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Abstract

We determine all pairs (p, n), where p is a prime and n a positive
integer, such that there exists a reduced fraction u/v > 1 with u+v =
n and u/v has a nonterminating Schneider’s p-adic continued fraction
expansion. We also prove a bound on the length of the preperiod in
the p-adic continued fraction of u/v when max{|u|, |v|} < p.

1 Introduction

For a prime number p, Schneider’s p-adic continued fraction is an expression
of the form

b0 +
pa1

b1 +
pa2

b2 +
pa3

. . .

(1)

written more succinctly as [b0, p
a1 : b1, p

a2 : b2, p
a3 : . . .], where all ai are

positive integers and bi ∈ {1, 2, . . . , p− 1}.
The numbers bi are called partial denominators and by splitting the ex-

pression (1) at any point, we obtain the convergents [b0, p
a1 : b1, . . . , p

ak : bk]
and the complete quotients [bk, p

ak+1 : bk+1, . . .].
A finite Schneider’s p-adic continued fraction clearly represents a positive

rational number. The value attached to an infinite p-adic continued fraction
is the limit of the sequence of its convergents in the p-adic field. Conversely,
every p-adic unit can be expressed as the value of a unique Schneider’s p-adic
continued fraction. For more details on Schneider’s continued fractions see
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ing expansion.
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[6, 9, 10], while a more general overview of different p-adic continued fraction
algorithms can be found in the survey [8].

Unlike the usual simple continued fraction algorithm in the reals, an ex-
pansion of a rational number into Schneider’s p-adic continued fraction can
be infinite. Here and throughout, we can restrict ourselves to rationals which
are p-adic units simply by factoring out at the start any power of p from the
numerator or the denominator. As Bundschuh [2] showed, a rational number
has a nonterminating p-adic continued fraction if and only if a negative com-
plete quotient is encountered at some point in its p-adic continued fraction
expansion. This clearly happens if we start with a negative rational number,
but can also happen (more often than not, see [7]) in the expansion of a posi-
tive rational number. In that case, eventually −1 has to appear as a complete
quotient [2]. Since −1 = [p − 1, p : p − 1, p : p − 1, . . .], this is equivalent to
saying that the continued fraction expansion of a rational number does not
terminate if and only if from some point onwards in the expansion, the block
p− 1, p repeats indefinitely.

Following [3] and [7], for a positive integer n, denote by Sp(n) the set of all
positive rational numbers u/v, where u+ v = n and gcd(u, v) = gcd(uv, p) =
1. Also, let Tp(n) be the set of elements in Sp(n) with terminating p-adic
continued fraction expansion.

In the first part of this paper, we completely determine all pairs (p, n)
such that there is a nontrivial fraction u

v
∈ Sp(n) \ Tp(n). In other words,

we determine for which (p, n) there is a fraction u
v
∈ Sp(n) greater than 1

with nonterminating p-adic continued fraction expansion. A previous partial
result [7] only considered the case of p an odd prime and n an odd positive
integer such that n−1 is not divisible by p. Let us explain why we call u

v
> 1

a nontrivial example. Since u
v
∈ Sp(n) if and only if v

u
∈ Sp(n), when Sp(n)

is nonempty, it certainly contains a number smaller than 1, whose p-adic
continued fraction expansion is obviously nonterminating (we immediately
obtain a negative complete quotient). However, such an example tells us only
that Sp(n) is nonempty and has little to do with p-adic continued fractions
for particular p and n. Thus, we look for nontrivial examples of elements of
Sp(n) with infinite expansion, i.e. we require that such examples be greater
than 1.

In the second part of the paper, we prove two results on p-adic continued
fraction expansion of rational numbers with both numerator and denominator
less than p.
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2 Sets containing rationals with nonterminat-

ing expansion

As is easily seen [3, Proposition 6], an integer n 6≡ 0 (mod p) has a finite
p-adic continued fraction if and only if n ∈ {1, 2, . . . , p − 1} or n = b + pa,
where b ∈ {1, 2, . . . , p−1} and a is a positive integer. We will also frequently
use the following simple lemma.

Lemma 1. Let u
v
> 1 be a reduced fraction such that the prime p does not

divide uv.
If for every k ∈ {1, . . . , bu

v
c}, the integer u−kv is not divisible by p, then

the p-adic continued fraction expansion of u
v

is nonterminating.
If p > u > v > 1, then u

v
has nonterminating p-adic continued fraction

expansion.
If p > u > v = 1, then u

v
= u has terminating expansion.

Proof. The condition that u − kv is not divisible by p for k ∈ {1, . . . , bu
v
c}

implies that the first partial denominator (b0 in (1)) is greater than bu
v
c.

Therefore, already the next complete quotient in the p-adic continued fraction
expanion of u

v
is negative, so the expansion does not terminate. The other

two statements are then obvious.

Our main theorem is the following.

Theorem 2. For every prime p and every positive integer n 6∈ {1, 2, 3, 4, 6}
such that (p, n) 6∈ E, there is a rational number u

v
> 1 such that u

v
∈ Sp(n)

and the p-adic continued fraction expansion of u
v

is nonterminating. Here E
is the set containing all pairs (2, 2k + 1), k ≥ 2 and the following elements

(2, 10),

(3, 5), (3, 7), (3, 10), (3, 11), (3, 13), (3, 16), (3, 28),

(5, 8), (5, 9),

(7, 10), (7, 12), (7, 15).

For (p, n) ∈ E, such a rational number does not exist.

We excluded some small positive integers as values of n since the results
are trivial in those cases. Namely,

Sp(1) = ∅, Sp(2) ∩ (1,+∞) = ∅,
Sp(n) ∩ (1,+∞) ⊆

{
n−1
1

}
for n ∈ {3, 4, 6}.

Proof. We prove the theorem by considering the following six cases:
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1. p = 2,

2. p > 3, n odd,

3. p > 3, n even,

4. p > 3, n ∈ {2p− 2, 2p− 1, 2p + 1},

5. p = 3, n odd,

6. p = 3, n even.

Case 1. Let p = 2.
For odd n, the set S2(n) is empty, so we take n > 6 to be an even integer.

Write n = 2 + 2tr, where t ≥ 1 and r is an odd positive integer.
If r > 1, then

n− 1

1
= 1 +

2t

1
r

,

where 1
r
∈ (0, 1), so n−1

1
∈ S2(n) \ T2(n).

If r = 1, we have n = 2 + 2t and

n
2

+ 2
n
2
− 2

= 1 +
4

2t−1 − 1
.

For t ≥ 4,

2t−1 − 1 = 1 +
2
1

2t−2−1
,

and 2t−2 − 1 ≥ 22 − 1 > 1 implying (n
2

+ 2)/(n
2
− 2) ∈ S2(n) \ T2(n). For

t ≤ 2, we get n ≤ 6, so the only remaining possibility is t = 3, n = 10 in
which case

S2(10) ∩ (1,+∞) =
{

9
1
, 7
3

}
= T2(10).

Case 2. Let p > 3 and n > 3 odd.
If p does not divide (n− 1)(n + 1), then the fraction

n+1
2

n−1
2

= 1 +
1

n−1
2

is in Sp(n) and lies in the interval (1, 2), so Lemma 1 immediately implies it
is not in Tp(n).

Suppose n ≡ −1 (mod p), so n = 2kp − 1 for a positive integer k. The
fraction n−1

1
= p−2+(2k−1)p is in Sp(n) and it is in Tp(n) only if 2k−1 = pt

for a nonnegative integer t. If t = 0, then k = 1 and n = 2p − 1 which is
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a case that we deal with later. Thus, take t to be a positive integer and
n = pt+1 + p− 1. Now, the fraction

n+p
2

n−p
2

= 1 +
p

p−1
2

+ p
2

pt−1

is in Sp(n), but it is not in Tp(n) since 2
pt−1 < 1.

Next, assume n ≡ 1 (mod p), so n = 2kp + 1 for a positive integer k.
The fraction n−2

2
= p−1

2
+ 2k−1

2
p is in Sp(n) and it belongs to Tp(n) only if

2k − 1 = pt for a nonnegative integer t. If t = 0, then k = 1 and n = 2p + 1,
which we consider later, so take t ≥ 1 and n = pt+1+p+1. Then the fraction

n+p
2

n−p
2

= 1 +
p

p+1
2

+ p
2

pt−1

is again in Sp(n) \ Tp(n).
Case 3. Let p > 3 and n > 6 even.

Consider the fractions
n
2

+ k
n
2
− k

= 1 +
2k

n
2
− k

(2)

for k ∈ {1, 2, 3, 4}.
If n > 24, we have 6k < n, so 2k < n

2
− k and all of the fractions in

(2) belong to the interval (1, 2). Since p is neither 2 nor 3, we also see that
p does not divide 2k. Thus, if any of these fractions is in Sp(n), Lemma 1
immediately implies it is not in Tp(n) and we are finished.

We have that gcd(n
2
− k, n

2
+ k) = gcd(n

2
− k, 2k) divides 8 unless k = 3

and n is divisible by 3.
If n

2
is odd, all the numbers in the set {n

2
− 4, n

2
− 2, n

2
+ 2, n

2
+ 4} are odd

and at most one of them is divisible by p, so (2) is an element of Sp(n) for
at least one k ∈ {2, 4}.

If n
2

is even, all the numbers in the set {n
2
− 3, n

2
− 1, n

2
+ 1, n

2
+ 3} are odd

and at most one of them is divisible by p, so a fraction (2) is in Sp(n) for at
least one k ∈ {1, 3} unless p divides n

2
− 1 or n

2
+ 1 and n is divisible by 3.

If n
2
− 1 is divisible by p, then n = 2rpt + 2 for some positive integers r

and t such that p does not divide r. Then

n− 1

1
= 1 + 2rpt = 1 +

pt

1
2r

∈ Sp(n) \ Tp(n).

Assume now that n
2

is even, n
2

+ 1 is divisible by p and n is divisible
by 3, so that n = 2kp − 2 for some odd positive integer k. The fraction
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n−1
1

= p − 3 + (2k − 1)p is in Sp(n) \ Tp(n) unless 2k − 1 = pt for some
nonnegative integer t. If t = 0, then k = 1 and n = 2p− 2 which we consider
later, so take t ≥ 1 and n = pt+1 + p− 2. For the fraction

n
2

+ p
n
2
− p

= 1 +
2p

n
2
− p

= 1 +
p

pt+1−p−2
4

= 1 +
p

p−1
2

+ p · pt−3
4

,
(3)

we have gcd(n
2

+ p, n
2
− p) = gcd(n

2
+ p, 2p) = 1, so this fraction is in Sp(n).

Since pt−3
4

is not divisible by p and it is strictly greater than 1 for pt > 7, we
conclude that in this case (3) is not in Tp(n). Checking pt = 5, we get that
n = 25+5−2 = 28 is not divisible by 3, while for pt = 7, n = 49+7−2 = 54
and we take 43

11
= [2, 7 : 6, 7 : 4, 7 : −1] ∈ S7(54) \ T7(54).

With the help of Lemma 1, we inspect even numbers n, 8 ≤ n ≤ 24,
and, excluding the possibility n = 2p− 2, which we will soon study, the only
exception we obtain is S7(10) ∩ (1,+∞) = {9

1
} = T7(10).

Case 4. Let p > 3 and n ∈ {2p− 2, 2p− 1, 2p + 1}.
A result by Nagura [4] states that for any real number x ≥ 25, there is a

prime q in the interval (x, 6x/5). Taking x = n+2
2

, we see that for n ≥ 48,
we have x ≥ 25 and

p =
2p− 2 + 2

2
≤ n + 2

2
< q

<
6

5
· n + 2

2
≤ 3

5
(2p + 1 + 2) ≤ 2p− 2 ≤ n.

Thus, gcd(q, n−q) = gcd(q, n) = 1, and gcd(q, p) = 1, but also gcd(n−q, p) =
1 since

1 ≤ n− q < n− n + 2

2
=

n− 2

2
≤ 2p + 1− 2

2
< p.

Therefore, q
n−q is in Sp(n). Also, from

n

2
<

n + 2

2
< q <

3

5
(n + 2) <

2

3
n,

we get q
n−q ∈ (1, 2). However,

q

n− q
= 1 +

2q − n

n− q
,

and 2 < 2q− n < p, so p does not divide 2q− n and we conclude that q
n−q is

not in Tp(n).
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We inspect n of the given form for 7 ≤ n ≤ 47 and obtain the following
exceptions

S5(8) ∩ (1,+∞) = {7
1
} = T5(8),

S5(9) ∩ (1,+∞) = {8
1
, 7
2
} = T5(9),

S7(12) ∩ (1,+∞) = {11
1
} = T7(12),

S7(15) ∩ (1,+∞) = {13
2
, 11

4
} = T7(15).

Case 5. Let p = 3 and n > 3 odd.
If n ≡ 0 (mod 3), then

n+1
2

n−1
2

= 1 +
1

n−1
2

is in (1, 2) and we immediately see that it lies in (S3(n) \ T3(n)) ∩ (1,+∞).
Assume now that n 6≡ 0 (mod 3) and n > 13. Then

n+3
2

n−3
2

= 1 +
3

n−3
2

is an element of S3(n) ∩ (1, 2) which has a finite 3-adic continued fraction
expansion if and only if n−3

2
= 1 + 3t or n−3

2
= 2 + 3t, i.e. n = 5 + 2 · 3t or

n = 7 + 2 · 3t for some positive integer t. The condition n > 13 implies t ≥ 2.
If n = 5 + 2 · 3t, then n−1

1
= 1 + 3(1 + 2 · 3t−1) is in S3(n) \ T3(n) since

1 + 2 · 3t−1 is strictly greater than 1 and not divisible by 3.
If n = 7 + 2 · 3t, then

n− 2

2
= 1 + 3 · 1 + 2 · 3t−1

2

is a fraction in S3(n) \ T3(n) since 1 + 2 · 3t−1 is strictly greater than 2 and
not divisible by 3.

The remaining cases to be checked are 3 < n ≤ 13 and n not divisible by
3. We get S3(n) ∩ (1,+∞) = T3(n) for n ∈ {5, 7, 11, 13}.
Case 6. Let p = 3 and n > 6 even.

Suppose first that n 6≡ 1 (mod 3). Then n−1
1
∈ S3(n) and, since n > 6 is

even, this fraction is in T3(n) only if n = 3 + 3t for an integer t ≥ 2.
If t is even, then 3t − 2 ≡ ±1− 2 6≡ 0 (mod 5), so

n− 5

5
=

3t − 2

5
= 2 + 3 · 3t−1 − 4

5

7



is in S3(n), but

3t−1 − 4

5
< 0 for t = 2 and

3t−1 − 4

5
> 1 for t ≥ 4,

so n−5
5

is not in T3(n).
If t is odd, then 3t + 3 ≡ 2 (mod 4), so n

2
is odd. The fraction

n
2

+ 2
n
2
− 2

= 1 +
8

3t − 1
= 2 +

9− 3t

3t − 1

is in S3(n), but because of 9− 3t ≤ 9− 27 < 0, it is not in T3(n).
Finally, we assume that n ≡ 1 (mod 3). We have

n
2

+ 3k
n
2
− 3k

= 1 + 3 · 2k
n
2
− 3k

and
2k

n
2
− 3k

> 1

as soon as n
10

< k < n
6
. From

gcd
(
n
2

+ 3k, 3
)

= gcd
(
n
2
− 3k, 3

)
= 1 and

gcd
(
n
2

+ 3k, n
2
− 3k

)
= gcd

(
n
2

+ 3k, 6k
)

= gcd
(
n
2

+ 3k, 2k
)

= gcd
(
n
2

+ k, 2k
)
,

we see it is sufficient to demand that n
2

and k be coprime numbers of different
parities, for the fraction

(
n
2

+ 3k
)
/
(
n
2
− 3k

)
to be in S3(n). If, moreover,

n
10

< k < n
6

and k is not divisible by 3, then this fraction is not in T3(n).
Let q1 ∈

(
n
20
, n
12

)
and q2 ∈

(
n
10
, n
6

)
be prime numbers, different from 3,

that do not divide n. If n
2

is odd, we take k = 2q1, and if n
2

is even, we set
k = q2. We only need to confirm that such primes q1 and q2 exist.

For n ≥ 500, we have n
20
≥ 25, so by the already mentioned result of

Nagura [4], there are prime numbers

q′ ∈
(

n
20
, 6
5
· n
20

)
=
(

n
20
, 3n
50

)
⊂
(

n
20
, n
12

)
and

q′′ ∈
(
3n
50
, 6
5
· 3n
50

)
=
(
3n
50
, 9n
125

)
⊂
(

n
20
, n
12

)
.

If both of these prime numbers divided n, we would have n = r′q′ = r′′q′′,
where r′, r′′ ∈ {13, 14, 15, 16, 17, 18, 19}, which would imply that some prime
from the set {2, 3, 5, 7, 13, 17, 19} divides the prime q′′ > 25 which is im-
possible. Therefore, we take q1 to be one of the numbers q′, q′′ which does
not divide n. Completely analogously, we show the existence of the required
prime q2.
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For 6 < n < 500, n ≡ 4 (mod 6), we easily check by computer that(
S3(n) \ T3(n)

)
∩ (1,+∞) is nonempty except in the cases n ∈ {10, 16, 28}

where the following holds

S3(10) = ∅, S3(16) ∩ (1,+∞) = {11
5
} = T3(16),

S3(28) ∩ (1,+∞) = {23
5
, 17
11
} = T3(28).

This completes the proof of the theorem.

3 On rationals with numerator and denomi-

nator bounded by p

Theorem 3. Let u
v
6∈ {−1, 1, 2, . . . , p− 1} be a rational number such that

gcd(u, v) = gcd(uv, p) = 1 and |u| < p, |v| < p.

Then the p-adic continued fraction expansion of u
v

is infinite

u

v
= [b0, p : b1, p : b2, . . . , p : bk, p : −1],

where we noted the first appearance of −1 as a complete quotient.
Moreover, for 0 ≤ i ≤ k, we have k ≤ i + bi and thus k ≤ p− 1.

Proof. Let (x0, x1) = (u, v). Expanding x0/x1 into a continued fraction (1),
denote one complete quotient xi/xi+1 = [bi, p

ai+1 : bi+1, . . .], where xi, xi+1

are coprime integers. Then the next complete quotient is

pai+1

xi

xi+1
− bi

=
xi+1

xi−bixi+1

pai+1

=
xi+1

xi+2

, (4)

where xi+2 = (xi − bixi+1)/p
ai+1 is an integer and gcd(xi+1, xi+2) = 1. This

is how we obtain the sequence (xi)i≥0 of integers which terminates with
xi/xi+1 ∈ {1, 2, . . . , p − 1} for some i if and only if the continued fraction
expansion of x0/x1 is finite. Otherwise, we reach xi/xi+1 = −1 for the first
time for some positive integer i, which marks the start of the periodic part
of the nonterminating continued fraction expansion of x0/x1.

From |x0|, |x1| < p, we obtain

|x0 − b0x1| ≤ (p− 1) + (p− 1)2 = p(p− 1) < p2,

which implies that a1 = 1. Also, (4) gives

|x2| =
|x0 − b0x1|

p
≤ p(p− 1)

p
= p− 1.
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Analogously, we conclude that ai = 1 and |xi| ≤ p− 1 for all i.
If x1x2 > 0, then |x0| = |b0x1 + px2| = b0|x1| + p|x2| > p, so we deduce

that x1x2 < 0 and, analogously, xixi+1 < 0 for i ≥ 1. We see that the p-adic
continued fraction of x0

x1
is infinite. Without loss of generality, we can take

x1 > 0, so (−1)ixi < 0 for all i ≥ 1.
The equality |x1| = |x2|, together with gcd(x1, x2) = 1 and x1x2 < 0,

would imply x1 = 1, x2 = −1, indicating that we have reached the periodic
part of the expansion.

For |x2| > |x1|, we would have x2 ≤ −x1 − 1 < 0 and

x0 = b0x1 + px2 ≤ b0x1 − px1 − p = (b0 − p)x1 − p < −p

which is impossible. Thus, we conclude that for x1/x2 6= −1, the inequality
|x2| < |x1|, i.e. 0 < −x2 < x1 has to hold. In the same way, we see that if
xi/xi+1 6= −1, then |xi+1| < |xi|.

Let k ≥ 0 be the largest integer such that xk/xk+1 6= −1, i.e. k + 1 is the
length of the preperiodic part of expansion (e.g. we can count the partial
denominators in this part, including the zeroth b0). Then |xk+1| ≥ 1, |xk| ≥ 2
and, in general, |xi| ≥ k + 2− i for all 1 ≤ i ≤ k + 1.

From xi+2 = (xi − bixi+1)/p, we obtain

|xi+2| ≤
|xi|+ bi|xi+1|

p
≤ p− 1 + bi(p− 1)

p

= bi +
p− 1− bi

p
< bi + 1

and it follows that |xi+2| ≤ bi. For 0 ≤ i ≤ k, we have

k − i = (k + 2)− (i + 2) ≤ |xi+2| ≤ bi, i.e. k ≤ i + bi,

which is what we wanted to prove.
Let us also note here that the partial denominator p − 1 can appear in

the preperiod only at the beginning. If bi = p− 1 for i ≥ 1, then xi+2 being
integer implies

0 ≡ xi − (p− 1)xi+1 ≡ xi + xi+1 (mod p),

so xixi+1 < 0 and |xi|, |xi+1| < p imply xi + xi+1 = 0, i.e. xi/xi+1 = −1 from
which i ≥ k + 1.

Recall that a variant of Sylvester’s sequence [5] is defined by s0 = 1,
s1 = 2, and

sn = s2n−1 − sn−1 + 1 for n > 1.
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Thus, the first few elements in the sequence are

s0 = 1, s1 = 2, s2 = 3, s3 = 7, s4 = 43.

It is easily shown that sn = 1 +
∏n−1

k=0 sk holds for n ≥ 1.

Theorem 4. If, for some n ≥ 1, we have p = sn+1, then[
p− 1,

(
p : p−1

si
, p : p− s2i

)
i=1,...,n−1,

p : p−1
sn

, p : p− sn + 1, p : −1
]

is the p-adic continued fraction expansion of 1
p−1 . Here, for continued fraction

as in (1),
ai = 1 for 1 ≤ i ≤ 2n + 1,

b2i−1 =
p− 1

si
for 1 ≤ i ≤ n,

b2i = p− s2i for 0 ≤ i ≤ n− 1,

b2n = p− sn + 1.

(5)

Proof. Starting with the fraction u0/u1 = 1/(p−1), we show that the succes-
sive complete quotients in its p-adic continued fraction expansion are u`/u`+1

for ` ∈ {1, 2, . . . , 2n− 1} where

u2i−1 =
p− 1

si − 1
and u2i = −p− si

si − 1

for i ∈ {1, 2, . . . , n}. We see immediately that

u2i−1 =
n∏

k=i

sk and u2i = −u2i−1 + 1,

so gcd(u`, u`+1) = gcd(u`u`+1, p) = 1 for all ` ∈ {0, 1, . . . , 2n− 1}.
We only need to check that

u`

u`+1

= b` +
pa`+1

u`+1

u`+2

, i.e. u`+2 =
−b`u`+1 + u`

pa`+1

holds for a`+1, b` defined in (5) when ` ∈ {0, 1, . . . , 2n− 2}. For ` = 0 this is
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easy, while

−b2iu2i+1 + u2i

pa2i+1

=
1

p

(
− (p− s2i )

p− 1

si+1 − 1
− p− si

si − 1

)
= −(p− 1)(p− s2i ) + si(p− si)

p(si+1 − 1)

= −p− s2i + si − 1

si+1 − 1

= −p− si+1

si+1 − 1
= u2i+2

and

−b2i−1u2i + u2i−1

pa2i

=
1

p

(
− p− 1

si
·
(
− p− si

si − 1

)
+

p− 1

si − 1

)
=

p− 1

(si − 1)si
=

p− 1

si+1 − 1
= u2i+1

for i ∈ {1, 2, . . . , n− 1}.
Thus, we have shown that u2n−1/u2n is indeed a complete quotient of 1

p−1 .

Now, using p = sn+1 = s2n − sn + 1, we obtain

u2n−1

u2n

=

p−1
sn−1

−p−sn
sn−1

=
sn

−sn + 1

=
s2n

sn(−sn + 1)
=

p− 1

sn
+

p

−sn + 1

=
p− 1

sn
+

p

p− sn + 1 + p
−1

,

so the tail of the continued fraction expansion of 1
p−1 is also as claimed in

this theorem.

The largest currently known prime in the Sylvester sequence [1] is s6 =
3263443 for which we obtain

1

p− 1
=
[
p− 1, p : p−1

2
, p : p− 4, p : p−1

3
, p : p− 9,

p : p−1
7
, p : p− 49, p : p−1

43
, p : p− 1849,

p : p−1
1807

, p : p− 1806, p : −1
]
.

12



It is conjectured that there are no larger primes in this sequence, but already
the status of s33 is currently unknown [1].
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