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Summary. The construction of weighted splines by knot insertion techniques such
as de Boor and Oslo - type algorithms leads immediately to the problem of evaluat-
ing integrals of polynomial splines with respect to the positive measure possessing
piecewise constant density. It is for such purposes that we consider one possible way
for simple and fast evaluation of primitives of products of a polynomial B-spline and
a positive piecewise constant function.

1 Introduction and Motivation

Weighted splines appear in many applications, the most well-known being the
cubic version where they arise naturally in minimizing functionals like V (f) : =
∑n

i=1(wi

∫ ti+1

ti
[D2f(t)]2dt, wi > 0, sometimes also accompanied by the control of

first derivatives: V (f) : =
∑n

i=1(wi

∫ ti+1

ti
[D2f(t)]2dt + νi

∫ ti+1

ti
[Df(t)]2dt), νi ≥ 0,

wi > 0, see [6, 7, 9] and [11] for a bivariate version.
The parametric version is often used as a polynomial alternative to the exponen-

tial tension spline in computer-aided geometric design, and some shape-preserving
software systems (MONCON, TRANSPLINE) have been written for that pur-
pose [13, 9, 10]. It is known that the associated B-splines can be calculated by the
knot insertion algorithms. For the cubic version of weighted splines, explicit expres-
sions for the knot insertion matrices exist, which are of the very simple form [8, 14].
In the case of the knot insertion algorithms can in principle be obtained by special-
izing the general theory of Chebyshev blossoming [12].

Weighted splines can also be evaluated by an integrated version of the derivative
formula [15], which can also be used to define most general Chebyshev B-splines [1]:

B
n
i,dσ

(x) =
1

Cn−1(i)

∫ x

ti

B
n−1

i,dσ
(1)dσ2 −

1

Cn−1(i + 1)

∫ x

ti+1

B
n−1

i+1,dσ
(1)dσ2, (1)

where Bn
i,dσ

(x) is the nth–order Chebyshev spline, dσ = (dσ2 . . . dσn)T is the mea-

sure vector and dσ
(1) = (dσ3 . . . dσn)T is the measure vector with respect to the

first reduced system. We assume that dσi are some Stieltjes measures, and that all
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the B-splines in question are normalized so as to make a partition of unity. The con-
stants in the denominators are integrals of B-splines over its support, with respect
to the measure that is missing in the definition of dσ

(1):

Cn−1(i) : =

∫ ti+n−1

ti

B
n−1

i,dσ
(1)dσ2.

The numerical stability of (1) is doubtful (even for polynomial splines), so evaluation
by knot insertion is preferred. However, for weighted splines we need only very
simple measures, which are all but one Lebesgue measures, and the one that is not
has density which is piecewise constant and positive. To be more precise, weighted
B-splines are piecewisely spanned by the Chebyshev system of weighted powers:

u1(x) = 1,

u2(x) =

∫ x

a

dτ2,

u3(x) =

∫ x

a

dτ2

∫ τ2

a

dτ3

w(τ3)
,

...

uk(x) =

∫ x

a

dτ2

∫ τ2

a

dτ3

w(τ3)

∫ τ3

a

dτ4 · · ·

∫ τk−1

a

dτk.

Finally, one can use algorithms for ordinary polynomial splines and avoid explicit
mentioning of weighted splines, but even then integration of products of polynomial
splines and piecewise constant function must be performed, as shown by de Boor [3],
who also gives closed formulæ for some lower order splines.

2 Recurrence for Integrals of Polynomial B-Splines

Whatever approach we choose, in order to evaluate weighted splines we need to
calculate the integrals of ordinary polynomial B-splines

Ck(j) =

∫ tj+k

tj

B
k
j (τ)

dτ

w(τ)
.

In what follows, we assume that Bk
j are normalized so as to make the partition of

unity, and that the knot sequence {tj}, possibly containing multiple knots, coincides
with the breakpoint sequence for w. For notation purposes, let w|[ti,ti+1) = wi which
makes w right–continuous. We want to find a recurrence for primitives of polynomial
B-splines with respect to the piecewise constant positive function w, i.e.,

∫ x

ti

B
k
i (τ)

dτ

w(τ)
, x ∈ [ti, ti+k],

and, specially:
∫ tj+1

tj

B
k
i (τ)

dτ

w(τ)
, j = i, . . . , i + k − 1.

Let x ∈ [tj , tj+1), then
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by the well known formula for integrals of polynomial splines [16, p. 200] and [2,
pp. 150-151]. Let
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B
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Then in terms of ᾱ’s formula (2) can be written as
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We claim that ᾱk+1
i,j+1(x) can be evaluated as convex combination of lower order

quantities ᾱk
i,j(x). By de Boor–Cox recurrence
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k
i+1,j+1(x),

because Bk
j+1(x) = 0 for x ∈ [tj , tj+1). Thus we have proved the recurrence

ᾱ
k+1
i,j+1(x) =

x − ti

ti+k − ti

B
k
i (x) + ᾱ

k
i+1,j+1(x), (5)

for x ∈ [tj , tj+1) and j = i, . . . , i + k − 1. We proceed to manipulate (5) to get a
more symmetric expression. Obviously,
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k
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j
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B
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whence Bk
i (x) = ᾱk

i,j+1(x) − ᾱk
i+1,j+1(x), which, when substituted in (5) gives

ᾱ
k+1
i,j+1(x) =

x − ti

ti+k − ti

(

ᾱ
k
i,j+1(x) − ᾱ

k
i+1,j+1(x)

)

+ ᾱ
k
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=
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ᾱ
k
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k
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(

1 −
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)

.

Finally, we have the recurrence

ᾱ
k+1
i,j+1(x) =

x − ti

ti+k − ti

ᾱ
k
i,j+1(x) +

ti+k − x

ti+k − ti

ᾱ
k
i+1,j+1(x), (6)

for x ∈ [tj , tj+1) and j = i, . . . , i + k − 1.

We need to evaluate

1
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k
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B
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B
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)
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k wj

(

ᾱ
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k+1
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)

,

but have no way of telling whether the subtraction of ᾱ’s will result in dangerous
cancellation of significant digits; therefore we must find another way of evaluating
differences of ᾱ’s. To this end, let

δ̄
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i,j (x) := ᾱ

k+1
i,j+1(x) − α

k+1
i,j .

From (6) we have
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ᾱ
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(

ᾱ
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Further,
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=
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B
k
r (x) + δ̄

k
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= B
k
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k
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where the last line follows from the defining equation (3) for δ̄k
i+1,j(x). On substi-

tuting (8) in (7) we get
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k
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ti+k − ti
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k
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B
k
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for x ∈ [tj , tj+1) and j = i, . . . , i + k − 1. Finally, from (4) we have

k
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dτ
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i,s
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+
1
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with
δ

k+1
i,s := δ̄

k+1
i,s (ts+1),

x ∈ [tj , tj+1) and j = i, . . . , i + k − 1. Specially,

k

ti+k − ti

∫ ti+k

ti

B
k
i (τ)

dτ

w(τ)
=

i+k−1
∑

s=i

δk+1
i,s

ws

,

and by (9)

k

ti+k − ti

∫ tj+1

tj

B
k
i (τ)dτ = wj

(
∫ tj+1

ti

B
k
i (τ)

dτ

w(τ)
−

∫ tj

ti

B
k
i (τ)

dτ

w(τ)

)

= δ
k+1
i,j ,

where δk+1
i,j is calculated recursively:

δ
2
i,j =

{

1 for j = i,

0 for j 6= i,

δ
k+1
i,j =

tj − ti

ti+k − ti

δ
k
i,j +

ti+k − tj

ti+k − ti

δ
k
i+1,j +

tj+1 − tj

ti+k − ti

B
k
i (tj+1), (10)

for j = i, . . . , i + k − 1.

3 Conclusion

There are other ways of calculating weighted integrals of polynomial splines, like
Gaussian integration or conversion to Bezier form, and also some approximative
ones [17]. In fact, (10) is a special case of recurrence used to evaluate inner products
of B-splines ([4]) in which one of the B-splines is of order one. The proof given here
is more in the spirit of ‘B-splines without divided differences’ [5], contains some
new recurrences (5), and can be extended to obtain a recurrence for inner products.
For inner products though, the greater complexity (O(k4)) compared to Gaussian
integration (O(k3)) makes the recurrence seldom used, while for weighted splines it
is preferable, being of the same complexity and machine independent.
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