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1 Uvod

Na procelju grkokatolicke konkatedralne crkve u Zagrebu nalazi se prozor s rozetom na
vrhu. Slika 1 prikazuje gornji dio toga prozora koji uklju¢uje Sesterolisnu rozetu.
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Slika 1

Na Slici 2 skicirali smo geometrijske likove s fotografije zanemarujué¢i pritom debljinu
kamenog mreziSta.

Uzmimo sada i nadalje da je polumjer velike kruznice 1. Drugim rije¢ima, Sirina crteza
na Slici 2 je 2. Kao mala vjezba za zagrijavanje, pozivamo citatelje da odrede povrSine i
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Slika 2

opsege likova oznacenih slovima A do F'. Naznadili smo samo po jedan primjerak svakog
oblika jer je iz simetrija jasno koje su povrsine i opsezi ostalih likova sa slike. Primjerice,
svaka od Sest “latica” sukladna je liku B.

Nakon malo promatranja i ra¢una, dobivamo

OAIQ?W PA:g
go=arccosé%1.23

Op =2 +5+V2 PD_%ﬁ_%_%D

Op=1+7 Po =7

Ovakvi zadaci redovito se pojavljuju u osnovnoskolskoj i srednjoskolskoj nastavi matema-
tike, npr. na hrvatskim natjecanjima trebalo je odrediti Pg — P4 (prvi zadatak za osmi
razred na drzavnom natjecanju 2021. godine) i Py + 6Pp (treé¢i zadatak za osmi razred
na zupanijskom natjecanju 2016. godine).

Pogledajmo jo$ jednom malo pazljivije fotografiju rozete. Primje¢ujemo da su na
vitraju ocrtane i kruznice upisane likovima C' i D. Odredimo polumjere tih kruznica.

Za odredivanje polumjera ro kruznice upisane krivolinijskom trokutu C', treba nam
polumjer 74 kruga A i polumjer rp kruznica upisanih likovima sukladnim B.
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Slika 3

U jednakokra¢nom trokutu na Slici 3 s krakom duljine r4 +rg = 1 — rp, nasuprot

osnovice duljine 2rp nalazi se kut mjere %’7 = %, pa je taj trokut jednakostranican iz cega
1

Jera=rp=3.

Slika 4

Na Slici 4 spojnice sredita triju kruznica ¢ine trokut sa stranicama duljina %, 1—rc

i % + rc¢ te kutom izmedu prvih dviju stranica jednakim §. Teorem o kosinusu daje
jednadzbu
1 2 /23?2 2 V3
Z = (= 1— 2_9.2(1— =
(3 +Tc> (3) {1 =re) 31 =70) 5

iz koje nakon kratkog racuna slijedi

5—2v/3
13

ro = ~ 0.12.
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Slika 5

Na Slici 5 naznacili smo duzine koje koristimo kod odredivanja polumjera kruznice
upisane liku D. Na desnom dijelu iste slike izdvojili smo te duzine i dopisali one duljine
koje mozemo dobiti iz uvjeta dodirivanja odgovarajuc¢ih kruznica i pravca.

Primijenimo li Pitagorin poucak na tri pravokutna trokuta sa Slike 5 desno, dobivamo

DO e (R ()

iz Gega slijedi rp = 3 — 2v/2 ~ 0.17.

2 Descartesov teorem

Postoji opc¢enita formula koja povezuje polumjere ¢etiriju kruznica takvih da se svake
dvije dodiruju. Tu je formulu René Descartes 1643. naveo u pismu kneginji Elizabeti
Falackoj.

Descartesov teorem. Polumgjer: r,r9, 173,14 Cetiriju kruznica koje se u parovima dodi-
ruju u razli¢itim tockama zadovoljavaju jednakost

1 1 1 1 1 1 1 1\2
. Tz T3 Ty o re T3 T4

U slucaju kada jedna od kruznica sadrzi ostale kruznice poput iscrtkane kruznice na
Slici 6, treba polumjer te kruznice uzeti kao negativan broj. To se dogodilo upravo kod
odredivanja polumjera kruznice upisane liku C sa Slike 2. Provjerite da za polumjere
-1, %, %, re = %ﬁ zaista vrijedi jednakost (2.1).

Descartesov teorem vrijedi i u posebnom slucaju kada je neka od kruznica zapravo
pravac. Pravac promatramo kao kruznicu beskonac¢no velikog polumjera, pa u tom slucaju

u formuli treba za % uvrstiti 0.



Slika 6

Kod nas se takva situacija pojavila prilikom odredivanja polumjera kruznice upisane
liku D. Tada nam Descartesov teorem daje

5(0 1 1 1 0 1 1 1\2
odnosno 7% — 6rp + 1 = 0, a ova kvadratna jednadzba ima rjesenja 3 — 2v/2 i 3 + 2v/2.
Sa Slike 2 je jasno da trebamo uzeti manje rjeSenje te smo tako brze dobili veé izracunati
polumjer rp = 3 — 2V/2.
Postoje brojni dokazi Descartesova teorema. Vjerojatno najizravniji dobiva se kori-
Stenjem Heronove formule za povrsinu trokuta.

Slika 7

Tri manja trokuta na Slici 7 ¢ine veéi trokut sa stranicama duljine r1+17q, ro+7rs3, 73471
kojemu je poluopseg rq + 1o + r3 1 stoga povrsina \/7“17“27“3(7“1 + 79 4+ r3). Analogno primi-
jenimo Heronovu formulu za dobivanje povrsina triju manjih trokuta te izjednac¢avanjem




zbroja tih povrSina s povrSinom veceg trokuta slijedi

\/7’17”2T3(7‘1+T2+7”3) :\/7’17"27“4(7“1+7“2+T4)
+ \/7“17’37”4(7"1 +7’3 +7’4) + \/7”27’37’4(7”2 +7“3 +7’4>

Spretnim manipulacijama ove jednakosti (kvadriranjima, sredivanjima i supstitucijama),
dolazimo relativno brzo do formule (2.1). Detalje pogledajte u [7].

Drugi dokaz |2, 1] koristi formulu za volumen tetraedra kojemu su dane duljine bridova.
U toj formuli volumen je izrazen kao determinanta odgovarajuce matrice reda 5, a za du-
ljine bridova tetraedra uvrstimo ry +1rq, 11 + 13, 71 + 14, 1o+ 73, 7o + 14, r3+74. U slucaju
kada se kruznice s radijusima ry, 9, 73, 74 U parovima diraju, sva cetiri vrha degeneriranog
tetraedra leZze u ravnini (Slika 7), pa je volumen tetraedra jednak 0. Izvodenjem ele-
mentarnih transformacija na spomenutoj matrici i upotrebom Binet-Cauchyjeva teorema,
dobiva se trazena jednakost (2.1).

Kona¢no, u Coxeterovom dokazu [2] primijeni se inverzija sa sredistem u jednom od
diralista kruznica. Dvije kruznice ¢ije diraliSte je centar inverzije preslikaju se u dva
paralelna pravca, a ostale dvije preslikaju se u kruznice koje dodiruju te pravce. Time
je situacija postala posebno jednostavna, ali treba jo$ neSto truda da se povezu pocetni
polumjeri s dobivenim polumjerima i polozajima likova.

3 Kompleksni Descartesov teorem

Sve ove dokaze samo smo ukratko skicirali jer ¢emo sada navesti i dokazati jednu lijepu
generalizaciju koja je objavljena tek u 21. stoljecu [6]. Prije iskaza tog rezultata, pojed-
nostavnimo zapis Descartesova teorema koriste¢i pojam zakrivljenosti.

Za kruznicu radijusa r zakrivljenost x definiramo kao recipro¢nu vrijednost radijusa,
K = % Zakrivljenost se moze definirati i u tockama drugih krivulja, ali nama ta opcenitija
definicija nece biti potrebna. Za kruznice je pojam zakrivljenosti intuitivno jasan. Sto je
veci radijus, to je zakrivljenost manja. Za pravac je radijus beskonacan, a zakrivljenost 0.

Sada pomocu zakrivljenosti k1, ks, k3, k4 Cetiriju kruznica koje se u parovima dodiruju,
mozemo (2.1) zapisati kao

2(k] + K3 + K3 + Kg) = (K1 + Ko + K3 + Kq)”. (3.1)

U poopcéenju koje ¢emo sada iskazati pojavljuju se i koordinate sredista kruznica za-
pisane kao kompleksni brojevi. Dakle, tocki s koordinatama (z,y) u Kartezijevom koor-
dinatnom sustavu pridruzen je kompleksni broj = + 7y.

Kompleksni Descartesov teorem. Ako se cetiri kruZnice sa zakrivljenostima k; i sre-
distima z; (j =1,2,3,4) u parovima dodiruju u razlic¢itim tockama, onda vrijedi jednakost

4 4 2
22&?2? = (ZEij) : (3.2)
j=1 j=1

I ovdje uzimamo da je za kruznicu koja sadrzi ostale kruznice zakrivljenost negativna,
ali vise nije dopusten sluc¢aj pravca umjesto neke od kruznica jer ne mozemo definirati
srediSte pravca kao tocku u kompleksnoj ravnini.



Kao primjer, uzmimo opet konfiguraciju kruznica oko kruznice upisane podruéju C' na
Slikama 2 i 4. Ishodiste kompleksne ravnine postavimo u srediste velike kruznice polu-
mjera 1, a za realnu i imaginarnu os uzmemo horizontalni i vertikalni pravac. Oznad¢imo
li srediste jedne od kruznica s

2 7 T \/g 1
v= - cos—+isin—):—+—,
3 ( 6 6 3 3
srediSte druge kruznice koja joj je simetri¢na s obzirom na realnu os bit ¢e v. Kompleksni
Descartesov teorem u ovom sluc¢aju daje

1 1 2
2(9v2 +90° + (—=1)*- 0% + T—Q(l — rc)2) = (?w +3v+(-1)0+ 7“_(1 — rc)> :
C C

Sami provjerite da ova jednakost vrijedi za ro = 5_123‘/§.

Pokazimo najprije da je Kompleksni Descartesov teorem zaista generalizacija Descar-
tesova teorema. Translacijom kruznica za vektor predstavljen kompleksnim brojem z,
dobivamo kruznice istih polumjera sa sredi§tima u z; + z za j = 1,2, 3,4. Jednakost (3.2)
primijenjena na te kruznice daje

QZFL 2+ z)? (Z@ zj+z) =0. (3.3)

Lijeva strana prethodne jednakosti kvadratni je polinom u z koji se poniStava za svaki z,
pa mu je koeficijent uz z? nuzno jednak 0, a to upravo daje (3.1). ZapiSite sami i treci
identitet koji dobijemo kada izjedna¢imo koeficijente u (3.3) s nulom.

U dokazu Kompleksnog Descartesovog teorema slijedimo ¢lanak [9]. Trebat ée nam
sljedeca lema o udaljenosti diralista kruznica.

Lema. Neka se kruznice ki, ko, k3 sa zakrivljenostima k1, ko, k3 u parovima diraju tako da
je diraliste k3 1 ki tocka Ay, a diraliste k3 i ko tocka As. Tada je

4
(k3 + K1) (K3 + ko)

| AL Ao =

Dokaz. Uvedimo kompleksne koordinate tako da je srediste od k3 u 0, a sredista kruznica
k1 i ko redom u 21 i 2o. Polumjere kruznica ki, ko, k3 oznac¢imo s ry, 79,73, tim redom.
Tocke Ay i Ay predstavljene su kompleksnim brojevima w; i we (Slika 8). Imamo

T3 T3

21, Wo =
7’1+T3 7’2+7’3

wy = 22,

a iz uvjeta dodira je
|21l =71+ 73, Jzal =ratrs, |z — 2| =14y,

pa je
212_2 + 2_122 = 212_1 + ZQZ_Q — (Zl — 22) 21 — 29

|21” + |22 — 21 — 22
= (7’1+T3)2+(7”2+7’3)2—(7’1+7’2)2
= 2(7’1 + 7”3)(7“2 + 7’3) — 47’17’2.
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Slika 8

Sada je
| A As|? = Jwy — wy|* = (w1 — wo) (W1 — o)
= |w1]? + |wa|? — (wiw3 4 Wrws)
9 2 T% ( % 7 )
= 4r Z1R Z1R
S (A ry)(ra ) 2T
4 2
—or2 — 22 4 e
(r1 4+ 13)(re +13)
B 4 B 4
E DG ot mlm i)
Sto smo i htjeli pokazati. O]

Koristit ¢emo i sljedeci identitet za kompleksne brojeve a, b, ¢
20 + v+t — (AP + P+ AP =—(a+b+c)(—at+b+e)a—b+c)at+b—c) (3.4)
Lako ga je direktno provjeriti

—(a+b+c)(—a+b+c)a—b+c)atb—rc)=((b+c) —a*) ((b—c)®—a’)
= (b — ) — (20* + 2¢%)a’® + a*
=a' + b+t = 2(a* + a’P + b P)
=2(a* + b + ) — (a® +0* + )%

Dokaz Kompleksnog Descartesovog teorema. Formulu (3.2) dokazujemo najprije uz pret-
postavku da je z4 = 0. Uvrstimo li u (3.4) a® = k121, b* = Kozo, ¢ = K323, vidimo da ¢e
(3.2) vrijediti ako i samo ako k121, ko2, k323 imaju neke kvadratne korijene ¢ija je suma
jednaka 0.

Homotetija sa srediStem u ishodiStu ne mijenja x;2z; za j = 1,2,3, pa mozemo uzeti
da je kruznici sa srediStem u z4 = 0 polumjer jednak 1. Neka ta kruznica dodiruje ostale
tri kruZnice u tockama kojima su pridruzeni kompleksni brojevi u;, 7 = 1,2,3. Iz Leme
znamo da je

4
(14 £;)(1+ Ke)

(i #0. (3.5)

Juj — el =
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Kako je |u;| = 1, imamo w; = uj_l za j = 1,2,3, pa lijevu stranu u (3.5) mozemo zapisati

Juj — el = (uj —ue)(u;’ —ug') = —ugue(u;’ —ug')?. (3.6)

Budud¢i da u; predstavlja jedini¢ni vektor u smjeru z;, imamo

/{/ .

u; = —I—z;
1+ Rj

Koriste¢i ovu jednakost zajedno sa (3.5) i (3.6), dobivamo

(rj2)) (Keze) = —4(u;" —u )™ (G #0). (3.7)

U (3.7) imamo sustav od tri jednadzbe koji rjeSavamo u nepoznanicama (x;z;)? i dobivamo

(K222)® = M(uz' —uy')* (3.8)

gdje je

M = (3.9)

(uy t— U2_1)2(U2 t— U§1)2(u3 t— Uy 1)2

Neka je p kompleksan broj za koji je p* = M i stavimo

a=pluy' —uz'), b=pluz' —urt), c=pluy’ —uy').
Prvi red u (3.8) pokazuje da je k121 = £a?. Ako je potrebno, zamijenimo p s pi tako da
mozemo uzeti da je k12, = a®. Tvrdimo da je onda rezy = b?. Zaista,
(3.7) —4 (3.9) _ _ _ _
(h1z1) (ko) = ———5 = M(uy' —uz")*(uz' —uy')?
(Ul —uy")
= pP(uyt —uz')? PP (uyt — ) = a?,
pa je Kozp = b2, a analogno pokazemo i K323 = .
Stoga su a, b, ¢ kvadratni korijeni od k121, k29, kK323, tim redom, i vrijedi
a+b+e=pluy’ —uz') +pluzt —uit) +plurt —uy') = 0.
Sada identitet (3.4) povlaci da je
2(ki2] + Ka23 + K3za) — (K121 + Koze + k323)? = 2(a* + b + ') — (> + B2 + 2)* = 0.

Opéi slucaj svedemo na ovaj sluc¢aj u kojemu je z4 = 0 sli¢no kao $to smo pokazali da
je Kompleksni Descartesov teorem generalizacija obi¢nog. Neka je f(z) polinom definiran
lijevom stranom u (3.3), tj

4 4 2

Z (2 + 2)? (Z/@j(zj+z)) :

j=1 j=1
Tada f iSCezava za z € {—z4,—23, —22, —21} jer to znadi da smo ¢Eitavu konfiguraciju
translatirali tako da je srediste jedne od kruznica u ishodistu. No, polinom f je stupnja
najvise dva u z, a ima Cetiri razli¢ita korijena, pa zaklju¢ujemo da je f nuzno nulpolinom
i zato mu je slobodni ¢lan 0. Time smo dokazali i opéi slucaj Kompleksnog Descartesovog
teorema. ]

Spomenimo uzgredno da Descartesov teorem ima trodimenzionalne i opéenito visedi-
menzionalne generalizacije [2, 1], ali mi ¢emo za kraj krenuti u drugom smjeru.
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4 Cjelobrojna Apolonijeva pakiranja kruznica

Pogledajmo jo§ jednom fotografiju rozete (Slika 1). Vidimo da “slijepi trokut” bez vitraja
koji se nalazi ispod velike kruznice polumjera 1 uopce nije omeden lukom te kruznice.

Mozemo zamisljati da se donja “latica” rozete malo rastegnula te da je taj krivolinijski
trokut omeden dvjema polukruznicama polumjera % i jednom kruznicom polumjera %

Dopunimo li polukruznice do kruznica, dobivamo konfiguraciju sa Slike 9 pri ¢emu smo u
kruznice upisali njihove zakrivljenosti.

Slika 9

Zanimaju nas zakrivljenosti dviju kruznica koje dodiruju sve tri kruznice poznatih
zakrivljenosti. Oznacimo li nepoznatu zakrivljenost s x, Descartesov teorem, odnosno
(3.1) povladi da je

222+ 22+ 32+ k%) = (2+2+3+k)?
K*— 14k —15=0
(k+1)(k —15) = 0.
Dakle, zakrivljenost velike iscrtkane kruznice na Slici 9 je —1, a male podebljane kruznice
je 15.

Nastavimo ovaj postupak, odnosno odredimo zakrivljenosti kruznica upisanih u neke
od krivolinijskih trokuta sa Slike 9. Za pojedinu trojku kruznica lako je pomocu (3.1) iz-
rac¢unati zakrivljenosti dviju kruznica koje dodiruju tri kruznice s danim zakrivljenostima.
Navodimo trojku zakrivljenosti te zakrivljenosti novodobivenih kruznica

(2,2,3) : —1,15;
(-1,2,2): 3,3:
(=1,2,3): 2,6

(2,3,15) : 2,38;
(2,2,15) 1 3,35.
Ove 1 jo$ nekoliko novih kruznica s njihovim zakrivljenostima nacrtane su na Slici 10.

Mogli bismo nastaviti racunati zakrivljenosti kruznica koje ume¢emo u rupe izmedu
veé ucrtanih kruznica tako da ih dodiruju i uvijek bismo dobivali cijele brojeve. Ako
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Slika 10

zapotnemo sa Cetiri kruznice koje se sve u parovima dodiruju u razli¢itim tockama i
zakrivljenosti su im cjelobrojne, onda ¢e sve nove kruznice koje ovako dobivamo imati
zakrivljenosti koje su cijeli brojevi. Dokazimo tu ¢injenicu.

Oznacimo zakrivljenosti pocetnih kruznica s a, b, ¢, d. Kod nas mozemo uzeti da je to
cetvorka (2,2,3,15) ili ekvivalentno (—1,2,2,3). Iz Descartesova teorema je 2(a? + b* +
A +d?) = (a+b+c+d)? aza drugu kruZnicu koja dodiruje one sa zakrivljenostima a, b, ¢
vrijedi 2(a® + b + ¢ + d”?) = (a + b+ c + d')?, pri Cemu smo zakrivljenost nove kruznice
oznalili s d’. Dakle, d i d’ zadovoljavaju istu kvadratnu jednadzbu u x

2* —2(a+b+c)r + (a® + b* + ¢ — 2ab — 2ac — 2bc) = 0. (4.1)
Nije tesko provjeriti da su rjeSenja te kvadratne jednadzbe

a+b+cx2vVab+ ac+ be
iz ¢ega (ili iz Viéteovih formula) je d +d' = 2(a + b+ ¢), tj.
d=2a+b+c)—d. (4.2)

Sada je jasno da za cjelobrojne a,b,c,d i broj d mora biti cijeli. Time je objasnjeno
ponasanje koje smo uocili.

Sve kruznice koje se mogu dobiti pocevsi iz jedne cetvorke u parovima dodiruju-
¢ih kruznica s cjelobrojnim zakrivljenostima ¢ine jedno cjelobrojno Apolonijevo pakiranje
kruznica. Svako takvo pakiranje odredeno je cjelobrojnom ¢etvorkom zakrivljenosti koje
zadovoljavaju Descartesovu jednadzbu. Ovdje zahtijevamo i da je takva ¢etvorka relativno
prosta, tj. da ne postoji broj vec¢i od 1 koji bi dijelio svaki ¢lan cetvorke.

Jedno od zanimljivih i dosta proucavanih pitanja je koji se prirodni brojevi pojavljuju
kao zakrivljenosti u pojedinom pakiranju kruznica. Prvi korak u shva¢anju koji prirodni
brojevi se pojavljuju je odredivanje za pojedini prirodni broj n koje ostatke pri dijeljenju
s n mogu davati zakrivljenosti kruznica iz pakiranja. Rezultati koji nadilaze razinu ovog
¢lanka pokazuju da je dovoljno razumjeti koje klase ostataka se pojavljuju modulo 24,
odnosno modulo 3 i modulo 8.
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Promotrimo to na primjeru pakiranja generiranog nasom c¢etvorkom zakrivljenosti
(—1,2,2,3).

Modulo 3 imamo ¢etvorku (2,2,2,0), a (4.2) nam pokazuje da se iz nje dobivaju
sljedece ¢etvorke (modulo 3)

(0,2,2,0), (2,0,2,0), (2,2,0,0), (2,2,2,0).

Primijetite da smo ovdje fiksirali tri zakrivljenosti, a novu vrijednost preostale dobili smo
pomocu (4.2). Krenemo li sada od svake od tih ¢etvorki i primijenimo (4.2) za svaki od
¢etiri moguca izbora zakrivljenosti d, vidimo nakon nekoliko koraka da su modulo 3 jedine
dopustene cetvorke one dobivene permutiranjem koordinata u (2,2,2,0) i (2,2,0,0).

Sli¢no, modulo 8, kre¢emo od (—1,2,2,3), odnosno (7,2,2,3). Dobivamo sljede¢i graf
koji pokazuje sve Cetvorke zakrivljenosti modulo 8 u ovom pakiranju.

)

(7,2,2,3)

e

((7,2,6,3) (7.6,2,3) )

~N 7

(7,6,6,3)

Slika 11

Iz rezultata modulo 3 i modulo 8, zaklju¢ujemo koristenjem Kineskog teorema o os-
tatcima ili direktnom provjerom da se u nasem pakiranju mogu pojaviti samo ove klase
ostataka modulo 24: 2,3,6,11, 14, 15, 18, 23.

Sli¢no mozemo dobiti dopustene klase ostataka modulo 24 za svaku cetvorku zakriv-
ljenosti. Primjerice, za pakiranje odredeno ¢etvorkom (—3,5,8,8), dopusteni ostatci su
0,5,8,12,20,21.

Vise od desetljeca stajala je nerijeSena sljedeca slutnja koja kaze da je poznavanje
ostatka pri dijeljenju s 24 zapravo dostatno da bismo znali pojavljuje li se neki dovoljno
veliki prirodan broj kao zakrivljenost u pojedinom pakiranju kruznica.

Lokalno-globalna slutnja za cjelobrojna Apolonijeva pakiranja. Neka je P cjelo-
brojno Apolonijevo pakiranje kruznica i neka je R(P) skup klasa ostataka modulo 24 za
zakrivljenosti kruznica v 'P. Tada postoji prirodan broj Xp takav da je svaki prirodan broj
x> Xp kojemu ostatak modulo 24 lezi w R(P) zaista zakrivljenost neke kruznice u P.

Koristenjem veze Apolonijevih pakiranja i binarnih kvadratnih formi, dokazani su
razliciti slabiji rezultati u prilog ove tvrdnje.

Jedan primjer poznatog rezultata u kojemu vrijedi lokalno-globalni princip je karak-
terizacija prirodnih brojeva koji se mogu zapisati kao suma triju kvadrata cijelih brojeva.
Rezultat Legendrea i Gaussa (vidi [3, §5.4]) kaZe da je neparan prirodan broj suma tri
kvadrata ako i samo ako nije kongruentan 7 modulo 8. Dakle, lokalni uvjet (ostatak
broja n pri dijeljenju s 8) jednozna¢no odreduje globalnu rjesivost, tj. rjesivost jednadzbe
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2?2 + y? + 22 = n u cijelim brojevima. ViSe i opcenitije o lokalno-globalnom principu
pogledajte u |3, §10.8].

Vratimo se pakiranju kruznica. U ljetu 2023. dvoje studenata pod vodstvom svojih
profesora na Sveucilistu u Boulderu u Coloradu radili su projekt o Apolonijevim pakira-
njima kruznica. Iz neocekivanih numerickih rezultata koje su dobili za neka pakiranja,
najprije su naslutili, a zatim zajedno sa svojim nastavnicima i dokazali da lokalno-globalna
slutnja za Apolonijeva pakiranja opcéenito ne vrijedi. Primjerice, za pakiranje odredeno
zakrivljenostima (—3, 5, 8, 8) koje smo netom spomenuli, pokazali su da se potpuni kvadrat
nikada nece pojaviti kao zakrivljenost. No, to znaci da ima beskona¢no mnogo prirodnih
brojeva kongruentnih 0 ili 12 modulo 24 koji se ne pojavljuju kao zakrivljenosti u ovom
pakiranju iako su te dvije klase ostataka medu Sest dopusStenih klasa koje smo naveli.
Dakle, lokalno-globalna slutnja za ovo pakiranje ne vrijedi.

Tako je studentski ljetni projekt iznenadio mnoge matematicare koji su se tim proble-
matematickih ¢asopisa Annals of Mathematics [5].

Uz zanimljivi matematicki ¢lanak [4] o usponu i padu (te modifikaciji) lokalno-globalne
slutnje za Apolonijeva pakiranja, mozete procitati i popularno pisani novinski ¢lanak [8|
o sudionicima ove price.

Spomenimo jo$ na kraju da za pakiranje odredeno kruznicama sa zakrivljenostima
(—1,2,2,3) na koje nas je nadahnula rozeta u grkokatoli¢koj konkatedrali jo§ uvijek nije
poznato da li lokalno-globalna slutnja vrijedi ili ne.
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