenient
abuse of notation we may state the following corollary.

COROLLARY 2.8. Let j be a given integer, and let n be any real number in [t t;.].

Then for all i
(2.20) @isere(J) = Q1,20 ¢my,0(m(J)-
If ¢ is a new knot among t;.,, - * -, tjsx—, then

(2.21) s rue),(J) = Qik—1,mni(F)-
Proof. By Theorem 2.2 we have

ai,k,‘r,t(.j) = ai,v+1,‘r',t'(j)’
where as before, the old knots w,, - * -, w,_,—, have been removed from 7 and t in

order to obtain 7' and t. Let t=tU{n} and =7U{n}. Since n e[, ..], the old
knots among 4, - -, fj+x are @y, * +, @_;_,, 7. Therefore ¥ =t' and #'=17' so that
ai,k+1,-i-‘,f(j) = ai,v+l,-r',t’(j) = ai,k,-r,t(j)

for all i. Equation (2.21) is a simple consequence of (2.20). 0O

Let 7 and ¢ be as before except that we may have t; = t;,, for one or more values
of j. It is of interest to determine whether the problem of computing «;,(j) given by
(2.2) and (2.3) is properly posed. In the next theorem we give the exact conditions
under which «;,(j) depends continuously on the sequences 7 and t.

THEOREM 2.9. Letiand j be given integers. The value of «;(j) depends continuously
onTy: -, T andt, - -t if and only if the following condition is satisfied:

(2.22) Iftj=t;.\ = x then x occurs at most k—1 times in the sequence 7, - * * , Tisp.
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Proof. We first show that if (2.22) holds then a;,(j) is a continuous function of
7 and t. Let (¢*)7 be a sequence of nondecreasing bi-infinite sequences t* = (17)72_,
such that lim,_,, t} = ¢; for each j. For each p, let 7° be a subsequence of t’ containing
at least k+ 1 elements and sucn that lim,,., 77 = 7; for each i. For every pair of integers
i and j we have a sequence of discrete B-spline values (afy(j))y-1, Where af,(j)=
a;.»,»(j). Given i and j satisfying (2.22), we want to show that (af,(j)) converges
to a;(j) = aix...(j). We distinguish between two cases:

(i) t;<tir Choose se{j,j+1,---,j+k—1} such that t,<t.,. Since discrete
B-splines are nonnegative and sum to one, they are uniformly bounded. We can
therefore find subsequences (u”)} and (v*)T of (77)7 and (t7)T respectively, such that

lim o cur.07(9) = Py

exists for g=s+1-k,---,s Choosing any x € (1, t,4,), we have by (2.6) and [10,
Thm. 4.26]

N

Y aulq)Nyu(x) = Bix(x) = ,l;Ln}o By (X)

q=s+1-k

= lim 2 ai,k,up,vp(q)Nq,k,vp(x)

P2>® g=s+1-k

s

= Z quq,k(x)'

q=s+1—k

Here B,,,» and N, denote normalized B-splines on the knot sequences u” and v’
respectively. By linear independence we have a;,(q)=p, for g=s+1-k,---,s. In
particular p; = a;;(j) for any limit point p; of (afi(j))p-1.

(ii) t=ti.=x. We use induction on k. The theorem clearly holds for k=1 since
then x # 7; and x # 7;4,.

Suppose that k=2. Consider first the case where x occurs at most k—2 times
among T, * * *, ik By the recurrence relation (2.8) we have

b () = (e — 70 Bh—1(J) + (hekc = i i— 1) BPr k1 (j)-
Since 7; < Tiyx—; and 7, < 74 We obtain by induction

(2.23) 1171_2’10 afi(J) = (k1= 7)) Bik—1(J) + (Tivke = trk—1) Bizr,k-1(J)

= ai,k(j ).
If x occurs exactly k—1 times among 7, - - -, 7;4, there are three possibilities.

(a) x=17="Tiyx—2<Tisk-1= Tisr In this case t{,,_, — 77> 0 and BY,_,(j) remains
bounded since 7; <7 4k—y, While BY.; x_1(j) = Bit1,k-1(j) by induction. Hence (2.23)
holds even in this case.

(b) m<x=rm1=Tik—1<7 By (2.3) we have a;;.(j)=B(x)=1. It will
therefore be enough to show that

i+k—r

(2.24) lim Y af,(j)=1 forr=1,2,--,k
p—>© q=i

Without loss of generality we may assume that 74, tfe(7?,7%,,) for gq=
i+1,--+,i+k—1and s=j,---,j+k Then precisely one of a?,(j), -, alir_11(j)
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is equal to 1. Thus (2.24) holds for r=1. Suppose that r=2. By (2.8) we have

i+k—r i+k—r

z=. a (.])— z [(t1+r— Tp)Bp,r—l(])+(Tq+r J+r—1)Bq+1r—l(])]

i+k—r
=[(tf+r—1 p)Blr—l(j)+(TIi,+k )+r—1)Bl+k—r+l r—1(])+ X aq,r 1(])]

q= i+1
Therefore, since 2y, — 77> 7oy — 7 and 75— 1> Tk — Tivk—r+1 WE find

i+k—r i+k—r+1
;1;1—>n:olo qzl aqr(.’)— hm Z az,r—l(j)
and (2.24) follows by induction.

(¢) 7 =741 <X =Ty, = Tiyi This case is similar to case (a).

In order to complete the proof of the theorem, we give examples showing that
a;(j) does not depend continuously on 7 and ¢ if condition (2.22) is violated, i.e., if
the number x = t;=t;,;, occurs k or k+1 times in the sequence 7, - - -, 7:41. Again
there are three cases:

(1) 7, <741 = i =Xx. We have a;(j) = B;x(x) =0 since B; is right continuous.
Choose 77 =7 and t? such that ¢/ <x and t7,, = x. Then by Theorem 2.2 af,(j) =1 for
all p.

(2) 7,=Tisk—1=x <71 This case is similar to case (i).

(3) 7i=T7i4x = x. By definition a;;(j) =0 in this case. Choose 7” and t” such that
7 <7l and 78, =17, , for ¢=0, -,k Then af,(j)=1forall p. 0O

The use of [10, Thm. 4.26] can be avoided if part (i) of the foregoing proof is
based on (1.1) instead of (1.3). We note that Theorem 2.9 assures the continuity of
a;(j) in the cases 7; = T;1x_1, Tis1= Tiri, and even 7, = 7,4, as long as t; <t

3. Algorithms. In this section the knot vectors 7 and t will be finite sequences.
Let k, m,, and m, be given integers with k positive and m; = m,, and let t= (t e ‘,:,'l‘
be a nondecreasing sequence of real numbers with ¢ <t for j=m;, m;+1,- -, m,.
Let v=(7; ?;f.’f be a subsequence of t so that n,—n,=m,—m,.

Let je{m;, m,+1, -, m,} be a fixed integer. We first want to give an algorithm
to compute

Qirne(j) fori=il,il+1,--+,i2
where
3.1) il=max(“'_,,,nl)’ i2=min (u’, n,),

and u' and v are given by (2.7) and (2.5) respectively. These are the discrete B-splines
of order k which are nonzero for a given j.>
In any of the four situations

(3.2) < Tus

(3.3) tj =1, and r,(j) > r,(n,),

3.4) Lk ™ Toytio

(3.5) vk = Tper and L(j+ k) > L(ny + k),

21n order to handle the complications near the beginning and end of the knot vectors, it is convenient
to first extend 7 and t to bi-infinite sequences, apply the results in § 3, and then restrict the range of the
indices to the original, finite sequences.
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the support of N, is not properly contained in the support of B;, for any i€
{n,, ny+1,- -, n,}. Therefore a;, .,(j) =0 for all i in these cases. For other values of
j we use Theorem 2.2. For p=v+1 and for fixed j, we define

ajp=aip(j) = aipre(j)

where 7' = (7})72}*" and ' =(t))]2, "' are obtained from 7 and t respectively by

removing the old knots 7,1y, * *, Turrk—1-» AMONG b4y, * * *, Liyr—1. Using induction
on p and the recurrence relation (2.9) on 7, t', we find that for p=1,---,v+1

(3.6) al,.(j)>0 fori=max(u'—p+1,ny), -, min(u’,n,+v+1-p),

and zero otherwise. These positive a’s can be arranged in a polygonal shaped scheme.
If n,+v = u'= n, the scheme is triangular,

a;“',l
! !
3.7) A1z Fuz
a;.:.'—v,u+l e a:;,’,v-i-l
where by (2.9)
8it1,p141,5(J), ifi=pn'—p;
(3.8) i pi1=aipr1(J) =1 Yip@ip(J) + i1 p i p(J), ifu'—p<i<u’y
‘Yi,pa :’,p(j)’ if i = [,L",
where
&— Tg 7'$+ —§
(3.9) Yip = m and §,,= T;—_—T—‘Z.
Since
(3.10) '.={7" ifi=p,
' T s, Wi,

we can replace 7i_; by 7,_; and 7i,, by Tiypik—,—1 in (3.9). The following detailed
algorithm can now be given to compute

a,-,k,,,,(j) = aﬁ,,,“ for i = il, ttty, 12.

ALGoRrITHM 1. Letje{m,, - - -, m,}. Then no a;(j) is nonzero if any of (3.2)-(3.5)
hold. Otherwise, let u be such that 7, = <7,.,. By performing the following steps
the entries of (3.7) are computed.

Li=j+1;u'=pu;

2. while t(i)=7(u') and i<j+kdo (i:=i+1; u"'=u'—1;)

3. ih=u'+1,v=0,

4. forp:=1,2,--- k-1

1. if ¢(j+ p) = 7(ih) then ih:=ih+1
else (v:=v+1; £&(v)=1t(j+p);)
. ah(k1)=1;
6. forp=1,2,---, v
1. B1:=0; 4j:=£(p);
2. if p= p' then
Bl:=(tj—7(n1)) * ah(1+k—p', p)/(7(p+k—v)—7(nl)),
3. il=max(nl+1, u'—p+1); iu:=min (u', n2+v—p);

W
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4. for i:=il il+1,---,iu
1. dl=tj—7(i); d2=1(i+p+k—-v—1)—1tj;
2. B=ah(i+k—u',p)/(d1+d2);
3. ah(i+k—p'—1,p+1)=d2* B+B1;
4. B1:=d1xB;
5. ah(iu+k—u',p+1)=p1;
6. if iu <u' then
ah(iu+k—u',p+1)=B1+(7(n2+k)—tj) * ah(iu+k—pu'+1, p)
[(r(n2+ k) —7(iu+1));

Algorithm 1 requires two arrays ¢(1: k—1) and ah(1:k, 1: k) in addition to 7 and
t. We have for p=v+1

ah(itk—p', p)=ap,o(j) fori=max (u'—p+1,n), -+, min(u’, n,+v+1-p).

If only the bottom line of (3.7) is of interest, it is possible to use a one-dimensional

array ah(1:k), by simply omitting the second subscript in all references to ah. By
Theorem 2.2 we then have

ah(i+ k- "",) = ai,v+1,'r’,t'(j) = al’,k,-r,t(j) fori= ll) Tty i2’
where il and i2 are given by (3.1).

We note that by (2.15) the quantities §;, and y;, given by (3.9) satisfy 0<§,, <1
and 0< y;, <1 for all values of i and p in Algorithm 1. Since also the discrete B-spline
values involved are positive by (3.6), the algorithm is unconditionally stable. Moreover,
division by zero in statement 6.4.2 can never occur.

It may be of interest to try to relate the entries in (3.7) to those computed by
Algorithm 1 in [3]. There, the triangular scheme

Qi

(3.11) Gt Gwa

ay.-—k+l,k e ®Qyk

was computed, where a;, = @;,,.(j) and u is given by (2.12). If 1, -+, k- are
all new knots, the two schemes (3.11) and (3.7) are identical. Consider now the general

case. In order to express a},= a;,. (j) as discrete B-splines with 7 as knot vector,
we first note that

(3.12) @ipr e o(j)=a i,p,f’,t’\{fp;--,fp}(j )

where ¢ =t},, for =1, - - -, v. This follows since the left-hand side is independent of
tieps* " * 5 tjrs. Applying Corollary 2.8 and (3.12) to ;.- .(j) we obtain

(3.13) a;,p = ai,p+k~—l—v,-r,l\{fp,'“,f.,}(j)'

Thus o}, is a discrete B-spline of order p+k—1—v on t’ =t\{§, - - -, £} (but not
necessarily on t) with knots 7. Therefore we cannot in general recover (3.7) as a
subtriangle of (3.11).

By (3.13) Algorithm 1 can be interpreted as follows. We start with ai,=
@i g—y,r(j) = 8, ;, where t' is obtained from t by removing all the new knots among
tiv1s* " "5 brk—1. Using (2.9) we then compute a},.;= @;p+k—s»+(j) from aj, and
@i+, by adding &, to t” for p=1, - - -, ». When p = v we have added all the new knots
and t"*'=t.
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Algorithm 1 may be used to compute
(3.14) 4= ¥ awnlDa= I alnlde
where ¢, -« -, ¢, are given numbers and il and i2 are given by (3.1). Alternatively,

we can follow a well-known procedure (see e.g. [3, p.99]) and generate a triangular
scheme

1 1

oy e

[2] [2]

A2 2

(3.15) wor #
CE:”*-I]

where ct'!'= ¢, and where by (3.9), (3.10), and (3.6)

clptl (fp - Ti)c[ip] + (’Ti+k—p - fp)CE-{]l
' Titk—p — Ti
We have d; = c[*'). (Note that 7,14, = T}ip—ps1.)
A detailed algorithm may be as follows.
ALGoriTHM 2. Let je{m,, m;+1,- - -, my}. If any of (3.2)-(3.5) hold then d,; =0.

Otherwise, let u be such that 7, = <r,,,. In order to compute d;, perform the
following steps.

1 i=j+1;u' =pu;
. while t(i)=7(u') and i<j+k do (i=i+1;u'=u'—-1;)
. ch(k):=if u'=n2 then c(u’) else 0,
ith=pu'+1;,v:=0;
forp=1,2,---,k—1
1. if t(j+p)=7(ih) then ih:=ih+1
else begin
L vi=v+1; é(v)=t(j+p);
2. kvi=k—v; s=0;
3. ch(kv)=if p'—v<nloru —v>n2
then 0 else c(u'— v);
4. 12:= if u'—v=n2 then 7(u'+ kv) else 7(n2+k);
5. il'=max (u'—v+1, nl); iu:=min (u', N2+ »);
6. for i:=il il+1,--- iu
1. si=s+1; kvi=kv+1;
2. d1:=¢(s)—7(i); d2:=12—§&(s);
3. ch(kv):=(d1* ch(kv)+d2* ch(kv—1))/(d1+d2);

SR W

end;
6. dj:= ch(k),

Algorithm 2 generates the entries of (3.15) diagonal-wise from right to left in a
vector ch(1:k) with d; = ch(k) at the end of the algorithm.

It follows from (2.15) that only strict convex combinations are used in generating
(3.15) by Algorithm 2. Moreover, division by zero in statement 5.1.6.3 can never occur.

The two algorithms are reasonably robust. They may fail if the computed u’ is
smaller than the exact u'. As an example of this, suppose that k=4, m=5, and
T=t=(1,1,1,1,2,3,3,3,3). Suppose that the machine representation 75 of s is greater
than the machine representation 5 of ;. For j =5 we find /'=4 instead of u'=5 and
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the computed value of ds will be incorrect. Note that Algorithms 1 and 2 in [3] will
also fail if u is computed as 4.

Let 4 and § be the machine representations of 7 and t respectively. In order to
avoid such problems as the above, one should make sure that 7 is a subsequence of &
and that t is nondecreasing.

We have assumed that ¢; <., for j=m,, - - -, m,. It is possible that this condition
will not be satisfied for t. In order to make the algorithms produce the value given by
(2.3), for t;=1t;., we have added a test i <j+k in statement 2 of both algorithms.
Thus, both algorithms work even if t'; = i}+k for one or more values of j. We do, however,
assume that 7 <7, .

4. Remarks. 1. In [2] a method is given for adding one (possibly multiple) knot
to a B-spline curve. By sequentially adding one knot at a time an alternative method
to Algorithm 2 is obtained. Our Algorithm 2 is similar to Bohm’s method when t is
obtained from t by adding one knot.

2. Algorithms 1 and 2 are amenable to parallel implementations.

3. Algorithms 1 and 2 can both be applied to computing d; given by (3.14). In
general, Algorithm 1 requires fewer arithmetic operations than Alorithm 2 when the
spline coefficients are vectors. It is even more advantageous to use Algorithm 1 when
dealing with a tensor product B-spline surface.

4. In[S]it was shown that @y ..(j) > 0 if and only if the support of N, is properly
contained in the support of B;,. Theorem 2.2 gives an alternative formulation and
proof of this result.

5. Algorithms 1 and 2 reduce to standard B-spline algorithms in special cases.
Suppose 7, = x < 7,.,. Algorithm 1 can be used to compute the values of all nonzero
B-splines at x, of order =k. This is achieved by forming t from = by making x occur
precisely k—1 times in the t sequence. Let j be such that ¢,,=-- =, ;=x. As
before, let » be the number of times we added x to T to obtaint,andlet u'= pu —k+1+ .
By the definition of discrete B-splines (2.2), and (3.13), we find that

a;,p = Bi,k—l—v+p(x) forp =1,2,---,v+1.
The scheme (3.7) therefore reduces to

Bp.',k—v(x)
(4.1) BM'—l,k:-l"H(x) Bp,',k—y-f-](x)

Bu'—u,k(x) : ' . Bp.’,;c(x)

in this case. If v=k—1 and n,+k—1= u = n, then Algorithm 1 is equivalent to [10,

Algorithm 5.5, p. 192]. If v<k—1then B, ., ,(x)=1forr=1,2, -+, k—v—1. These

numbers plus the ones in (4.1) are precisely all the nonzero B-spline values at x.
Similarly, Algorithm 2 contains [10, Algorithm 5.8, p. 194] as a special case.
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