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1 Uvod

Na pro£elju grkokatoli£ke konkatedralne crkve u Zagrebu nalazi se prozor s rozetom na
vrhu. Slika 1 prikazuje gornji dio toga prozora koji uklju£uje ²esterolisnu rozetu.

Slika 1

Na Slici 2 skicirali smo geometrijske likove s fotogra�je zanemaruju¢i pritom debljinu
kamenog mreºi²ta.

Uzmimo sada i nadalje da je polumjer velike kruºnice 1. Drugim rije£ima, ²irina crteºa
na Slici 2 je 2. Kao mala vjeºba za zagrijavanje, pozivamo £itatelje da odrede povr²ine i
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Slika 2

opsege likova ozna£enih slovima A do F . Nazna£ili smo samo po jedan primjerak svakog
oblika jer je iz simetrija jasno koje su povr²ine i opsezi ostalih likova sa slike. Primjerice,
svaka od ²est �latica� sukladna je liku B.

Nakon malo promatranja i ra£una, dobivamo
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3
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9
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4
− π

2
+

√
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2

Ovakvi zadaci redovito se pojavljuju u osnovno²kolskoj i srednjo²kolskoj nastavi matema-
tike, npr. na hrvatskim natjecanjima trebalo je odrediti PB − PA (prvi zadatak za osmi
razred na drºavnom natjecanju 2021. godine) i PA + 6PB (tre¢i zadatak za osmi razred
na ºupanijskom natjecanju 2016. godine).

Pogledajmo jo² jednom malo paºljivije fotogra�ju rozete. Primje¢ujemo da su na
vitraju ocrtane i kruºnice upisane likovima C i D. Odredimo polumjere tih kruºnica.

Za odre�ivanje polumjera rC kruºnice upisane krivolinijskom trokutu C, treba nam
polumjer rA kruga A i polumjer rB kruºnica upisanih likovima sukladnim B.
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Slika 3

U jednakokra£nom trokutu na Slici 3 s krakom duljine rA + rB = 1 − rB, nasuprot
osnovice duljine 2rB nalazi se kut mjere 2π

6
= π

3
, pa je taj trokut jednakostrani£an iz £ega

je rA = rB = 1
3
.

Slika 4

Na Slici 4 spojnice sredi²ta triju kruºnica £ine trokut sa stranicama duljina 2
3
, 1− rC

i 1
3
+ rC te kutom izme�u prvih dviju stranica jednakim π

6
. Teorem o kosinusu daje

jednadºbu (1
3
+ rC

)2
=
(2
3

)2
+ (1− rC)2 − 2 · 2

3
(1− rC)

√
3

2

iz koje nakon kratkog ra£una slijedi

rC =
5− 2

√
3

13
≈ 0.12.
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Slika 5

Na Slici 5 nazna£ili smo duºine koje koristimo kod odre�ivanja polumjera kruºnice
upisane liku D. Na desnom dijelu iste slike izdvojili smo te duºine i dopisali one duljine
koje moºemo dobiti iz uvjeta dodirivanja odgovaraju¢ih kruºnica i pravca.

Primijenimo li Pitagorin pou£ak na tri pravokutna trokuta sa Slike 5 desno, dobivamo√(3
2

)2
−
(1
2

)2
=
√

(1 + rD)2 − (1− rD)2 +
√(1

2
+ rD

)2
−
(1
2
− rD

)2
iz £ega slijedi rD = 3− 2

√
2 ≈ 0.17.

2 Descartesov teorem

Postoji op¢enita formula koja povezuje polumjere £etiriju kruºnica takvih da se svake
dvije dodiruju. Tu je formulu René Descartes 1643. naveo u pismu kneginji Elizabeti
Fala£koj.

Descartesov teorem. Polumjeri r1, r2, r3, r4 £etiriju kruºnica koje se u parovima dodi-
ruju u razli£itim to£kama zadovoljavaju jednakost

2
( 1

r21
+

1

r22
+

1

r23
+

1

r24

)
=
( 1

r1
+

1

r2
+

1

r3
+

1

r4

)2
. (2.1)

U slu£aju kada jedna od kruºnica sadrºi ostale kruºnice poput iscrtkane kruºnice na
Slici 6, treba polumjer te kruºnice uzeti kao negativan broj. To se dogodilo upravo kod
odre�ivanja polumjera kruºnice upisane liku C sa Slike 2. Provjerite da za polumjere
−1, 1

3
, 1
3
, rC = 5−2

√
3

13
zaista vrijedi jednakost (2.1).

Descartesov teorem vrijedi i u posebnom slu£aju kada je neka od kruºnica zapravo
pravac. Pravac promatramo kao kruºnicu beskona£no velikog polumjera, pa u tom slu£aju
u formuli treba za 1

r
uvrstiti 0.
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Slika 6

Kod nas se takva situacija pojavila prilikom odre�ivanja polumjera kruºnice upisane
liku D. Tada nam Descartesov teorem daje

2
(
0 +

1

12
+

1

(1/2)2
+

1

r2D

)
=
(
0 +

1

1
+

1

1/2
+

1

rD

)2
,

odnosno r2D − 6rD + 1 = 0, a ova kvadratna jednadºba ima rje²enja 3 − 2
√
2 i 3 + 2

√
2.

Sa Slike 2 je jasno da trebamo uzeti manje rje²enje te smo tako brºe dobili ve¢ izra£unati
polumjer rD = 3− 2

√
2.

Postoje brojni dokazi Descartesova teorema. Vjerojatno najizravniji dobiva se kori-
²tenjem Heronove formule za povr²inu trokuta.

Slika 7

Tri manja trokuta na Slici 7 £ine ve¢i trokut sa stranicama duljine r1+r2, r2+r3, r3+r1
kojemu je poluopseg r1 + r2 + r3 i stoga povr²ina

√
r1r2r3(r1 + r2 + r3). Analogno primi-

jenimo Heronovu formulu za dobivanje povr²ina triju manjih trokuta te izjedna£avanjem
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zbroja tih povr²ina s povr²inom ve¢eg trokuta slijedi√
r1r2r3(r1 + r2 + r3) =

√
r1r2r4(r1 + r2 + r4)

+
√
r1r3r4(r1 + r3 + r4) +

√
r2r3r4(r2 + r3 + r4)

Spretnim manipulacijama ove jednakosti (kvadriranjima, sre�ivanjima i supstitucijama),
dolazimo relativno brzo do formule (2.1). Detalje pogledajte u [7].

Drugi dokaz [2, 1] koristi formulu za volumen tetraedra kojemu su dane duljine bridova.
U toj formuli volumen je izraºen kao determinanta odgovaraju¢e matrice reda 5, a za du-
ljine bridova tetraedra uvrstimo r1+ r2, r1+ r3, r1+ r4, r2+ r3, r2+ r4, r3+ r4. U slu£aju
kada se kruºnice s radijusima r1, r2, r3, r4 u parovima diraju, sva £etiri vrha degeneriranog
tetraedra leºe u ravnini (Slika 7), pa je volumen tetraedra jednak 0. Izvo�enjem ele-
mentarnih transformacija na spomenutoj matrici i upotrebom Binet-Cauchyjeva teorema,
dobiva se traºena jednakost (2.1).

Kona£no, u Coxeterovom dokazu [2] primijeni se inverzija sa sredi²tem u jednom od
dirali²ta kruºnica. Dvije kruºnice £ije dirali²te je centar inverzije preslikaju se u dva
paralelna pravca, a ostale dvije preslikaju se u kruºnice koje dodiruju te pravce. Time
je situacija postala posebno jednostavna, ali treba jo² ne²to truda da se poveºu po£etni
polumjeri s dobivenim polumjerima i poloºajima likova.

3 Kompleksni Descartesov teorem

Sve ove dokaze samo smo ukratko skicirali jer ¢emo sada navesti i dokazati jednu lijepu
generalizaciju koja je objavljena tek u 21. stolje¢u [6]. Prije iskaza tog rezultata, pojed-
nostavnimo zapis Descartesova teorema koriste¢i pojam zakrivljenosti.

Za kruºnicu radijusa r zakrivljenost κ de�niramo kao recipro£nu vrijednost radijusa,
κ = 1

r
. Zakrivljenost se moºe de�nirati i u to£kama drugih krivulja, ali nama ta op¢enitija

de�nicija ne¢e biti potrebna. Za kruºnice je pojam zakrivljenosti intuitivno jasan. �to je
ve¢i radijus, to je zakrivljenost manja. Za pravac je radijus beskona£an, a zakrivljenost 0.

Sada pomo¢u zakrivljenosti κ1, κ2, κ3, κ4 £etiriju kruºnica koje se u parovima dodiruju,
moºemo (2.1) zapisati kao

2(κ21 + κ22 + κ23 + κ24) = (κ1 + κ2 + κ3 + κ4)
2. (3.1)

U poop¢enju koje ¢emo sada iskazati pojavljuju se i koordinate sredi²ta kruºnica za-
pisane kao kompleksni brojevi. Dakle, to£ki s koordinatama (x, y) u Kartezijevom koor-
dinatnom sustavu pridruºen je kompleksni broj x+ iy.

Kompleksni Descartesov teorem. Ako se £etiri kruºnice sa zakrivljenostima κj i sre-
di²tima zj (j = 1, 2, 3, 4) u parovima dodiruju u razli£itim to£kama, onda vrijedi jednakost

2
4∑
j=1

κ2jz
2
j =

( 4∑
j=1

κjzj

)2

. (3.2)

I ovdje uzimamo da je za kruºnicu koja sadrºi ostale kruºnice zakrivljenost negativna,
ali vi²e nije dopu²ten slu£aj pravca umjesto neke od kruºnica jer ne moºemo de�nirati
sredi²te pravca kao to£ku u kompleksnoj ravnini.
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Kao primjer, uzmimo opet kon�guraciju kruºnica oko kruºnice upisane podru£ju C na
Slikama 2 i 4. Ishodi²te kompleksne ravnine postavimo u sredi²te velike kruºnice polu-
mjera 1, a za realnu i imaginarnu os uzmemo horizontalni i vertikalni pravac. Ozna£imo
li sredi²te jedne od kruºnica s

v =
2

3

(
cos

π

6
+ i sin

π

6

)
=

√
3

3
+
i

3
,

sredi²te druge kruºnice koja joj je simetri£na s obzirom na realnu os bit ¢e v. Kompleksni
Descartesov teorem u ovom slu£aju daje

2
(
9v2 + 9v2 + (−1)2 · 02 + 1

r2C
(1− rC)2

)
=
(
3v + 3v + (−1) 0 + 1

rC
(1− rC)

)2
.

Sami provjerite da ova jednakost vrijedi za rC = 5−2
√
3

13
.

Pokaºimo najprije da je Kompleksni Descartesov teorem zaista generalizacija Descar-
tesova teorema. Translacijom kruºnica za vektor predstavljen kompleksnim brojem z,
dobivamo kruºnice istih polumjera sa sredi²tima u zj + z za j = 1, 2, 3, 4. Jednakost (3.2)
primijenjena na te kruºnice daje

2
4∑
j=1

κ2j(zj + z)2 −
( 4∑

j=1

κj(zj + z)

)2

= 0. (3.3)

Lijeva strana prethodne jednakosti kvadratni je polinom u z koji se poni²tava za svaki z,
pa mu je koe�cijent uz z2 nuºno jednak 0, a to upravo daje (3.1). Zapi²ite sami i tre¢i
identitet koji dobijemo kada izjedna£imo koe�cijente u (3.3) s nulom.

U dokazu Kompleksnog Descartesovog teorema slijedimo £lanak [9]. Trebat ¢e nam
sljede¢a lema o udaljenosti dirali²ta kruºnica.

Lema. Neka se kruºnice k1, k2, k3 sa zakrivljenostima κ1, κ2, κ3 u parovima diraju tako da
je dirali²te k3 i k1 to£ka A1, a dirali²te k3 i k2 to£ka A2. Tada je

|A1A2|2 =
4

(κ3 + κ1)(κ3 + κ2)
.

Dokaz. Uvedimo kompleksne koordinate tako da je sredi²te od k3 u 0, a sredi²ta kruºnica
k1 i k2 redom u z1 i z2. Polumjere kruºnica k1, k2, k3 ozna£imo s r1, r2, r3, tim redom.
To£ke A1 i A2 predstavljene su kompleksnim brojevima w1 i w2 (Slika 8). Imamo

w1 =
r3

r1 + r3
z1, w2 =

r3
r2 + r3

z2,

a iz uvjeta dodira je

|z1| = r1 + r3, |z2| = r2 + r3, |z1 − z2| = r1 + r2,

pa je
z1z2 + z1z2 = z1z1 + z2z2 − (z1 − z2) z1 − z2

= |z1|2 + |z2|2 − |z1 − z2|2

= (r1 + r3)
2 + (r2 + r3)

2 − (r1 + r2)
2

= 2(r1 + r3)(r2 + r3)− 4r1r2.

7



Slika 8

Sada je
|A1A2|2 = |w1 − w2|2 = (w1 − w2)(w1 − w2)

= |w1|2 + |w2|2 − (w1w2 + w1w2)

= 2r23 −
r23

(r1 + r3)(r2 + r3)
(z1z2 + z1z2)

= 2r23 − 2r23 +
4r1r2r

2
3

(r1 + r3)(r2 + r3)

=
4(

1
r3
+ 1

r1

)(
1
r3
+ 1

r2

) =
4

(κ3 + κ1)(κ3 + κ2)
,

²to smo i htjeli pokazati.

Koristit ¢emo i sljede¢i identitet za kompleksne brojeve a, b, c

2(a4 + b4 + c4)− (a2 + b2 + c2)2 = −(a+ b+ c)(−a+ b+ c)(a− b+ c)(a+ b− c). (3.4)

Lako ga je direktno provjeriti

−(a+ b+ c)(−a+ b+ c)(a− b+ c)(a+ b− c) =
(
(b+ c)2 − a2

) (
(b− c)2 − a2

)
= (b2 − c2)2 − (2b2 + 2c2)a2 + a4

= a4 + b4 + c4 − 2(a2b2 + a2c2 + b2c2)

= 2(a4 + b4 + c4)− (a2 + b2 + c2)2.

Dokaz Kompleksnog Descartesovog teorema. Formulu (3.2) dokazujemo najprije uz pret-
postavku da je z4 = 0. Uvrstimo li u (3.4) a2 = κ1z1, b2 = κ2z2, c2 = κ3z3, vidimo da ¢e
(3.2) vrijediti ako i samo ako κ1z1, κ2z2, κ3z3 imaju neke kvadratne korijene £ija je suma
jednaka 0.

Homotetija sa sredi²tem u ishodi²tu ne mijenja κjzj za j = 1, 2, 3, pa moºemo uzeti
da je kruºnici sa sredi²tem u z4 = 0 polumjer jednak 1. Neka ta kruºnica dodiruje ostale
tri kruºnice u to£kama kojima su pridruºeni kompleksni brojevi uj, j = 1, 2, 3. Iz Leme
znamo da je

|uj − u`|2 =
4

(1 + κj)(1 + κ`)
(j 6= `). (3.5)
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Kako je |uj| = 1, imamo uj = u−1j za j = 1, 2, 3, pa lijevu stranu u (3.5) moºemo zapisati

|uj − u`|2 = (uj − u`)(u−1j − u−1` ) = −uju`(u−1j − u−1` )2. (3.6)

Budu¢i da uj predstavlja jedini£ni vektor u smjeru zj, imamo

uj =
κj

1 + κj
zj.

Koriste¢i ovu jednakost zajedno sa (3.5) i (3.6), dobivamo

(κjzj)(κ`z`) = −4(u−1j − u−1` )−2 (j 6= `). (3.7)

U (3.7) imamo sustav od tri jednadºbe koji rje²avamo u nepoznanicama (κjzj)2 i dobivamo

(κ1z1)
2 =M(u−12 − u−13 )4

(κ2z2)
2 =M(u−13 − u−11 )4

(κ3z3)
2 =M(u−11 − u−12 )4,

(3.8)

gdje je

M =
−4

(u−11 − u−12 )2(u−12 − u−13 )2(u−13 − u−11 )2
. (3.9)

Neka je ρ kompleksan broj za koji je ρ4 =M i stavimo

a = ρ(u−12 − u−13 ), b = ρ(u−13 − u−11 ), c = ρ(u−11 − u−12 ).

Prvi red u (3.8) pokazuje da je κ1z1 = ±a2. Ako je potrebno, zamijenimo ρ s ρi tako da
moºemo uzeti da je κ1z1 = a2. Tvrdimo da je onda κ2z2 = b2. Zaista,

(κ1z1)(κ2z2)
(3.7)
=

−4
(u−11 − u−12 )2

(3.9)
= M(u−12 − u−13 )2(u−13 − u−11 )2

= ρ2(u−12 − u−13 )2 ρ2(u−13 − u−11 )2 = a2b2,

pa je κ2z2 = b2, a analogno pokaºemo i κ3z3 = c2.
Stoga su a, b, c kvadratni korijeni od κ1z1, κ2z2, κ3z3, tim redom, i vrijedi

a+ b+ c = ρ(u−12 − u−13 ) + ρ(u−13 − u−11 ) + ρ(u−11 − u−12 ) = 0.

Sada identitet (3.4) povla£i da je

2(κ21z
2
1 + κ22z

2
2 + κ23z

2
3)− (κ1z1 + κ2z2 + κ3z3)

2 = 2(a4 + b4 + c4)− (a2 + b2 + c2)2 = 0.

Op¢i slu£aj svedemo na ovaj slu£aj u kojemu je z4 = 0 sli£no kao ²to smo pokazali da
je Kompleksni Descartesov teorem generalizacija obi£nog. Neka je f(z) polinom de�niran
lijevom stranom u (3.3), tj.

f(z) = 2
4∑
j=1

κ2j(zj + z)2 −
( 4∑

j=1

κj(zj + z)

)2

.

Tada f i²£ezava za z ∈ {−z4,−z3,−z2,−z1} jer to zna£i da smo £itavu kon�guraciju
translatirali tako da je sredi²te jedne od kruºnica u ishodi²tu. No, polinom f je stupnja
najvi²e dva u z, a ima £etiri razli£ita korijena, pa zaklju£ujemo da je f nuºno nulpolinom
i zato mu je slobodni £lan 0. Time smo dokazali i op¢i slu£aj Kompleksnog Descartesovog
teorema.

Spomenimo uzgredno da Descartesov teorem ima trodimenzionalne i op¢enito vi²edi-
menzionalne generalizacije [2, 1], ali mi ¢emo za kraj krenuti u drugom smjeru.
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4 Cjelobrojna Apolonijeva pakiranja kruºnica

Pogledajmo jo² jednom fotogra�ju rozete (Slika 1). Vidimo da �slijepi trokut� bez vitraja
koji se nalazi ispod velike kruºnice polumjera 1 uop¢e nije ome�en lukom te kruºnice.
Moºemo zami²ljati da se donja �latica� rozete malo rastegnula te da je taj krivolinijski
trokut ome�en dvjema polukruºnicama polumjera 1

2
i jednom kruºnicom polumjera 1

3
.

Dopunimo li polukruºnice do kruºnica, dobivamo kon�guraciju sa Slike 9 pri £emu smo u
kruºnice upisali njihove zakrivljenosti.

Slika 9

Zanimaju nas zakrivljenosti dviju kruºnica koje dodiruju sve tri kruºnice poznatih
zakrivljenosti. Ozna£imo li nepoznatu zakrivljenost s κ, Descartesov teorem, odnosno
(3.1) povla£i da je

2(22 + 22 + 32 + κ2) = (2 + 2 + 3 + κ)2

κ2 − 14κ− 15 = 0

(κ+ 1)(κ− 15) = 0.

Dakle, zakrivljenost velike iscrtkane kruºnice na Slici 9 je −1, a male podebljane kruºnice
je 15.

Nastavimo ovaj postupak, odnosno odredimo zakrivljenosti kruºnica upisanih u neke
od krivolinijskih trokuta sa Slike 9. Za pojedinu trojku kruºnica lako je pomo¢u (3.1) iz-
ra£unati zakrivljenosti dviju kruºnica koje dodiruju tri kruºnice s danim zakrivljenostima.
Navodimo trojku zakrivljenosti te zakrivljenosti novodobivenih kruºnica

(2, 2, 3) : −1, 15;
(−1, 2, 2) : 3, 3;

(−1, 2, 3) : 2, 6;

(2, 3, 15) : 2, 38;

(2, 2, 15) : 3, 35.

Ove i jo² nekoliko novih kruºnica s njihovim zakrivljenostima nacrtane su na Slici 10.
Mogli bismo nastaviti ra£unati zakrivljenosti kruºnica koje ume¢emo u rupe izme�u

ve¢ ucrtanih kruºnica tako da ih dodiruju i uvijek bismo dobivali cijele brojeve. Ako
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Slika 10

zapo£nemo sa £etiri kruºnice koje se sve u parovima dodiruju u razli£itim to£kama i
zakrivljenosti su im cjelobrojne, onda ¢e sve nove kruºnice koje ovako dobivamo imati
zakrivljenosti koje su cijeli brojevi. Dokaºimo tu £injenicu.

Ozna£imo zakrivljenosti po£etnih kruºnica s a, b, c, d. Kod nas moºemo uzeti da je to
£etvorka (2, 2, 3, 15) ili ekvivalentno (−1, 2, 2, 3). Iz Descartesova teorema je 2(a2 + b2 +
c2+d2) = (a+b+c+d)2, a za drugu kruºnicu koja dodiruje one sa zakrivljenostima a, b, c
vrijedi 2(a2 + b2 + c2 + d′2) = (a+ b+ c+ d′)2, pri £emu smo zakrivljenost nove kruºnice
ozna£ili s d′. Dakle, d i d′ zadovoljavaju istu kvadratnu jednadºbu u x

x2 − 2(a+ b+ c)x+ (a2 + b2 + c2 − 2ab− 2ac− 2bc) = 0. (4.1)

Nije te²ko provjeriti da su rje²enja te kvadratne jednadºbe

a+ b+ c± 2
√
ab+ ac+ bc

iz £ega (ili iz Vièteovih formula) je d+ d′ = 2(a+ b+ c), tj.

d′ = 2(a+ b+ c)− d. (4.2)

Sada je jasno da za cjelobrojne a, b, c, d i broj d′ mora biti cijeli. Time je obja²njeno
pona²anje koje smo uo£ili.

Sve kruºnice koje se mogu dobiti po£ev²i iz jedne £etvorke u parovima dodiruju-
¢ih kruºnica s cjelobrojnim zakrivljenostima £ine jedno cjelobrojno Apolonijevo pakiranje
kruºnica. Svako takvo pakiranje odre�eno je cjelobrojnom £etvorkom zakrivljenosti koje
zadovoljavaju Descartesovu jednadºbu. Ovdje zahtijevamo i da je takva £etvorka relativno
prosta, tj. da ne postoji broj ve¢i od 1 koji bi dijelio svaki £lan £etvorke.

Jedno od zanimljivih i dosta prou£avanih pitanja je koji se prirodni brojevi pojavljuju
kao zakrivljenosti u pojedinom pakiranju kruºnica. Prvi korak u shva¢anju koji prirodni
brojevi se pojavljuju je odre�ivanje za pojedini prirodni broj n koje ostatke pri dijeljenju
s n mogu davati zakrivljenosti kruºnica iz pakiranja. Rezultati koji nadilaze razinu ovog
£lanka pokazuju da je dovoljno razumjeti koje klase ostataka se pojavljuju modulo 24,
odnosno modulo 3 i modulo 8.
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Promotrimo to na primjeru pakiranja generiranog na²om £etvorkom zakrivljenosti
(−1, 2, 2, 3).

Modulo 3 imamo £etvorku (2, 2, 2, 0), a (4.2) nam pokazuje da se iz nje dobivaju
sljede¢e £etvorke (modulo 3)

(0, 2, 2, 0), (2, 0, 2, 0), (2, 2, 0, 0), (2, 2, 2, 0).

Primijetite da smo ovdje �ksirali tri zakrivljenosti, a novu vrijednost preostale dobili smo
pomo¢u (4.2). Krenemo li sada od svake od tih £etvorki i primijenimo (4.2) za svaki od
£etiri mogu¢a izbora zakrivljenosti d, vidimo nakon nekoliko koraka da su modulo 3 jedine
dopu²tene £etvorke one dobivene permutiranjem koordinata u (2, 2, 2, 0) i (2, 2, 0, 0).

Sli£no, modulo 8, kre¢emo od (−1, 2, 2, 3), odnosno (7, 2, 2, 3). Dobivamo sljede¢i graf
koji pokazuje sve £etvorke zakrivljenosti modulo 8 u ovom pakiranju.

Slika 11

Iz rezultata modulo 3 i modulo 8, zaklju£ujemo kori²tenjem Kineskog teorema o os-
tatcima ili direktnom provjerom da se u na²em pakiranju mogu pojaviti samo ove klase
ostataka modulo 24: 2, 3, 6, 11, 14, 15, 18, 23.

Sli£no moºemo dobiti dopu²tene klase ostataka modulo 24 za svaku £etvorku zakriv-
ljenosti. Primjerice, za pakiranje odre�eno £etvorkom (−3, 5, 8, 8), dopu²teni ostatci su
0, 5, 8, 12, 20, 21.

Vi²e od desetlje¢a stajala je nerije²ena sljede¢a slutnja koja kaºe da je poznavanje
ostatka pri dijeljenju s 24 zapravo dostatno da bismo znali pojavljuje li se neki dovoljno
veliki prirodan broj kao zakrivljenost u pojedinom pakiranju kruºnica.

Lokalno-globalna slutnja za cjelobrojna Apolonijeva pakiranja. Neka je P cjelo-
brojno Apolonijevo pakiranje kruºnica i neka je R(P) skup klasa ostataka modulo 24 za
zakrivljenosti kruºnica u P. Tada postoji prirodan broj XP takav da je svaki prirodan broj
x > XP kojemu ostatak modulo 24 leºi u R(P) zaista zakrivljenost neke kruºnice u P.

Kori²tenjem veze Apolonijevih pakiranja i binarnih kvadratnih formi, dokazani su
razli£iti slabiji rezultati u prilog ove tvrdnje.

Jedan primjer poznatog rezultata u kojemu vrijedi lokalno-globalni princip je karak-
terizacija prirodnih brojeva koji se mogu zapisati kao suma triju kvadrata cijelih brojeva.
Rezultat Legendrea i Gaussa (vidi [3, �5.4]) kaºe da je neparan prirodan broj suma tri
kvadrata ako i samo ako nije kongruentan 7 modulo 8. Dakle, lokalni uvjet (ostatak
broja n pri dijeljenju s 8) jednozna£no odre�uje globalnu rje²ivost, tj. rje²ivost jednadºbe
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x2 + y2 + z2 = n u cijelim brojevima. Vi²e i op¢enitije o lokalno-globalnom principu
pogledajte u [3, �10.8].

Vratimo se pakiranju kruºnica. U ljetu 2023. dvoje studenata pod vodstvom svojih
profesora na Sveu£ili²tu u Boulderu u Coloradu radili su projekt o Apolonijevim pakira-
njima kruºnica. Iz neo£ekivanih numeri£kih rezultata koje su dobili za neka pakiranja,
najprije su naslutili, a zatim zajedno sa svojim nastavnicima i dokazali da lokalno-globalna
slutnja za Apolonijeva pakiranja op¢enito ne vrijedi. Primjerice, za pakiranje odre�eno
zakrivljenostima (−3, 5, 8, 8) koje smo netom spomenuli, pokazali su da se potpuni kvadrat
nikada ne¢e pojaviti kao zakrivljenost. No, to zna£i da ima beskona£no mnogo prirodnih
brojeva kongruentnih 0 ili 12 modulo 24 koji se ne pojavljuju kao zakrivljenosti u ovom
pakiranju iako su te dvije klase ostataka me�u ²est dopu²tenih klasa koje smo naveli.
Dakle, lokalno-globalna slutnja za ovo pakiranje ne vrijedi.

Tako je studentski ljetni projekt iznenadio mnoge matemati£are koji su se tim proble-
mom godinama bavili, a zavr²io je s rezultatima objavljenim u jednom od najprestiºnijih
matemati£kih £asopisa Annals of Mathematics [5].

Uz zanimljivi matemati£ki £lanak [4] o usponu i padu (te modi�kaciji) lokalno-globalne
slutnje za Apolonijeva pakiranja, moºete pro£itati i popularno pisani novinski £lanak [8]
o sudionicima ove pri£e.

Spomenimo jo² na kraju da za pakiranje odre�eno kruºnicama sa zakrivljenostima
(−1, 2, 2, 3) na koje nas je nadahnula rozeta u grkokatoli£koj konkatedrali jo² uvijek nije
poznato da li lokalno-globalna slutnja vrijedi ili ne.
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