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Abstract

Unlike the usual simple continued fraction, Schneider’s p-adic con-
tinued fraction expansion of a rational number can be infinite. Hirsh
and Washington conjectured that rational numbers with nonterminat-
ing expansion are more common than those with terminating expan-
sion. We prove this conjecture and give upper and lower bounds on
the number of reduced fractions, with bounded numerator and denom-
inator, that have terminating p-adic continued fraction expansion. We
also present examples of sets containing rationals with nonterminating
expansion.

1 Introduction

For a prime number p, diverse continued fraction algorithms in the field of p-
adic numbers have been proposed over the years. A recent survey by Romeo
[14] shows the similarities and differences between various continued fraction
algorithms as well as the properties they have in common with the usual
simple continued fraction expansion of real numbers.

In this paper, we study Schneider’s p-adic continued fractions [15, 16],
concentrating on questions concerning the expansion of rational numbers.

For a list of the most important papers on this topic as well as a short
introduction to the subject, the reader can consult the first section and the
references in the paper [12]. Here, we restrict ourselves to presenting only
the essential notation and results used in the remainder of the paper.

Throughout this text, p denotes a prime number and Qp is the field of
p-adic numbers equipped with the p-adic absolute value | · |p normalized in
such a way that |p|p = p−1 (see [7, 10] for more on p-adic numbers).

Key words and phrases:: continued fractions, p-adic continued fractions, nonterminat-
ing expansion.
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Schneider’s p-adic continued fraction is an expression of the form

b0 +
pa1

b1 +
pa2

b2 +
pa3

. . .

(1.1)

written more compactly as [b0, p
a1 : b1, p

a2 : b2, p
a3 : . . .], where all ai are

positive integers and bi ∈ {1, 2, . . . , p− 1}.
The numbers bi are called partial denominators, while pai are partial

numerators. By splitting the expression (1.1) at any point, we obtain the
convergents Pk

Qk
= [b0, p

a1 : b1, . . . , p
ak : bk] and the complete quotients

[bk, p
ak+1 : bk+1, . . .].

By simplifying the finite continued fraction [b0, p
a1 : b1, . . . , p

ak : bk], we
see that the convergents are indeed rational numbers and the integers Pk and
Qk satisfy the recurrence

Pn = bnPn−1 + panPn−2, Qn = bnQn−1 + panQn−2, for n > 0, (1.2)

where the sequences were extended by including the initial values

a0 = 0, P−2 = 0, P−1 = 1, Q−2 = 1, Q−1 = 0. (1.3)

It follows easily that gcd(PnQn, p) = gcd(Pn, Pn−1) = gcd(Qn, Qn−1) =
gcd(Pn, Qn) = 1 for all n > 0.

If the initial continued fraction (1.1) is infinite, it can be shown that the
sequence of convergents (Pn/Qn)n>0 actually converges in the p-adic absolute
value to a p-adic unit which is the value assigned to (1.1). In the other
direction, after multiplying a given p-adic number by an appropriate power
of p so that it becomes a p-adic unit, we can expand this number into a p-adic
continued fraction.

Although a finite Schneider’s p-adic continued fraction always represents
a positive rational number, the converse is not true. This is a stark difference
from the usual simple continued fraction algorithm in the reals.

Bundschuh [5] showed that if a rational number has an infinite Schnei-
der’s p-adic continued fraction expansion, then −1 must appear as its com-
plete quotient. Since −1 = [p − 1, p : p − 1, p : p − 1, . . .], this is the same
as saying that if the continued fraction expansion of a rational number does
not terminate, then from some point onwards the block p − 1, p repeats in-
definitely. In [12] an upper bound was given for the required number of steps
in the expansion of a rational number before the expansion either terminates
or reaches −1 as a complete quotient.
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This paper is organized as follows. In Section 2, we prove that there
are more (positive) rational numbers with infinite p-adic continued fractions
than rational numbers whose expansion terminates. Thus we prove a con-
jecture made by Hirsh and Washington [9, §§ 2, 6]. In Section 3, we show
results in the opposite direction, there is still a sufficient number of rational
numbers with finite expansions. The precise meaning of these statements will
be provided in the relevant theorems. Section 4 gathers diverse results on
rational numbers with nonterminating continued fraction expansions. Some
of our results generalize to any prime p results proved for p = 2 by Hirsh and
Washington [9, § 4] or extend to more general sets of rationals.

2 Upper bound on the number of fractions

with terminating expansion

For a prime p and a real number x > 1, denote by

Np(x) = {u/v : u, v ∈ Z, 1 6 u 6 x, 1 6 v 6 x, gcd(u, v) = gcd(uv, p) = 1}.

Let d be a positive integer not divisible by p. When x tends to infinity, the
number of pairs (u, v) of positive integers both bounded by x and both divis-
ible by d such that p does not divide uv is asymptotically (p−1

p
x
d
)2. Therefore,

the inclusion-exclusion principle suggests that

cardNp(x) ∼
(p− 1

p
x
)2 ∞∑

d=1
p-d

µ(d)

d2
= x2

(p− 1)2

p2

(
1− 1

p2

)−1 ∞∑
d=1

µ(d)

d2

= x2
(p− 1)2

p2
p2

p2 − 1

( ∞∑
d=1

1

d2

)−1
=
p− 1

p+ 1

6

π2
x2.

Regardless of this, since the number of coprime pairs (u, v) with 1 6 u 6 x
and 1 6 v 6 x is 6

π2x
2+O(x log x) (see e.g. [1, Theorem 3.9] or [6, Proposition

6.6.3]), by excluding pairs of the form (pm, n) or (n, pm), where gcd(n, p) = 1
and pm, n 6 x, we can crudely bound

cardNp(x) >
( 6

π2
− 1

200
− 2

1

p

p− 1

p

)
x2 >

1

10
x2, (2.1)

for x large enough. This will be sufficient for our purposes. Let us also note
that because of symmetry taking (u, v) to (v, u), we have

card
(
Np(x) ∩ (1,+∞)

)
=

1

2
(cardNp(x)− 1) (2.2)
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Now we state in a precise manner the result confirming a conjecture by
Hirsh and Washington, for which they gave numerical support and heuristic
arguments [9, § 6], that rational numbers with nonterminating expansion are
more common than those with terminating expansion.

Theorem 1. For a prime p and a positive number x, the number of elements
in Np(x) with terminating p-adic continued fraction expansion is� x2(1−p

−8).
The number of elements in Np(x) ∩ (1,+∞) with nonterminating expansion
is � x2.

Note that throughout this paper the constants implicit in Vinogradov�,
� and Landau O(·) notation depend at most on p.

Proof. Let x = pD for some D > 0 large enough. Consider any fraction from
Np(p

D) with terminating p-adic continued fraction expansion

Pn
Qn

= [b0, p
a1 : b1, p

a2 : b2, . . . , p
an : bn],

where we denoted our fraction Pn/Qn in order to be consistent with the
notation for its convergents Pk/Qk. We can assume that Pn is large enough
in terms of p.

Since Pn > Pn−1 and Qn > Qn−1 for n > 0 by (1.2) and the inequalities
are strict for n > 2, we have from the same basic recurrences (1.2) that
Pn > (pan + 1)Pn−2 and Qn > (pan + 1)Qn−2. It follows that

PnQn > PnQn−1 > (pan + 1)(pan−1 + 1)Pn−2Qn−3 > . . . >

> (pan + 1)(pan−1 + 1) · · · (pa2 + 1)P1Q0

> (pan + 1)(pan−1 + 1) · · · (pa2 + 1)(pa1 + 1)P−1Q0

for n odd and

PnQn > Pn−1Qn > (pan + 1)(pan−1 + 1)Pn−3Qn−2 > . . . >

> (pan + 1)(pan−1 + 1) · · · (pa1 + 1)P−1Q0

for n even, so the same lower bound holds for PnQn for all positive integers
n.

Since Pn/Qn ∈ Np(p
D), this implies

p2D > (pa1 + 1)(pa2 + 1) · · · (pan + 1), so

2D >
n∑
i=1

logp(p
ai + 1) =

n∑
i=1

(
ai + logp

(
1 +

1

pai

))
>

n∑
i=1

(
ai +

1

pai+1

)
,
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where the last inequality follows from Bernoulli inequality saying(
1 +

1

pai

)pai+1

> p.

Multiplying by p2, we obtain

2Dp2 >
n∑
i=1

(
p2ai +

1

pai−1

)
>

n∑
i=1

(p2ai + εi), (2.3)

where εi = 1 for ai = 1 and εi = 0 for ai > 1.
Therefore, the number of pairs of sequences

(
(ai)16i6n, (bi)06i6n

)
such

that the value of the continued fraction [b0, p
a1 : b1, . . . , p

an : bn] is in Np(p
D)

is less than the number of solutions of inequality (2.3) (for (ai)i) multiplied
by (p− 1)n+1 (for (bi)i).

Now, employing generating functions (refer e.g. to [17]), we see that the
number of fractions in Np(p

D) with terminating expansion is smaller than
the coefficient of zb2Dp

2c in the power series

(1 + z + z2 + · · · )
∞∑
n=1

(p− 1)
(
(p− 1)zp

2+1 + (p− 1)z2p
2

+ (p− 1)z3p
2

+ · · ·
)n

=
1

1− z
(p− 1)2

(
zp

2+1 + z2p
2

1−zp2
)

1− (p− 1)
(
zp2+1 + z2p

2

1−zp2
)

=
(p− 1)2(zp

2+1 + z2p
2 − z2p2+1)

(1− z)
(
1− zp2 − (p− 1)(zp2+1 + z2p2 − z2p2+1)

) . (2.4)

From this, we obtain that the number of such fractions is

� r(2D−1)p
2−1, (2.5)

where r is an upper bound on the (standard) absolute value of all roots
in complex numbers of the polynomial reciprocal to the polynomial in the
denominator of the rational function (2.4). Thus, we have to find an upper
bound for the roots of the polynomial

R(z) = z2p
2+1 − zp2+1 − (p− 1)zp

2 − (p− 1)z + (p− 1)

= (zp
2+1 − p+ 1)(zp

2 − 1)− (p− 1)z

=
(
z2p

2 − zp2 − (p− 1)
)
z − (p− 1)(zp

2 − 1).

Let us show that we can take

r = p
1
p2 − 1

p8
,
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so let r be defined in this way. We have to show that it is indeed the required
upper bound on the absolute values of the roots of R(z).

First note that r > 1 since(
1 +

1

p8

)p2
< e

1
p8
p2

= e
1
p6 < 2 6 p.

Furthermore, from Bernoulli inequality, for m > 1, we get

rm =
(
p

1
p2 − 1

p8

)m
= p

m
p2
(
1− p−8−

1
p2
)m

> p
m
p2
(
1−mp−8−

1
p2
)
> p

m
p2

(
1− m

p8

)
.

Thus, we have the lower bounds

rp
2

> p
p2

p2

(
1− p2

p8

)
= p
(

1− 1

p6

)
> p− 1, (2.6)

r2p
2

> p
2p2

p2

(
1− 2p2

p8

)
> p2

(
1− 1

p5

)
,

as well as the upper bound

rp
2

= p
(
1− p−8−

1
p2
)p2

<
p(

1 + p
−8− 1

p2
)p2

<
p

1 + p
−6− 1

p2

<
p

1 + p−7
< p

(2.7)

For a complex number z such that |z| > r, the triangle inequality and
(2.6) imply

|R(z)| =
∣∣(zp2+1 − p+ 1)(zp

2 − 1)− (p− 1)z
∣∣

>
∣∣zp2+1 − p+ 1

∣∣ · ∣∣zp2 − 1
∣∣− (p− 1)|z|

>
(
|z|p2+1 − p+ 1

)(
|z|p2 − 1

)
− (p− 1)|z| = R(|z|),

so it suffices to check that for real z > r, R(z) 6= 0 holds.
Because of (2.6), for z > r, we have

R′(z) = (2p2 + 1)z2p
2 − (p2 + 1)zp

2 − (p− 1)p2zp
2−1 − (p− 1)

>
(
(2p2 + 1)(p− 1)− (p2 + 1)

)
zp

2 − (p− 1)p2zp
2−1 − (p− 1)

> (p− 1)p2
(
zp

2 − zp2−1
)

+ (p− 2)(p2 + 1)zp
2 − (p− 1). (2.8)
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For p > 3, (2.8) is positive since z > 1 and (p−2)(p2 +1) > p−1. For p = 2,
(2.8) is 4z4 − 4z3 − 1 and substituting z = r > 1.18, we check directly that
the value is positive for all z > r. Therefore, R′(z) > 0 for all z > r, so there
only remains to verify that R(r) > 0.

We have

R(r) =
(
r2p

2 − rp2 − p+ 1
)
r − (p− 1)

(
rp

2 − 1
)

>
(
p2 − 1

p3
− p− p+ 1

)
r − (p− 1)2 = (p− 1)2(r − 1)− 1

p3
r,

so R(r) > 0 will follow from

r − 1

r
>

1

p3(p− 1)2
, i.e.

r > 1 +
1

p3(p− 1)2 − 1
. (2.9)

Since

r = e
log p

p2 − 1

p8
> 1 +

log p

p2
+

1

2

( log p

p2

)2
− 1

p8
> 1 +

log p

p2
,

(2.9) will certainly hold if(
p3(p− 1)2 − 1

)
log p > p2,

and, as can easily be checked, this inequality is true for all p > 2. This

concludes the proof that r = p
1
p2 − 1

p8
is a valid bound for the roots of R(z).

Bernoulli inequality implies that p < (1 + p−7)p
8
. This is equivalent to

p

1 + p−7
< p1−p

−8

. (2.10)

Now, (2.5), (2.6), (2.7), and (2.10) show that the number of elements in
Np(x) with terminating p-adic continued fractions is

�
(
rp

2)2D 1

rp2+1
�
( p

1 + p−7

)2D
�
(
p1−p

−8)2D
= x2(1−p

−8).

The last claim in the theorem follows by comparing the previous inequality
with (2.1) and (2.2).

While the conjecture and the discussion in [9, § 6] are made for fractions
u/v with bounded |u|+ |v| and our results are given for u/v with bound on
max{|u|, |v|} (see the definition of Np(x)), this poses no difficulty since

max{|u|, |v|} 6 |u|+ |v| 6 2 max{|u|, |v|}

so the asymptotic bounds in our results are still valid in the setting of Hirsh
and Washington.
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3 Lower bound on the number of fractions

with terminating expansion

Although rational numbers with nonterminating p-adic continued fractions
are more common than those with terminating expansions, the next theorem
shows that the latter are still fairly common.

Theorem 2. For a prime p and a positive number x, the number of elements
in Np(x) with terminating p-adic continued fraction expansion is � x1+ε,
where ε is a small positive number depending only on p.

For p > 7, even if we restrict ourselves to elements in Np(x) with ter-
minating expansion whose every partial numerator is equal to p, the same
bound still holds.

Proof. Let
Pn
Qn

= [b0, p
a1 : b1, p

a2 : b2, . . . , p
an : bn]

be a rational number with a finite p-adic continued fraction and, as before,
we denote its convergents by Pk/Qk for 0 6 k 6 n.

From (1.2), it can easily be proven by induction that Pk > Qk and Pk >
Pk−1 for k > 0 with strict inequalities unless k = 0 and b0 = 1.

We have

Pn = bnPn−1 + panPn−2 = bn(bn−1Pn−2 + pan−1Pn−3) + panPn−2

< (bnbn−1 + bnp
an−1 + pan)Pn−2 < . . . <

< (bnbn−1 + bnp
an−1 + pan)(bn−2bn−3 + bn−2p

an−3 + pan−2) · · ·
· · · (b2b1 + b2p

a1 + pa2)P0 (3.1)

for n even and a similar inequality for n odd.
Let x = pD for some D > 0 large enough. From (3.1), it now follows

that the number of fractions in Np(x) with terminating p-adic continued
fraction expansion is at least as large as the number of sequences (bi)06i6n ∈
{1, 2, . . . , p− 1}n+1, n > 0, (we set all ai = 1) such that

(bnbn−1 + bnp+ p)(bn−2bn−3 + bn−2p+ p) · · · < pD−1, (3.2)

where the product on the left hand side ends with either b2b1 + b2p + p or
b1b0 + b1p+ p depending on the parity of n.

Clearly, we have bnbn−1 + bnp+ p < 3pbn and we consider the size of this
expression depending on which of the following intervals contains bn:[

1,
p1/3

3

]
,
(p1/3

3
,
p1/2

3

]
,
(p1/2

3
,
p2/3

3

]
,
(p2/3

3
,
p

3

]
,
(p

3
,
p4/3

3

]
. (3.3)
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Note that for p > 27, the union of these intervals covers the entire segment
[1, p− 1]. If, for example, we take bn from the interval

(
p1/3/3, p1/2/3

]
, then

there are at least
(
1
3
(p1/2 − p1/3) − 1

)
(p − 1) pairs (bn, bn−1) and for these

pairs we have bnbn−1 + bnp+ p < p3/2. Similarly, we observe that for bn from
the intervals in (3.3), the upper bound on bnbn−1 + bnp+ p is equal to

p4/3, p3/2, p5/3, p2, p7/3,

respectively. Here we have to ensure that the length of each interval is at
least 1, which can easily be confirmed for p > 63 = 216.

If we take the sixth power of inequality (3.2) and substitute the just
observed bounds, we see that the number of the required sequences (bi)06i6n
is at least as large as the coefficient of z6D−6 in the power series

(1 + z + z2 + · · · )
(
L(z) + (L(z))2 + (L(z))3 + · · ·

)
(3.4)

=
1

1− z
L(z)

1− L(z)
, where (3.5)

L(z) =
1

3
(p− 1)

(
(p1/3 − 3)z8 + (p1/2 − p1/3 − 3)z9+

+ (p2/3 − p1/2 − 3)z10 + (p− p2/3 − 3)z12 + (3p− 3− p)z14
)
.

For an asymptotic bound, it is sufficient to show that for the polynomial
K(z) = z14

(
1 − L(1

z
)
)
, its dominant root (in standard absolute value) in

complex numbers is strictly greater than p1/6 and that all of its other roots
are of strictly smaller absolute value than the dominant root. Combined with
the fact that the coefficients of L(z) are nonnegative, this guarantees that
for fixed p and for D large enough, the number of the required sequences
(bi)06i6n, and thus also the number of elements of Np(p

D) with terminating
p-adic continued fraction expansion, is greater than pD(1+ε), for some small
ε > 0 depending only on p.

Let us check these bounds for the roots of K(z). If we substitute q = p1/6

into

K(z) = z14 − 1

3
(p− 1)

(
(p1/3 − 3)z6 + (p1/2 − p1/3 − 3)z5+

+ (p2/3 − p1/2 − 3)z4 + (p− p2/3 − 3)z2 + (2p− 3)
)
,

we obtain

3K(q) = −q14 + 2q13 + 2q12 + 3q11 + 3q10 + 7q8

− 2q7 + q6 − 3q5 − 3q4 − 3q2 − 3.
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Writing this as

3K(q) = −q14
(

1− 2

q
− 2

q2
− 3

q3
− 3

q4
− 7

q6

)
− q7

(
2− 1

q

)
− (3q5 + 3q4 + 3q2 + 3),

where functions in each pair of parentheses are strictly increasing in q > 0,
we easily verify that for q > 3.09, i.e. p > 871, the value of this polynomial
in q is negative.

Since the leading term of K(z) is equal to z14, we have limz→+∞K(z) =
+∞, which implies that, for p > 871, K(z) has a real root ζ in the interval
(p1/6,+∞). As the function K(z)/z14 is strictly increasing on this interval,
there are no other roots of K(z) in this interval.

Assume that a complex number η, |η| > ζ, is some other root of K(z).
Then from the triangle inequality and the fact that all the coefficients of L(z)
are nonnegative, it follows

1 = L
(1

η

)
=
∣∣∣L(1

η

)∣∣∣ 6 L
( 1

|η|

)
6 L

(1

ζ

)
= 1,

so η has to be a positive real number of absolute value equal to ζ and thus
η = ζ.

The coefficients of L′(z) are nonnegative, which immediately gives L′(1
ζ
) >

0, so 1
ζ

is a simple root of 1− L(z) and ζ is a simple root of K(z).

The fraction c
1−ζz appears in the partial fraction decomposition of (3.5)

with a coefficient c 6= 0, otherwise 1
ζ

would not be a pole of the rational

function (3.5). Finally, the coefficients in (3.4) are positive for terms zk of
large enough degree (actually, for k > 8) and are also asymptotically equal
to cζk by the preceding discussion. Hence, we conclude that c > 0. This
completes the proof for p > 871.

For every prime p, 11 6 p < 871, using a computer we count for how
many pairs (bn, bn−1) ∈ {1, 2, . . . , p− 1}2 the value of bnbn−1 + bnp+ p lies in
each of the intervals

(p, p4/3], (p4/3, p3/2], (p3/2, p5/3], (p5/3, p2], (p2, p7/3].

If we denote these counts of pairs by c1, c2, c3, c4, c5 respectively, then the
procedure using generating functions is the same as before. For each of these
p, we check with a computer algebra system (we used Wolfram Mathematica)
that the root with the smallest absolute value of

1− L(z) = 1− (c1z
8 + c2z

9 + c3z
10 + c4z

12 + c5z
14)
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is strictly smaller than p−1/6.
The remaining cases to verify are those where p ∈ {2, 3, 5, 7}. Here, for

max{an, an−1} 6 4, we replace in (3.1)

t = bnbn−1 + bnp
an−1 + pan with p

1
6
d6 logp(t)e,

where d·e is the ceiling function. The next steps are similar as in the previous
case. For example, in the case p = 2, we obtain the polynomial

1− L(z) = 1− z14 − 2z17 − z20 − 2z21 − 2z23

− z25 − 2z26 − 2z27 − 2z28 − z31

which has a root smaller than 2−1/6 − 0.009.
Analogously, we check the cases p ∈ {3, 5, 7}.

Corollary 3. Let p be any prime number. For any k > 0, any sequences
(ai)16i6k of positive integers and (bi)06i6k of elements in {1, . . . , p− 1}, and
any positive number C, there are infinitely many positive integers u such that
there are at least C reduced positive rational numbers u/v with nonterminat-
ing p-adic continued fraction expansion, all of them having initial part

[b0, p
a1 : b1, p

a2 : b2, . . . , p
ak : bk, . . .].

Proof. In the proof of Theorem 2, we can fix the initial partial numerators
and denominators in the expansion of the rational number Pn/Qn which we
considered. The only thing changing is that the right hand side of (3.2) needs
to be divided by a large enough constant depending on the terms that we
fixed in the continued fraction expansion. This, however, changes neither the
rest of the proof nor its conclusion. We obtain the same asymptotic lower
bound with constants in � now depending only on p and (ai)16i6k.

If, for some C, there were only finitely many positive integers u with at
least C rational numbers u/v having nonterminating expansion with a given
initial part, then the number of such rational numbers belonging to Np(x)
would be less than (C + 1)x for x large enough. This contradicts the lower
bound from Theorem 2. Note that we also used here the fact that for a fixed
positive integer u, there are less than u fractions u/v with terminating p-adic
continued fraction since for u/v < 0 and 0 < u/v < 1, i.e. for v < 0 and
v > u, the p-adic continued fraction expansion of u/v is clearly infinite.

Using the simple identity

b+
pa

u
v

=
bu+ pav

u
,
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we see that a result analogous to the previous corollary holds if we look at
denominators instead of numerators, i.e. changing only “there are infinitely
many positive integers u” in the statement of Corollary 3 with “there are
infinitely many positive integers v”, the claim still holds.

4 Various results on expansion of

rational numbers

For a positive integer n, we slightly modify and generalize the notation from
[9] and denote by Sp(n) the set of all positive rationals of the form u/v, where
u + v = n and gcd(uv, p) = gcd(u, v) = 1. Let Tp(n) be the set of elements
in Sp(n) with terminating p-adic continued fraction expansion.

The next proposition was proved for p = 2 in [9, Proposition 1].

Proposition 4. If p divides n, then cardTp(pn) = cardTp(n).

Proof. Let u/v ∈ Tp(pn). Then 1 = gcd(u, v) = gcd(pn − v, v) = gcd(pn, v)
and

u

v
− (p− 1) =

pn− v
v
− p+ 1 = p

(n
v
− 1
)

=
p
v

n−v
.

Since v+(n−v) = n and p divides n, we immediately see that gcd(n−v, p) =
gcd(v, p) = 1 and gcd(v, n− v) = gcd(v, n) = 1.

From u
v
∈ Tp(pn), we conclude that v

n−v ∈ Tp(n). Thus we have a map

Tp(pn) → Tp(n) given by u
v
7→ v

n−v with the inverse w
z
7→ pn−w

w
. Note that

while the first rule does not give a map from Sp(pn) to Sp(n) since n− v can
be negative, the second one does give a map from Sp(n) to Sp(pn).

In the next proposition, we generalize to any prime p the result from [9,
Corollary 2] which was proved for p = 2.

Proposition 5. For a positive integer n, the set Tp(p
n) contains only the

rational number un/un−1, where

uk =
1

p+ 1

(
pk+1 + (−1)k

)
, k > 0.

Proof. Note that uk is indeed a positive integer for every nonnegative integer
k.

We prove the claim by induction.
For n = 1, if u/v ∈ Tp(p), then u+ v = p, which is equivalent to

u

v
= p− 1 +

p
v

1−v

12



if v > 1. However, v
1−v < 0 has nonterminating p-adic continued fraction

expansion, so we must have v = 1, which gives u/v = p − 1 = u1/u0 as the
only fraction with a terminating expansion.

Supposing that the statement of the proposition holds for n− 1 > 1, let
u/v ∈ Tp(pn). Then

u

v
=
pn − v
v

= p− 1 +
pn

v
− p = p− 1 +

p
v

pn−1−v
.

Now, v+(pn−1−v) = pn−1 and the induction assumption imply that v = un−1,
so that u = pn − v = pn − un−1 = un.

Notice that ∣∣∣ un
un−1

− (−1)
∣∣∣
p

=
∣∣∣ pn+1 + pn

pn + (−1)n−1

∣∣∣
p

= p−n

which is in line with the fact that un/un−1 = [p − 1, p : p − 1, . . . , p : p − 1]
is a convergent of the p-adic continued fraction expansion of −1.

For p > 2, the number −1 has rational approximations which are equally
close to it in p-adic distance, but have smaller height (maximum of the stan-
dard absolute value of numerator and denominator), such as pn+1

2
/p

n−1
2

. How-
ever, according to the previous proposition, these approximations must have
infinite p-adic continued fractions. Some results connecting the quality of
rational approximations with the finiteness of their Schneider’s continued
fraction expansion can be found in [12, § 3].

Let us also mention that because of the mirror formula for continued
fractions, it was to be expected that the p-adic continued fraction expansion
of un/un−1 is symmetric (i.e. palindromic). Namely, if

Pn
Qn

= [b0, p
a1 : b1, . . . , p

an : bn] (4.1)

and Pn−1/Qn−1 is its penultimate convergent, then it can easily be shown
[13, § I.4] that Pn/Pn−1 = [bn, p

an : bn−1, . . . , p
a1 : b0] (reversing the order of

all elements). Here we have Qn = un−1 = Pn−1. Hence, Pn/Qn = Pn/Pn−1
and the continued fraction expansion of Pn/Qn is necessarily symmetric.

In a similar vein, if b0 and bn are not 1 and the expansion (4.1) is not
symmetric, then

Pn −Qn

Qn

and
Pn − Pn−1
Pn−1

are different elements of Tp(Pn) and, therefore, cardTp(Pn) > 2.

13



Proposition 6. For every prime p, lim supn→+∞ cardTp(n) = +∞ holds.
For primes p > 2,

lim sup
n→+∞
p-n

cardTp(n) = +∞,

where lim sup is taken over positive integers not divisible by p.

Proof. Let p > 2. Take any positive number C, fix only b0 = 1 and apply
Corollary 3. If u is any of the positive integers guaranteed to exist by that
corollary and u/v has a terminating p-adic continued fraction with the initial
partial denominator equal to b0 = 1, then pu

v
−1 = pu−v

v
lies in Tp(pu), so that

cardTp(pu) > C. Since C was arbitrary, the first assertion of the proposition
holds.

Now, let p > 2. Take any positive number C, fix only b0 = 2 and again
apply Corollary 3. If u is any of the positive integers guaranteed to exist by
that corollary and u/v has a terminating p-adic continued fraction with the
initial partial denominator equal to b0 = 2, then u is not divisible by p and
u
v
− 1 = u−v

v
lies in Tp(u), so that cardTp(u) > C. Since C was arbitrary, the

second assertion of the proposition holds.

Proposition 7. For any prime p, there exists a positive integer n divisible
by p such that Tp(n) is an empty set while Sp(n) is not empty.

Note that we are not interested in the cases like p = 3 and n = 10
where already Sp(n) is empty which tells us nothing about continued fraction
expansions.

Proof. For p = 2 we can take n = 30 = 2 · 15, while for p = 3, we can take
n = 66 = 3 · 22. The statement follows by checking expansions of elements
in Sp(n), where we only need to consider elements larger than 1, since those
smaller than 1 obviously have nonterminating continued fraction expansions.
Thus we verify expansions of 4 elements in S2(30) and 10 elements in S3(66).

Now, suppose p > 5 and let k be an odd number, 1 6 k 6 p − 1, such
that 2p + k is a prime number. Although, for a fixed k, it remains an open
question whether there exist infinitely many prime numbers p such that 2p+k
is also a prime (e.g. for k = 1 such p are called Sophie Germain primes),
still, we know that there is always a prime number in the interval (2`, 3`) for
any integer ` > 1 (see e.g. [2], but note that a stronger result was proved
earlier in [8, Lemma 2]).

We will show that for n = p(3p + k), the set Tp(n) is empty. Let u/v ∈
Sp
(
p(3p+ k)

)
. We have

u

v
− (p− 1) = p

3p+ k − v
v

. (4.2)

14



For v = 3p+ k, gcd(u, v) = 3p+ k > 1, so u/v 6∈ Sp(n).
If v > 3p+ k, (4.2) shows that u/v 6∈ Tp(n).
Thus, when v ≡ k (mod p), we only need to check v ∈ {k, 2p + k} since

for v = p+ k, both u and v are even.
For v = 2p+ k, we have

3p+ k − v
v

=
p

2p+ k
=

p

k + p
1
2

,

which, together with (4.2), shows that the expansion of u/v does not termi-
nate.

For v = k, we have

3p+ k − v
v

=
3p

k
=
p
k
3

=
p

`+ k−3`
3

,

where we take ` ∈ {1, . . . , p − 1} such that p divides k − 3`, which, since
k − 3` < k < p, implies that k − 3` 6 0. If k is not divisible by 3, then
k − 3` < 0 and the expansion of u/v is nonterminating. If k is divisible by
3, then 3 divides both v = k and n = p(3p + k) and thus also u = n− v, in
contradiction with gcd(u, v) = 1.

In what follows, we assume that v < 3p + k and v 6≡ k (mod p). Then
(4.2) shows that the beginning of p-adic expansion of u/v is

u

v
= p− 1 +

p
v

3p+k−v
,

where gcd(v, 3p+ k − v) = gcd(v, 3p+ k) = 1 and gcd(v(3p+ k − v), p) = 1.
Denote w = 3p+ k − v. We want to show that v/w 6∈ Tp(3p+ k).

Let b ∈ {1, . . . , p− 1} such that p | (v − wb). Then

v

w
− b =

v − wb
w

=
3p+ k − w(b+ 1)

w

and from 3p+k−w(b+ 1) < 3p+k < 4p, we have the following five possible
cases.
Case 1. If 3p + k − w(b + 1) < 0, then v/w obviously has infinite p-adic
continued fraction expansion.
Case 2. If 3p + k − w(b + 1) = 0, then v = wb, so gcd(v, w) = 1 implies
w = 1, b = 3p+ k − 1 > 3p which is impossible.
Case 3. If 3p + k − w(b + 1) = p, then w(b + 1) = 2p + k, which is prime
by assumption, so either w = 1 and we get a contradiction as in Case 2, or
w = 2p+ k and b+ 1 = 1 which is again impossible.

15



Case 4. If 3p+ k − w(b+ 1) = 2p, then w(b+ 1) = p+ k while

v

w
− b =

2p

w
=
p
w
2

.

Since gcd(v, w) = 1 and v + w is even, both v and w are odd and w/2 is
not an integer. Taking b′ ∈ {1, . . . , p − 1} such that w − 2b′ is divisible by
p, we see that w − 2b′ is odd, w − 2b′ < w = p+k

b+1
< 2p

2
= p and conclude

w − 2b′ < 0, so that
v

w
= b+

p

b′ + w−2b′
2

is not in Tp(3p+ k).
Case 5. Finally, if 3p+ k − w(b+ 1) = 3p, then w(b+ 1) = k and

v

w
− b =

3p

w
=
p
w
3

.

If 3 divides w, from w(b + 1) = k, we get that 3 divides k and thus also
v + w = 3p+ k, implying gcd(v, w) > 1 which is not possible.

Thus w/3 is not an integer and we take b′ ∈ {1, . . . , p − 1} such that p
divides w−3b′. Now, 2w 6 w(b+1) = k 6 p−1 shows that w−3b′ < w 6 p−1

2

and, since w − 3b′ 6= 0, we have w − 3b′ < 0. This means that

v

w
= b+

p

b′ + w−3b′
3

has nonterminating expansion and we are finished.
The set Sp(3p+ k) is not empty since for k > 1 it contains 3p+k−1

1
, while

for k = 1 and p > 3 it contains 3p−2
3

. Therefore, Sp
(
p(3p + k)

)
is also not

empty having

p(3p+ k)− (3p+ k − 1)

3p+ k − 1
as an element if k > 1 and

3p2 − 2p+ 2

3p− 2
if k = 1, p > 3.

Corollary 8. For any prime p, there are infinitely many positive integers n
such that Sp(n) is nonempty while Tp(n) is empty.

Proof. The statement follows immediately from Propositions 4 and 7. The
only detail left to mention is that from u/v ∈ Sp(n), we get p − 1 + p

u/v
∈

Sp(pn), so Sp(n) being nonempty implies that Sp(pn) is nonempty as well.
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Proposition 9. Let p be an odd prime and n > 3 an odd positive integer
such that n(n − 1) is not divisible by p and (p, n) 6∈ {(3, 5), (3, 11), (5, 9)}.
Then there is a fraction u/v ∈ Sp(n) \ Tp(n) such that u/v > 1.

Proof. For odd n > 3, the fraction

n+1
2

n−1
2

= 1 +
1
n−1
2

is obviously reduced and lies in the interval (1, 2). If both its numerator and
denominator are not divisible by p, then this fraction is in Sp(n). However,
in its p-adic continued fraction expansion, the first partial denominator (b0
as in (1.1)) cannot be 1, since n+1

2
6≡ n−1

2
(mod p), so this fraction cannot be

in Tp(n) since its next complete quotient is negative. Therefore, we are left
to consider cases when p divides n−1

2
or n+1

2
. The first case is excluded by

the statement of the proposition.
Let n = 2kp− 1 for a positive integer k. The fraction

n+p
2

n−p
2

= 1 +
p

p−1
2

+ (k − 1)p

is in Sp(n) since p does not divide n. It is in Tp(n) if and only if k = 1 or
k = pt + 1 for a nonnegative integer t.

On the other hand,

n− 1

1
= p− 2 + (2k − 1)p

is also in Sp(n) since p does not divide n − 1. It is in Tp(n) if and only if
2k = 1 or 2k = pt

′
+ 1 for a nonnegative integer t′.

Thus, if both of these fractions are in Tp(n), we can only have 2 = pt
′
+ 1

or 2(pt + 1) = pt
′

+ 1. The first equation gives k = 1, n = 2p − 1, while
the second one implies t′ > 1 and reducing modulo p gives 2 ≡ 1 (mod p) or
4 ≡ 1 (mod p) which holds only for p = 3, t = 0, k = 2, n = 11 which was
not allowed.

The only case left to study is n = 2p− 1. Let ` be a positive integer such
that 2` < p < 2`+1. Observe the fraction

n− 2`

2`
=

2p− 2` − 1

2`
.

It is easily seen that this fraction lies in the open interval (1, 3). Hence,
for it to have a finite p-adic continued fraction expansion, the first partial
denominator b0 has to be 1 or 2.
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If the first partial denominator is 1, the numerator of

n− 2`

2`
− 1 =

2p− 2`+1 − 1

2`
,

i.e. 2p−2`+1−1 has to be divisible by p, which means that p divides 2`+1+1.
However,

1 =
2`+1

2`+1
<

2`+1 + 1

p
<

2`+1 + 1

2`
< 3,

implying 2`+1 + 1 = 2p and this is not possible because of the difference in
the parity.

If the first partial denominator is 2, the numerator of

n− 2`

2`
− 2 =

2p− 3 · 2` − 1

2`
,

i.e. 2p−3 ·2`−1 must be divisible by p, which means that p divides 3 ·2`+1.
Since

1 <
3 · 2` + 1

2`+1
<

3 · 2` + 1

p
<

3 · 2` + 1

2`
< 4,

this would imply 3 · 2` + 1 is either 2p or 3p, which is impossible because 1
is not divisible by 2 and 3.

There remains only the possibility that (n−2`)/2` 6∈ Sp(n). Since gcd(n−
2`, 2`) = gcd(2p − 1, 2`) = 1 and p does not divide 2`, this can only happen
if p divides n − 2` = 2p − 2` − 1, i.e. p divides 2` + 1. Because 2` + 1 6 p,
this implies p = 2` + 1, so that p is a Fermat prime of the form p = 22r + 1
for some integer r > 0 (see e.g. [6, Example 2.8]).

For r ∈ {0, 1}, we get (p, n) ∈ {(3, 5), (5, 9)}, which was excluded in the
proposition. For r > 2, we have p > 17 and

p ≡ 22r + 1 ≡
(
222
)2r−2

+ 1 ≡ 12r−2

+ 1 ≡ 2 (mod 5),

so we have
p+ 2

p− 3
∈ Sp(n) and

p+ 2

p− 3
= 1 +

5

p− 3

is in the interval (1, 2). Just as before, because p does not divide 5, we see
that this fraction is not in Tp(n).

For every n given in the statement of this proposition, we found a fraction
greater than 1 lying in the set Sp(n) \Tp(n). This completes the proof of the
proposition.
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Note that we have

S3(5) =
{1

4
,
4

1

}
, S3(11) =

{ 1

10
,
4

7
,
7

4
,
10

1

}
, S5(9) =

{1

8
,
2

7
,
7

2
,
8

1

}
,

4 = [1, 3 : 1],
7

4
= [1, 3 : 1, 3 : 1], 10 = [1, 32 : 1],

7

2
= [1, 5 : 2],

8

1
= [3, 5 : 1],

so all fractions u/v ∈ Sp(n) ∩ (1,+∞) are in Tp(n) if (p, n) ∈ {(3, 5),
(3, 11), (5, 9)} and thus this pairs had to be excluded in the statement of
the previous proposition.

For a prime p > 5, let n = (p− 2)!. Then the fractions

1

n− 1
,

2

n− 2
, . . . ,

p+ 1

n− (p+ 1)

and their reciprocals are not in Sp(n). For k ∈ {2, 3, . . . , p−2}, gcd(k, n−k) =
gcd(k, n) = k > 1. Since n is even, for k ∈ {p−1, p+1}, both the numerator
and the denominator of k

n−k are divisible by 2. In p
n−p the numerator is

divisible by p. Finally, Wilson’s theorem (see e.g. [6, § 3.6]) shows that p
divides the denominator n− 1 in the fraction 1

n−1 .
Similarly, it is not hard to show that for any positive integer ` and

n =
∏

16m62`p
p-m

m,

we have k
n−k ,

n−k
k
6∈ Sp(n) for every k in the interval 1 6 k 6 2`p.

The examples show that we cannot simply go through numbers of the form
k

n−k for fixed k > 1 eliminating n such that k
n−k ∈ Sp(n) \ Tp(n) hoping to

confirm that this set difference is nonempty for all but finitely many positive
integers n. Nevertheless, the next theorem confirms just this fact and shows
much more. The downside is we need to use significantly stronger arguments
than those used thus far in this paper.

Theorem 10. For an odd prime p, there exist positive numbers c1 and c2
depending only on p such that for all integers n > c1, we have

card
(
Sp(n) \ Tp(n)

)
> c2

n

log n
. (4.3)

For p = 2, the same statement holds if we further require that such n be
even.

For p > 3, the claim remains true if instead of the inequality (4.3), we
set

card
((
Sp(n) \ Tp(n)

)
∩ (1,+∞)

)
> c2

n

log n
. (4.4)
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Proof. According to the prime number theorem for arithmetic progressions,
for a prime p, an integer s not divisible by p, and x > 0, the number π(x; p, s)
of primes q < x, q ≡ s (mod p) is asymptotically equal to x

(p−1) log x , where
log x is the natural logarithm of x. More precisely, the Siegel-Walfisz theorem
(see e.g. [11, pp. 5,382]) or the related results with explicit constants [4,
Theorem 1.3] say that there exist constants c3 and c4 depending only on p
such that ∣∣∣π(x; p, s)− x

(p− 1) log x

∣∣∣ < c3
x

(log x)2
for all x > c4. (4.5)

Let k0 be an integer satisfying

k0 6≡ 0 (mod p),

k0 6≡ n (mod p),

and if p > 3, 2k0 6≡ n (mod p).

Recall that for p = 2, n should be even, so such an integer k0 always exists.
We look at the prime numbers k in the interval (n/3, n/2) such that

k ≡ k0 (mod p) and obtain from (4.5) that the number of such k is greater
than

π
(n

2
; p, k0

)
− π

(n+ 1

3
; p, k0

)
>

1

p− 1

( n
2

log n
2

−
n+1
3

log n+1
3

)
− c5

n

(log n)2

>
1

p− 1

( n
2

log n
−

2n
5

log n

)
− c5

n

(log n)2
> c6

n

log n

if n > c7 for some positive constants c5, c6, c7 depending only on p.
For such k, the fractions k

n−k , n−k
k

are in Sp(n) since gcd(k(n − k), p) =

gcd(k0(n − k0), p) = 1 and from n
3
< k < n

2
, we get 1 < n−k

k
< 2, so

that gcd(n − k, k) = 1 as well. The numbers k
n−k < 1 are obviously not

in Tp(n), while for p > 3, the numbers n−k
k

> 1 are also not in Tp(n) since
1 > n−k

k
− 1 = n−2k

k
and n− 2k is not divisible by p.

Note that card(Sp(n)) 6 ϕ(n), where ϕ is Euler’s totient function. Since

ϕ(n) >
n

2 log log n
for n > 1014 and ϕ(n) <

n

log log n
for infinitely many n

as can be seen in [3, p. 72], perhaps the bound in (4.3) can be improved by
sieve methods.
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Bijenička cesta 30

10000 Zagreb, Croatia

E-mail address: pejkovic@math.hr

22


	Introduction
	Upper bound on the number of fractions with terminating expansion
	Lower bound on the number of fractions with terminating expansion
	Various results on expansion of  rational numbers

