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INTEGRATING PRODUCTS OF B-SPLINES*

A. H. VERMEULENt, R. H. BARTELSt, AND C. R. HEPPLERt

Abstract. This paper outlines several ways to evaluate the integral of the product of two B-
spline functions, followed by a detailed description of an algorithm that is based on integration by
parts. The algorithm reduces the integral to a sum of evaluations of a higher-order spline. This
reduction involves differentiating one spline by differencing its coefficients, and integrating the other
by summing its coefficients.
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1. Introduction. In this paper we consider the evaluation of integrals of the
forms:

(1) E EiBi,k,(t) E FB,,,(t) dt,

(2) f(t) E EiBi,k,(t) dt,

where Bi,k,x is the ith B-spline of order k defined over the knots xi, xi+l,..., x+k.
We will consider B-splines normalized so that their integral is one. The splines may
be of different orders and defined on different knot sequences x and y. Often the
limits of integration will be the entire real line, -c to +cx. Note that (1) is a special
case of (2) where f(t) is a spline.

Integrals of these forms arise in applications such as the finite element method [1]
and least squares function fitting [2], [3], [4] when B-splines are used as basis functions.
In some problems, the function f(t) in (2) may be nonpolynomial; for example, it may
be a sinusoid [5]. It will be seen that the method we propose can be used to integrate
such functions, provided that a sufficient number of antiderivatives of f(t) are known.

There are five different methods for calculating (1) that will be considered:
1. Use Gauss quadrature on each interval.
2. Convert the integral to a linear combination of integrals of products of B-

splines and provide a recurrence for integrating the product of a pair of B-splines.
3. Convert the sums of B-splines to piecewise B6zier format and integrate seg-

ment by segment using the properties of the Bernstein polynomials.
4. Express the product of a pair of B-splines as a linear combination of B-

splines. Use this to reformulate the integrand as a linear combination of B-splines,
and integrate term by term.

5. Integrate by parts.
Of these five, only methods 1 and 5 are suitable for calculating (2). The first four
methods will be touched on and the last will be discussed at length.

Received by the editors May 16, 1991; accepted for publication (in revised form) August 14,
1991.

Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario N2L3G1,
Canada (rhbartel@uwaterloo.ca, ahvermenuwaterloo.ca, and heppler@dial.uwaterloo.ca).

1025



1026 A.H. VERMEULEN, R. H. BARTELS, AND G. R. HEPPLER

2. Gauss quadrature. The integral (1) can be broken into a sum of integrals,
where each integrand is a polynomial:

E EiBi,k,(t) E FjB,t,(t) dt

where t1,.-., t, is the union of the breakpoints of the two splines. Each integrand is
polynomial, therefore the integrals can be computed exactly using Gauss quadrature:

(3) e(t)f(t)dt EHe()f().
Jtr s

The numbers s and Hs are the Gauss points and weights. Gauss quadrature can be
used to approximate integrals of form (2), for general f(t).

A different application of Gauss quadrature is to evaluate integrals of the form (2)
by moving the summation out of the integral and integrating each term using Gauss
quadrature, treating the B-spline as a weight function. If f(t) is a polynomial,

(4) Bi,k,(t)f(t)dt EHf().

The numbers 8 and H8 are Gauss points and weights for the particular weighting
function B,k,x(t). Values for uniformly spaced B-splines are given in [6]. The Gauss
points and weights must be recalculated for each different B-spline; if the basis is
uniform this is not difficult, but if the basis is arbitrary then it may present a problem.
This method is only capable of calculating integrals of form (1) approximately.

3. Integrating products of B-splines. The summations in (1) can be moved
outside the integral to yield a linear combination of terms of the form:

b

Bi,k,x(t)B,t,v(t)dt.

In the case where integration is over the entire real line this quantity can be calculated
using a recurrence [7]. If the limits are not -cxz and +cx the procedure can still be
used as follows. Insert enough knots [8], [9], [10] at a and b into the splines in the
integrand so that no B-spline’s support crosses the integration limits. Now consider
only the B-splines in the integration region and integrate these over the entire real
line.

The recurrence described in [7] to evaluate (5) proceeds as follows. Define the
number Tk’t

i,j as

(6) T.k,.l k+/+l, := (--1)k[x,x+, ,xi+k t][yg,yg+,... ,y9+t s](s t)+
where [x,x+l,...,x+ t] is the divided difference operator with respect to the
sequence x,..., xi+k acting on the variable t, and similarly for [yj, yj+l,.-., Yy+t s].
It can be shown that

/5 k!l! T.k:B’k’(t)B’’u(t)dt (k +l- 1)! ’J"
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The quantities T.k’.,a can be calculated using the definition of the divided difference
and equation (6); however, this can lead to loss of significance if the knot spacing is
uneven. A stable method of doing the calculation is to use the following recurrence.
The recurrence begins by noting, from (6) and the divided difference definition of a

B-spline, that for terms where one of yj yj+ or xi xi+k holds, T.k’. is a scalar
,3

multiple of the value of a B-spline:

(k + 1)!
B,k,x(Yj) yj yj+ > 0

T.k,. k!l!(8) "a
(k + 1)!

Bj,,u(xi) xi xi+k k > O.
k!l!

Terms with higher numbers in the top indices can be calculated from terms of lower
degree. The recurrence is

(9)
T.k,.l-1 q-,k,l-1(Xi+k yj,-,, + (Yj+l Xi+kj-’-i,j+l

(X yj )T.k’.-1
yy+, y

,Tk,l--1+ (yj+ xj._,+
y+g yy

T.k-71,1 "l,l-,k- l,1+

x+ _< y+,, y _< y+g

Tk- ,l+ +,, y <_ x, y <_ yj+

Tk,l-1+ i,j+l Xi <_ yj, xi <_ xi+k

XiTk xi
yj+ < xi+k, xi <_ Xi+k.

Thus the steps in the evaluation of (1) by this method are:
1. If necessary, insert enough knots into the two splines at the integration limits

a and b, so that the support of no basis function extends past a or b.
2. Evaluate each of the splines Bi,k,x at the points yj and evaluate each of the

splines Bj,t,y at the points x.
3. Calculate the values Tk’l recursively. The values obtained in step 2 providei,j

an end to the recursion.
4. Evaluate the integral (1) by moving the summations and coefficients outside

Tk,of the integral, replacing the integrals with scaled versions of ,j according to (7),
and summing over all pairs of B-splines.

4. Converting to Bzier form and integrating. The B-splines in the in-
tegrand of (1) can be converted to piecewise B6zier format and the result can be
integrated segment by segment. On each segment, the B-spline combinations can be
represented in B6zier form:

(10) F-,iBi,k,z , GiPi,k,

(11) FjBj,z,y y HjPj,z

Pi,k is the ith Bernstein polynomial of degree k- 1 on the segment. The B6zier
coefficients Gi and Hj can be calculated via knot insertion [8], [9], blossoming [11], or
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the tetrahedral algorithm of Sablonnire [12]. On each segment, the integral (1) can
be expressed as a linear combination of inner products of Bernstein polynomials:

The integrals can be evaluated using the formulae for products and integrals of Bern-
stein polynomials given by Farin [13]. For a segment of length L that lies in the
interval (a, b), the integrM evaluates to

I [ (k+l-2),i,j,(k-i-l),(1-j-l), ](13) P+e(t)P,(t)dt (i + j)l(k + : : j 2)(k 1)(/- 1)l(k + l)
L.

5. Explicit multiplication of the integrand. The product of B-splines can
be expressed a linear combination of B-splines [14]:

(14) (EiBi,k,x(t)) (FjBj,,y(t))j h

The order of the product spline is p k + 1; the knot vector z must contain
sufficient knots to represent the product spline. Since the order of the product is
higher than the order of the factors, yet the continuity is the same, the multiplicity
of knots in the product spline is generally much higher than in the original splines.
This means that there will, in general, be many more splines in the product than in
either of the factors.

The procedure for constructing the knot vector z with the minimum possible
number of knots will now be described. Begin by setting a single knot zi at each
point for which zi x, a knot in x, or zi y, a knot in y. Assign multiplicity mi
to zi as follows:

m(k+mz-l,l+m-l), m>0 and mz>0,
(15) mi= k+m-l, m=0 and m>0,

l+ma-1, m>0 and mz-0,

where m is the multiplicity of x and m is the multiplicity of yz. Note that, if
there is no knot in x at zi or no knot in y at zi, then either m or m will be zero.

The coefficients of the product spline are related to the coefficients of the factors
via the following linear relationship [14]:

i,j

The coefficients F can be calculated using the following recurrence:

( k
r,,,(h) p(z+_ z) x+ x

xi)i,j,k-l,l(h)

+ (x+ z+_)r+,,_,]

+ (h)
y+ y

(y+ z+_l)r,+,,_] ).
/
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The recursion is initiated by specifying the values of F for k 1:

(17)
(Xi-{-1 Xi)(Yj+l yj)

r,j,l,1 (h) Zh+l zh
0,

Xi <_ Zh < Xi+l and yj <_ Zh < Yj+I,

otherwise.

We can rewrite the integral (1) as:

b

(18) E ri,j,k,t(h)EiFj Bh,p,z(t)dt.
i,j,h

The integral of a B-spline over its entire support is one; we use this for cases where
the entire B-spline support is within the limits of integration. This can be arranged
by inserting knots at a and b as described previously. If the entire B-spline is not
within the region of integration, the recurrence given to calculate definite integrals of
B-splines described in [7] can be used, or the integrand can be converted to B6zier
form and integrated as described previously.

6. Integration by parts. The final method of evaluating (1) is integration by
parts.

(19) e(t)f(t)dt f(-)(b)e(b)- f(-1)(a)e(a)- e(1)(t)f(-1)(t)dt,

where.f(-)(t) is the antiderivative of f(t) and e(1)(t) is the derivative of e(t). Inte-
gration by parts can be applied repeatedly to the integrand. After n applications:

(20) e(t)I(t)dt (-1)’ e(’I(-’l(t)dt + constant terms.

If e(t) and J’(t) are splines, then the degree of e(t) will be lowered while the degree
of f(t) is raised. If we apply this enough times, e(t) will be reduced to a simple enough
form that its product with f(t) can be integrated directly.

To apply this principle we need to recall some results relating the integration and
differentiation of B-splines to Dirac delta functions.

6.1. Dfferentatng B-splnes. The following two-term derivative formula for
B-splines is well known:

d k
(21) -Bi,k(t) [Bi,k-l (t) Bi+l,k-l (t)]

i+k i

We will only concern ourselves with the case where ui+k > ; thus the right side
always has a nonero denominator. When +k-1 > i and ui+k > i+1 the B-
splines on the right side are defined in the normal way. Under the assumption that

ui+k > ui, the only special cases that can arise are: (a) tti+k_ 1 U but ti+k > i+1,
for which Bi,k-(t) has zero support, and (b) ui+k- > ui but ui+k ui+, for which
Bi+l,k-(t) has zero support.

Consider the case where

(22) Ui Ui+l ti+k-1 tiTk.
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FIG. 1. A cubic B-spline with a discontinuity.

This situation is depicted for a cubic B-spline in Fig. 1. The spline Bi,k is discon-
tinuous at the point ui. Specifically, with the convention that segment intervals are
closed on the left,

(23) B,k(U)l=<=, 0,

k
Bi,k(u)lu=u,

Ui+k Ui

Since the function is discontinuous at ui, the derivative does not exist in the normal
sense. One option is to consider only right-sided derivatives [15], [16]. With this
approach splines with zero support are taken as zero. As pointed out in [16, p. 88],
the problem with this option is that the Fundamental Theorem of Calculus does not
hold. To see this, note that if the first Fundamental Theorem held, we would expect
that

(4) ,() -B,(t)dt.
Substituting from (21) into the above integral, and using the definition that ero-
support B-splines are to be interpreted ero, yields

() Bi k() [0 Bi+l,k_ (t)] dr.
i+k i

Yet at the point u ui+k the left side of the equation evaluates to

(26) LS Bi,k (ui+k) O,

while the right side yields (since the integral of a B-spline over its support is one)
+ k k

(27) RS [0- Bi+,,k- (t)l dt # O.-- i+k Ui i+k Ui

This means that, if B-splines with zero support are taken as zero, we cannot use
integration by parts to solve (1), because integration by parts is based on the nda-
mental Theorem. Therefore, we will look at one of the alternative ways that B-splines
with zero support have been defined.
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We begin by recalling a result attributed to Curry and Schoenberg [7] that a kth
order B-spline on the knots u,..., u+k can be defined as the function B,k, which
satisfies

(28) Bi,k(t)g(k) (t)dt k! [ui, ui+l, ui+ t] g(t)

for any function g(t) with k continuous derivatives. Consider Bi,k where ui

u+ . In this case the right side of (28) becomes the kth derivative of g(t) at .
To be consistent, the left side must yield

(29) Bi,k(t)g(k) (t)dt g(k)().

Distribution theory [17], [18] provides an entity that behaves precisely as Bi,k(t) must
in this circumstance: the Dirac delta function 5(t-). This function has the property
that

(30) S(t )f(t)dt
undefined,

fi<a or fi>b,
=a or fi-b

for any function f(t)integrable on (a, b). Accordingly,

(31) Bi,k(t) 5(t ), ui Ui+l ui+k ,
which is consistent with the Fundamental Theorem. Consider again the spline Bi,k
with knots as in (22). Using this definition, the two-term differentiation formula now
yields

d k
(32) d-Bi,k(t) Ui+k Ui

[((t ’g) Bi+l,k-l(t)].

The revised version of (25) is

(33) Bi,k(u) f’__ k

oo Ui+k ui
[6(t u,) Bi+l,k-l(t)].

For u < ui or u > ui+k both left and right sides are zero. For ui < u < ui+k we first
note that the left side of (33) has polynomial form

(34)
k

LS B,,k(u) (ui+k ,/,)k-1.(,+ ui)

The right side yields:

(35) RS-
Ui+k Ui

5(t ui)dt
(ui+k ui)k-1

(Ui+k t)-edt

Since u > ui the first integral has the value one. Expanding the second integral and
simplifying yields

k
(36) RS (tti+k u)k-1

Ui-t-k Ui
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Hence, the left side of (33) is equal to the right side.
The definition (31) is reasonable from another point of view as well. B-splines

have been normalized to integrate to one:

(37) Bi,k(t)dt 1.

This, too, is consistent with (30) for f(t)= 1.

6.1.1. Derivatives of B-spline combinations. The derivative of a linear com-
bination of B-splines is a linear combination of B-splines of next lower order:

(38) d- E VBi,k,u(t) E V(1)Bi,k-l,u(t)’
i=0 i=0

where the coefficients can be obtained by substituting the two-term differentiation
formula into the left-hand side and shifting the summation:

(39) y/(1 k
V/-

k
Y/-1.

UiTk ui tiTk-1 Ui-1

V_I and gm+l are defined to be zero.

6.2. Integrating B-splines. To obtain a formula for the indefinite integral of a
B-spline combination, we integrate (38). This leads to this description of the indefinite
integral of a B-spline combination

m m

(40) /E ViBi,k(t) E Vi(-1)Bi,k+l(t)’ -oc <_ t < Urn+l,
i=0 i=0

where the coefficients are obtained by inverting (39):

(41) Vi(-1) ui+k+l -ui [ k + l vi(--l) + vi]+ 1 ui+k Ui-1

V(1)_ is defined to be zero.
The integral spline requires the existence of a new knot, Um/k+l. The value of

this new knot is arbitrary subject to Um+k+l

_
Um+k. Adopting the convention that

knots with indices past the end of the given knot vector are equal to the last given
knot can simplify implementation.

Also note that the integral spline in (40) is only valid on the interval [-cx, u,+l).
This condition is necessary because the integral of a B-spline combination will, in
general, have unbounded support. Such a function is not representable as a linear
combination of a finite number of B-splines, but the portion to the left of Um+l is
representable in this way; hence the condition. An alternative method is to define
B-spline-like basis functions that have unbounded support on one side. Suitable basis
functions for this alternative are described in Barry and Goldman [19] and in de Boor,
Lyche, and Schumaker [7].

6.3. The integration by parts algorithm. In this section the integration by
parts algorithm will be described.
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Begin by defining two splines

m

i--0
n

(43/ f(t) FjBj,z,u(t).
j=0

The integral we wish to compute is

(44) e(t)f(t)dt.

Informally, the approach will be to use integration by parts to reduce the order
of e(t) while increasing the order of f(t). This will reduce the support length of e’s
B-splines. When the support length of one of e’s B-splines reaches ero, the B-spline
becomes a Dirac delta function and thus the part of the integral on this basis function
reduces to an evaluation of f. Eventually, all of e’s B-splines will have ero support
and the integral will be reduced to a sum of evaluations.

A detailed description of the algorithm is presented below. Step 0 serves to
bring the integrand into a canonical form; steps 1-4 constitute the substance of the
algorithm.

0. If the lower limit of integration, a, lies exactly on a knot, shift it an infinites-
imal amount to the right. Similarly, if b lies exactly on a knot, shift it an
infinitesimal amount to the left. This will not affect the value of the integral
since the integral of a product of splines of order 1 or more varies continu-
ously as the limits of integration are changed. The shifting of the limits is
necessary to avoid the undefined condition in definition (30). In practical
terms, however, such infinitesimal shifts correspond to consistently using one
index ordering in making comparisons.
Due to the formula chosen for spline integration, it is necessary that b _< +1.
If this is not the case, let be the index such that

(45) y < b <_ y+l.

Now add -n+ 1 knots into y, such that each of the new knots is larger than
or equal to Yn+z. Correspondingly, increase the value of n by - n + 1. This
increases the number of basis splines used to represent f(t). Since the new
knots are outside the nonzero part of the spline, set the coefficients for each
of the new basis splines to zero. Note that the function f(t) is unchanged,
but the new representation satisfies the condition that b

_
Yn+l.

If b- oc, then first replace b by min(yn+Z,Xm+k). Since either e(t) or f(t) is
zero past this point, this will not affect the value of the integral. Now adjust
the representation of f(t) as described above, if necessary.
It is also required that y contain sufficient knots so that B,,k+l,y is defined.
As previously mentioned, an easy way to implement this is to adopt the
convention that added knots past the end of the given knot vector are equal
to the last given knot.
Calculate the coefficients of f(-1)(t) using (41). We can now discard the coef-
ficients of f itself and can calculate the two constant terms in the integration
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(46)

(47)
(as)

by parts formula

e(t)f(t)dt e(b)f(-1) (b) e(a)f(-1) (a) e(1) (t)f(-1) (t)dt,

leaving the integral term to be dealt with.
2. Calculate the coefficients of e(1)(t) using (39), and discard the coefficients

3. Separate the basis splines of e(1)(t) into two categories: those with finite
length support and those with zero length support. Let A and B be sets of
integers such that:

iEA if0_<i_<m and

iEB if0_<i_<m and xi<xi+k_l.

(49)

(50)

The B-splines whose indices are in A are those whose support length is zero;
they correspond to Dirac delta functions. We can write the spline e(1)(t) as

e(1) (t) E El)5(t- xi) -- E El)Bi,k-l,x(t)"
lEA iEB

4. Substitute (49) into the integral term in (46), noting that the integrals with
delta terms reduce to function evaluations

b

e(1) f(-1)(t)dt E E}l) f(-1)(xi) + E E}l)Bi,k-l,x(t)f(-1)(t)dt"
iA iB

The first set of terms require evaluations of the spline f(-1)(t). These terms
can be calculated and added to the sum of terms calculated so far. If the set
B is empty we are finished. If B is not empty then the integral term in (50)
is the integral of a product of two splines. The first spline is the function
e(1)(t) with the basis splines of zero support removed. The second is the
spline f(-1)(t). Apply steps 1-4 recursively to this term, until all the splines
in e(t) are accounted for and B is reduced to the empty set.

Note that the same approach can be used to evaluate integrals of the form (2),
provided that the first k antiderivatives of the function f(t) can be calculated.

6.4. Computational cost. We will consider for simplicity problems of the form
(1) where both splines are of order k. There are three computational components in
the integration by parts algorithm:

1. Repeated differentiation of the spline e(t). This step must be done k times.
Each invocation takes one subtraction and one division per interval so the time spent
on differentiation is on the order of k operations per segment.

2. Repeated integration of the spline f(t). This step must be done k times.
Each invocation takes one addition and one multiplication per interval so the time
spent on antidifferentiation is also on the order of k operations per segment.

3. Evaluation of antiderivatives of the spline f(t). One evaluation of an an-
tiderivative of f(t) must be done per segment; each evaluation takes on the order of
k2 operations.

The cost of the spline evaluations dominates the total computational cost. Thus
the total cost is O(k2) operations per segment.
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TABLE 1
Stability for order-4 B-splines.

Exact Gauss Quadrature Divided Differencing Parts Method
41194444444444440 4.19444444444444

1 4.06649773598049
2 4.04010964362323
3 4.03734554112486
4 4.03706789985594
5 4.03704012344300
6 4.03703734567887
7 4.03703706790123
8 4.03703704012346
9 4.03703703734568
10 4.03703703706790
11 4.03703703704012
12 4.03703703703735
13 4.03703703703707
14 4.03703703703704
15 4.03703703703704

4.19444444444444
4.06649773598049
4.04010964362322
4.03734554112486
4.03706789985594
4.03704012344300
4.03703734567887
4.03703706790123
4.03703704012346
4.03703703734568
4.03703703706790
4.03703703704012
4.03703703703735
4.03703703703707
4.03703703703704
4.03703703703704

4.19444444444444
4.06649773598050
4.04010964362323
4.03734554112671
4.03706789987676
4.0370401232_6651
4.03703734571633
4.03703707070117
4.03703703882036
4.03703618402446
4.03705093396563
4.03707198835796
4.03832729958782
4.02124815634075
4.17366372053858
3.95746527777776

4.06649773598050
4.04010964362322
4.03734554112486
4.03706789985593
4.03704012344251
4.03703734568062
4.03703706789959
4.03703703977985
4.03703703693127
4.03703705312282
4.03703672714926
4.03703333713402
4.03709174968579
4.03745891429760
4.03398753978588

TABLE 2
Stability for order-6 B-splines.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Exact Gauss Quadrature Divided Differencing Parts Method
30.332268518518530.3322685185185

28.8504734229846
28.6816125192285
28.6645841566786
28.6628799571565
28.6627095236305
28.6626924801422
28.6626907757920
28.6626906053570
28.6626905883135
28.6626905866091
28.6626905864387
28.6626905864216
28.6626905864199
28.6626905864198
28.6626905864198

30.3322685185185
28.8504734229846
28.6816125192285
28.6645841566786
28.6628799571565
28.6627095236305
28.6626924801422
28.6626907757920
28.6626906053570
28.6626905883135
28.6626905866091
28.6626905864387
28.6626905864216
28.6626905864199
28.6626905864198
28.6626905864197

30.3322685185185
28.8504734229846
28.6816125192211
28.6645841567912
28.6628799578620
28.6627095075280
28.6626923729591
28.6626892195090
28.6626979434700
28.6627689710028
28.6635029574743
28.6575636537495
28.7488702056990
28.6558351597237
20.9915637713911
94.3609932303722

28.8504734229845
28.6816125192286
28.6645841566787
28.6628799571566
28.6627095236304
28.6626924801421
28.6626907757921
28.6626906053572
28.6626905883125
28.6626905865784
28.6626905852876
28.6626905950749
28.6626906802310
28.6626918634761
28.6626955924918

6.5. Stability. Of the three steps in the algorithm, only the third, evaluation, is
unconditionally stable for all knot sequences. The other two steps, differentiation and
antidifferentiation, may lead to numerical problems. It is also possible that forming
the weighted sum of the evaluations may lead to loss of significance. To address
these issues, a numerical comparison was made between integration by parts, Gauss
quadrature, and direct evaluation of the divided difference formula (6). A similar
comparison between Gauss quadrature and direct evaluation of (6) was made in [7].

The sample problem chosen was to evaluate the integral of the square of the order-
k B-spline defined on the knot sequence [5, 6, 6 / 10-, 8,..., 5 + k]. In Tables 1-3,
values of T,k’k0,0 are shown for r ranging from 0 to 15 for several different orders. The
exact values were obtained symbolically using Maple [20]; the algorithmic results were
calculated using double precision arithmetic on a DEC 5400 running Ultrix. In each
result, the first significant digit in error is indicated using an underline. Note that the
integration by parts algorithm is accurate to machine precision in the test case for all
orders when the ratio of largest to smallest segment length is less than 10000:1; in
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TABLE 3
Stability for order-lO B-splines.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Exact Gauss Quadrature Divided Differencing Parts Method
2833.16953523513
2752.86392636369
2744.44592708222
2743.60112105862
2743.51661119805
2743.50815992021
2743.50731478951
2743.50723027641
2743.50722182510
2743.50722097996
2743.50722089545
2743.50722088700
2743.50722088616
2743.50722088607
2743.50722088606
2743.50722088606

2833.16953523514
2752.86392636369
2744.44592708222
2743.60112105862
2743.51661119805
2743.50815992021
2743.50731478950
2743.50723027641
2743.50722182509
2743.50722097996
2743.50722089545
2743.50722088700
2743.50722088616
2743.50722088607
2743.50722088606
2743.50722088606

2833.16953523513
2752.86392636290
2744.44592709179
2743.60111969566
2743.51660988489
2743.50813576840
2743.50587880024
2743.49088954013
2743.34218803890
2743.66538821758
2745.21802630369
2561.13229702871
2860.62453767450
17477.0284871979
-159288.60966869
1969830.68552676

2833.16953523517
2752.86392636372
2744.44592708226
2743.60112105872
2743.51661119820
2743.50815992031
2743.50731478967
2743.50723027654
2743.50722182512
2743.50722098001
2743.50722089536
2743.50722088701
2743.50722088613
2743.50722088603
2743.50722088613
2743.50722088608

practical circumstances (e.g., finite elements) it is rare to see ratios this extreme. As
r increases, the knots become less uniformly spaced and loss of significance becomes
more pronounced in the integration by parts and divided difference algorithms. The
accuracy of the divided difference scheme decreases as the order increases; it is inter-
esting that the accuracy of the integration by parts algorithm increases as the order
increases.

7. Comparison of the algorithms. In this section we present a brief compar-
ison of the five methods considered for evaluation of the integral (1). We will consider
for simplicity problems of the form (1) where both splines are of order k. Only rough
estimates of the number of operations needed for each method are given.

The first method considered is the use of Gauss quadrature. To do the integration
exactly requires evaluating each spline k times per interval. The cost of a B-spline
evaluation is O(k2) operations, thus the total cost will be O(k3) operations per seg-
ment. The method exhibits no loss of significance for any order or knot sequence.
Gauss quadrature extends to problems of the type given in (2).

The second method formulated the integrand as a linear combination of products
of B-splines and used the recurrence given by de Boor, Lyche, and Schumaker [7] to
calculate the integral of each B-spline pair. Each invocation of this recurrence requires
O(k3) operations [7], and the recurrence must be carried out k times per segment, so
the total cost is on the order of O(k4) operations per segment. The chief advantage
of this approach is that it is very stable numerically. The disadvantages are that the
recurrence is complicated, the approach does not extend to problems of the type given
in (2), and this is the most expensive approach considered. It is worth noting that
if a large number of integrations needs to be done using splines with the same bases
but different coefficients, the inner products of the B-splines could be precalculated,
thus reducing the computational expense.

The third method converted the splines to piecewise Bzier format and integrated
segment by segment. To convert to B(zier format, we must compute the k Bezier co-
efficients on each segment. The calculation of these coefficients carries approximately
the same price as the evaluation of a B-spline value, which is k(k- 1)/2 linear com-
bination operations. Thus the cost of converting both splines is about k(k- 1) linear
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combinations per segment. After the coefficients are obtained, we must calculate
weighted sum of all possible inner products of Bernstein polynomials on each interval.
There are k2 such inner products for two splines of order k. Thus the total cost of
this method is of order O(k2). This algorithm cannot be extended to problems of the
form (2).

The fourth method represented the integrand as a linear combination of B-splines.
This involved the computation of numbers relating the coefficients of the factor splines
to the coefficients of the product spline. It can be shown that these coefficients, F, are
a generalization of the discrete B-splines. In fact, the computation of the F implicitly
computes the discrete B-splines necessary to convert the splines to B6zier form. Thus
we conclude that this method is at least as expensive as method 2. This algorithm
also cannot be extended to problems of the form (2).

The final method is the integration by parts algorithm. Although it is not as
stable as the other methods, good accuracy is obtained for reasonable knot vectors.
The integration by parts method, in our implementation, is less expensive than the
other methods; approximately three times as fast as Gauss quadrature for cubics, and
about eight times as fast for degree 10 splines. In terms of order of operations, the
method requires O(k2) operations, the same as the conversion to B6zier method and
less than the other methods. In addition, this algorithm is extensible to problems of
the form (2), provided that a sufficient number of antiderivatives of the function
can be calculated.

In conclusion, the integration by parts method is less expensive than the other
methods considered, provides accurate results for reasonably uniform knot vectors,
and generalizes to problems of the form (2).
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