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Nedavno sam prisustvovao liturgiji u grkokatoli£koj crkvi svetih �irila i Metoda na
zagreba£kom Gornjem gradu. Spustiv²i pogled s lijepog ikonostasa, uo£io sam poprili£no
uobi£ajen crkveni pod prekriven kerami£kim plo£icama. Paºnju mi je privukla naizgled
nevaºna £injenica da se na jednom mjestu poklapaju vrhovi tamnih trokutastih plo£ica i
svijetlih kvadratnih plo£ica. Izbrojao sam plo£ice do idu¢eg poklapanja i na brzinu uslikao
idu¢u fotogra�ju.

Slika 1: Fotogra�ja poda i nazna£eno podudaranje vrhova plo£ica

Vrativ²i se ku¢i, pogledao sam fotogra�ju i primijetio da sam u brzini fotogra�jom
obuhvatio samo prvo poklapanje vrhova (na Slici 1 istaknuto strelicom). Ako sam dobro
zapamtio, do idu¢eg takvog podudaranja bilo je 12 tamnih trokutastih plo£ica, odnosno
17 svijetlih kvadratnih plo£ica. Prvo pitanje koje sam si postavio bilo je mogu li te brojeve
nekako gra�£ki i numeri£ki potvrditi iz same slike.
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1 Rekonstrukcija to£aka izvan slike

Kako bismo ovaj problem malo preciznije matemati£ki modelirali, pretpostavljamo sada i
u nastavku da su sve svijetle plo£ice kvadratne i istih dimenzija. Iz bordure u kojoj se po-
javljuju, moºemo vidjeti da je svaka tamna plo£ica dobivena kao polovica takvog kvadrata
prerezana jednom dijagonalom. Tako�er ¢emo zanemariti uske fuge me�u plo£icama jer
ih moºemo uzduºno podijeliti popola i pridodati plo£icama izme�u kojih se nalaze.

Ozna£imo vrhove uz stranice tamnih trokuta redom A1, A2, A3 . . . kao na Slici 2. Na
istoj slici, ozna£eni su i odgovaraju¢i vrhovi svijetlih £etverokuta s B1, B2, B3, . . .

Slika 2: Fotogra�ja poda na kojoj su ozna£eni pojedini £vorovi

Ako pretpostavimo da je A5 = B6, je li zaista A17 tako blizu B23 da bi, promatraju¢i
u stvarnosti ili na fotogra�ji, izgledalo kao da se te dvije to£ke podudaraju? Primijetimo
da iz malih dimenzija fotogra�je, na Slici 2 moºe izgledati kao da su A10 i B13 ista to£ka,
no u stvarnosti, ili pove¢av²i taj dio fotogra�je kao na Slici 3, vidimo da su ti vrhovi samo
dosta blizu, ali o£ito razli£iti. Takvu situaciju u kojoj su fuge blizu, ali se ne poklapaju,
poku²avaju svi kerami£ari izbje¢i, no ovdje je zbog izbora uzorka bila neizbjeºna.

Slika 3: Uve¢ani dio fotogra�je na kojemu se vidi da se vrhovi A10 i B13 ne podudaraju
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Moºemo li, dakle, nekako iz same fotogra�je na Slici 2 rekonstruirati poloºaj to£aka
A17 i B23? Kako bismo to u£inili, pitamo se ²to je ostalo isto na fotogra�ji u odnosu na
stvarni pod crkve. Jasno je da udaljenosti nisu sa£uvane jer je jedna plo£ica u stvarnosti
ve¢a od £itave fotogra�je otisnute na stranici £asopisa. Tako�er ne moºemo re¢i ni da su
udaljenosti jednoliko smanjene u nekom mjerilu (primjerice da 30 cm u stvarnosti odgovara
1 cm na fotogra�ji) jer bi tada sve svijetle plo£ice na fotogra�ji bile kvadrati. Nije ostao
o£uvan ni omjer u kojemu to£ka dijeli duºinu kojoj pripada. To vidimo primjerice iz toga
²to A2 nije polovi²te A1A3 i B2 nije polovi²te B1B3. No, premda nisu ostale sa£uvane
duljine ni djeli²ni omjeri, za£u�uju¢a, ali vrlo vaºna £injenica je da su ostali sa£uvani
omjeri djeli²nih omjera £etiriju kolinearnih to£aka. Prije preciznije de�nicije, primijetimo
jo² jedno svojstvo koje smo zbog o£iglednosti presko£ili, ali bez njega ne bismo mogli ni
zapo£eti ovu diskusiju. Naime, pravci u stvarnosti ostali su pravci i na fotogra�ji, tj. bilo
koje tri kolinearne to£ke preslikale su se u kolinearne to£ke.

Za £etiri kolinearne to£ke A,B,C,D, njihov dvoomjer se de�nira kao

(ABCD) =
AC

BC
:
AD

BD
=
AC ·BD
BC · AD

,

gdje su AC, BD, BC, AD orijentirane duljine, tj. odaberemo po volji jedan smjer na
pravcu AB kao pozitivan, a drugi je onda negativan te je npr. AC = −CA.

Ozna£imo s X ′ to£ku na podu crkve koja odgovara to£ki X na fotogra�ji. O£ito je
B′1B

′
2 = B′2B

′
3 = B′3B

′
4, pa je

(B′1B
′
2B
′
3B
′
4) =

B′1B
′
3 ·B′2B′4

B′2B
′
3 ·B′1B′4

=
2 · 2
1 · 3

=
4

3
= 1.333 . . .

Izmjerite sada sami s pomo¢u ravnala udaljenosti odgovaraju¢ih to£aka na Slici 2 i iz-
ra£unajte (B1B2B3B4). Ja ¢u koristiti udaljenosti koje sam dobio ubaciv²i fotogra�ju u
program Geogebra u kojemu su (do)crtane sve slike u ovom £lanku. Dobivamo

(B1B2B3B4) =
B1B3 ·B2B4

B2B3 ·B1B4

=
4.84 · 4.03
2.19 · 6.67

= 1.335 . . .

I uz gre²ke zbog idealizacije situacije i pogre²ke mjerenja, ovo se £ini kao dosta uvjerljiv
poticaj da poku²amo dokazati tvrdnju o o£uvanju dvoomjera. Tko ºeli, moºe ponoviti
ra£un za neku drugu £etvorku kolinearnih to£aka na fotogra�ji.

Teorem (Pappus). Ako su A,B,C,D £etiri to£ke na pravcu m, a A′, B′, C ′, D′ to£ke
pravca p takve da pravci AA′, BB′, CC ′, DD′ svi prolaze istom to£kom O, onda je

(ABCD) = (A′B′C ′D′).

Moºemo zami²ljati da na Slici 4 pravac p predstavlja poplo£ani pod, m ekran mobitela,
a O na²e oko (ili, malo realisti£nije, m paralelu s mobitelom, a O objektiv mobitela kojim
je uslikana fotogra�ja).

Dokaz. Ozna£imo s v udaljenost to£ke O od pravca m. Za trokute ACO, BCO, ADO,
BDO povr²inu prikaºemo na dva razli£ita na£ina: polovica umno²ka duljina stranice i
visine ili polovica umno²ka duljina stranica i sinusa kuta izme�u njih. Sli£no napravimo
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Slika 4: Ilustracija Papusova teorema

i za trokute A′C ′O, B′C ′O, A′D′O, B′D′O te dobivamo

(ABCD) =
AC ·BD
BC · AD

=
1
2
AC · v · 1

2
BD · v

1
2
BC · v · 1

2
AD · v

=
P (ACO)P (BDO)

P (BCO)P (ADO)

=
1
2
AO · CO sin^AOC · 1

2
BO ·DO sin^BOD

1
2
BO · CO sin^BOC · 1

2
AO ·DO sin^AOD

=
sin^AOC · sin^BOD
sin^BOC · sin^AOD

=
sin^A′OC ′ · sin^B′OD′

sin^B′OC ′ · sin^A′OD′

=
P (A′C ′O)P (B′D′O)

P (B′C ′O)P (A′D′O)
=
A′C ′ ·B′D′

B′C ′ · A′D′
= (A′B′C ′D′).

Primijenimo li sada Papusov teorem primjerice za to£ke A1, A3, A5, A17, dobivamo iz

(A1A3A5A17) =
A1A5 · A3A17

A3A5 · A1A17

=
A1A5(A3A5 + A5A17)

A3A5(A1A5 + A5A17)
=

11.69(4.45 + A5A17)

4.45(11.69 + A5A17)

(A′1A
′
3A
′
5A
′
17) =

A′1A
′
5 · A′3A′17

A′3A
′
5 · A′1A′17

=
4 · 14
2 · 16

=
7

4
= 1.75

da je A5A17 (= 9.998) = 3.79B1B2.
Sli£no, za to£ke B1, B3, B6 = A5, B23 vrijedi

(B1B3B6B23) =
B1B6(B3B6 +B6B23)

B3B6(B1B6 +B6B23)
=

9.6(4.77 +B6B23)

4.77(9.6 +B6B23)

(B′1B
′
3B
′
6B
′
23) =

B′1B
′
6 ·B′3B′23

B′3B
′
6 ·B′1B′23

=
5 · 20
3 · 22

= 1.515 . . . ,

pa je B6B23 = A5B23 (= 9.942) = 3.77B1B2. Zato je

A17B23 = −A5A17 + A5B23 = −0.02 B1B2.

Osim numeri£ke potvrde da su to£ke A17 i B23 blizu, u to se moºemo uvjeriti i geome-
trijski. Koriste¢i Papusov teorem, konstruiramo iz to£aka A1, A3, A5 to£ku A17. Najprije
na nekom polupravcu iz A1 razli£itom od A1A2 odredimo neke to£ke Ã3, Ã5, Ã17 takve da
je

A1Ã3 : Ã3Ã5 : Ã5Ã17 = 2 : 2 : 12.
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Slika 5: Konstrukcija to£aka A17 i B23 (neki dijelovi fotogra�je posvijetljeni su radi
preglednosti)

Sjeci²te pravaca A3Ã3 i A5Ã5 nazovemo Õ, pa je presjek ÕÃ17 i A1A2 to£ka A17. Sli£no
iz B1, B3, B6 konstruiramo B23. Na Slici 5 ponovno vidimo da su to£ke A17 i B23 blizu.

Prikazana metoda je korisna jer pomo¢u nje moºemo izvu¢i razli£ite informacije s
fotogra�je (vidi npr. [3] za op¢enitije rezultate i neke primjene), pa i nadopuniti dijelove
koji nedostaju, kao ²to smo se upravo uvjerili. Ipak, za provjeru da su to£ke A17 i B23

blizu, nije nam uop¢e trebala fotogra�ja.

2 Racionalne aproksimacije broja
√
2

Ozna£imo li s a duljinu stranice kvadratne plo£ice u stvarnosti, vidimo da je B′kB
′
` =

(`− k)a za prirodne brojeve k i `.
Iz pruge na Slici 1 vidimo da dvije tamne trokutaste plo£ice i dvije polovice svije-

tlog kvadrata £ine kvadrat sa stranicom duljine A′1A
′
2. Izjedna£avanjem povr²ina, slijedi

A′1A
′
2 = a

√
2, pa smo ovako i geometrijski pokazali Pitagorin teorem u ovom posebnom

slu£aju jednakokra£nog pravokutnog trokuta. Dobivamo da je A′kA
′
` = (`− k)a

√
2.

Sada vidimo da uz pretpostavku A′5 = B′6, tvrdnja da je A′17 blizu B′23 zapravo kaºe
da je 12a

√
2 pribliºno jednako 17a, tj. da je 17

12
dobra aproksimacija broja

√
2. Zaista,√

2 = 1.41421 . . ., dok je 17
12

= 1.41666 . . ..
Broj

√
2 je iracionalan, pa je A′k 6= B′` za (k, `) 6= (5, 6). Moºemo na¢i racionalne

brojeve po volji blizu
√
2. Primjerice, 707

500
= 1414

1000
= 1.414 je bliºe

√
2, nego ²to je to 17

12
, no

nazivnik drugog razlomka je puno manji uz ipak poprili£no dobru kvalitetu aproksimacije.

5



Za odre�ivanje dobrih racionalnih aproksimacija iracionalnim brojevima koristimo ve-
riºne razlomke. Jednostavni veriºni razlomak realnog broja α je izraz oblika

α = a0 +
1

a1 +
1

a2 +
1

a3 +
1

. . .

koji obi£no pi²emo u obliku [a0, a1, a2, a3, . . .] jer tako zauzima manje mjesta. Ovdje je
a0 cijeli broj, dok su a1, a2, a3, . . . prirodni brojevi. Veriºni razlomak moºe biti kona£an
ili beskona£an. Uzmemo li samo kona£an po£etni dio, dobivamo takozvane konvergente
pn
qn

= [a0, a1, . . . , an], racionalne brojeve za koje se pokazuje da su vrlo blizu po£etnom
broju α. Zainteresirane £itatelje upu¢ujemo da o teoriji veriºnih razlomaka pro£itaju vi²e
u [1, �8], te se informiraju o primjenama u kriptogra�ji [1, �9.3], kalendaru [2] i glazbi [5].

Mi ¢emo se usredoto£iti samo na razvoj u veriºni razlomak broja
√
2 jer ¢e nam to

pomo¢i da bolje razumijemo za²to je primjerice 17
12

dobra aproksimacija od
√
2, a 707

500
nije.

Za razvoj od
√
2 u veriºni razlomak, posluºit ¢e nam jednostavna jednakost (

√
2−1)(

√
2+

1) = 1 koju pomo¢u Euklidovog teorema o visini na hipotenuzu, ili direktno iz sli£nosti
nekih trokuta, moºemo geometrijski interpretirati kao tvrdnju da je kut nazna£en na Slici
6 u stvarnosti (tj. na podu, a ne na fotogra�ji) pravi kut.

Slika 6: Geometrijska interpretacija jednakosti (
√
2− 1)(

√
2 + 1) = 12

Odmah imamo da je

√
2 + 1 = 2 +

√
2− 1 = 2 +

1√
2 + 1

= 2 +
1

2 +
1

√
2 + 1

= [2, 2, 2 . . .],

tj.
√
2 = [1, 2, 2, . . .].

Ozna£imo li s
pn
qn

= [1, 2, 2, . . . , 2︸ ︷︷ ︸
n dvojki

] za n > 0,
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konvergente od
√
2, vidimo da su konvergente od 1 +

√
2 dane s pn

qn
+ 1 = pn+qn

qn
za n > 0.

Lako je pokazati da niz (qn)n>0 zadovoljava rekurziju

qn = 2qn−1 + qn−2 za n > 2, (2.1)

uz po£etne vrijednosti q0 = 1, q1 = 2. Naime, uzmemo li da je niz zapravo zadan tom
rekurzivnom relacijom, imamo

qn+1

qn
= 2 +

1

qn

qn−1

= 2 +
1

2 +
1

qn−1

qn−2

= · · · = 2 +
1

2 +
1

. . . +
1

2 +
1

q1

q0

= [2, 2, . . . , 2︸ ︷︷ ︸
n+1

],

pa je to zaista konvergenta od 1 +
√
2. Zato, primijetiv²i da su razlomci skra¢eni, imamo

qn+1 = pn + qn, tj. pn = qn+1 − qn.

Dakle, niz (qn)n>0 po£inje s 1, 2, 5, 12, 29, 70, 169, 408, . . . i zove se Pellov niz. Ime Johna
Pella, engleskog matemati£ara iz 17. stolje¢a, susretat ¢emo i u nastavku ovog £lanka. Iako
Pell nije doprinio de�niranju ili otkrivanju svojstava tih pojmova, zasluge mu je pogre²no
pripisao veliki ²vicarski matemati£ar Leonhard Euler, a nazivi su ostali uvrijeºeni do
danas.

Iz prethodnog vidimo da niz
(
qn+1−qn

qn

)
n>0

konvergenti od
√
2 zapo£inje s

1

1
,
3

2
,
7

5
,
17

12
,
41

29
,
99

70
,
239

169
, . . .

Kaºemo da je racionalan broj a
b
, b > 0, dobra aproksimacija iracionalnog broja α ako

vrijedi ∣∣∣α− a

b

∣∣∣ = min

{∣∣∣α− x

y

∣∣∣ : x, y ∈ Z, 0 < y 6 b

}
.

Drugim rije£ima, nijedan racionalan broj s manjim nazivnikom nema manju pogre²ku
aproksimacije nego ²to je ona razlomka a

b
.

Pokazat ¢emo da su sve dobre aproksimacije od
√
2 u skupu konvergenti i sekundarnih

konvergenti tog broja. Ovdje su sekundarne konvergente razlomci oblika pn+pn−1

qn+qn−1
za n > 1.

Zbog jednostavnosti ¢emo raditi s α = 1+
√
2, ali odmah vidimo da to ne mijenja tvrdnju

jer je a
b
dobra aproksimacija od 1+

√
2 ako i samo ako je a

b
−1 = a−b

b
dobra aproksimacija

od
√
2. Konvergente od 1 +

√
2 su qn+1

qn
= pn

qn
+ 1, a sekundarne konvergente su

qn+1 + qn
qn + qn−1

=
pn + pn−1
qn + qn−1

+ 1.

Kako bismo pokazali da su sve dobre aproksimacije od 1 +
√
2 u uniji nizova(qn+1

qn

)
n>0

i
(qn+1 + qn
qn + qn−1

)
n>1

,

moramo najprije prou£iti kako ti nizovi rastu i padaju u skupu realnih brojeva.
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Koriste¢i rekurziju (2.1) za qn, imamo da je za n > 2,

qnqn−2 − q2n−1 = (2qn−1 + qn−2)qn−2 − (2qn−2 + qn−3)qn−1 = (−1)(qn−1qn−3 − q2n−2)
= · · · = (−1)n−2(q2q0 − q21) = (−1)n−2(5 · 1− 22) = (−1)n (2.2)

i sli£no
qn+1qn−2 − qnqn−1 = 2(−1)n. (2.3)

Dode�niramo li q−2 = 1 i q−1 = 0, vidimo da rekurzija za qn te prethodna dva identiteta
vrijede za n > 0. Sada iz (2.2) imamo

qn
qn−1

− qn−1
qn−2

=
qnqn−2 − q2n−1
qn−1qn−2

=
(−1)n

qn−1qn−2
,

a analogno dobivamo i

qn+1 + qn
qn + qn−1

− qn
qn−1

=
(−1)n+1

(qn + qn−1)qn−1
,

qn+1 + qn
qn + qn−1

− qn+1

qn
=

(−1)n

(qn + qn−1)qn
,

qn+1 + qn
qn + qn−1

− qn+2

qn+1

=
(−1)n

(qn + qn−1)qn+1

.

Stoga za paran n vrijedi

qn−1
qn−2

<
qn + qn−1
qn−1 + qn−2

<
qn+1

qn
<
qn+2

qn+1

<
qn+1 + qn
qn + qn−1

<
qn
qn−1

i razlika svaka dva susjedna razlomka a
b
< c

d
je najmanja mogu¢a, tj. c

d
− a

b
= 1

db
.

Pogledajmo kako to izgleda za prvih nekoliko £lanova niza konvergenti i sekundarnih
konvergenti od 1 +

√
2:

2

1
<

7

3
<

12

5
<

41

17
<

70

29
<

239

99
<

408

169
< · · · < 169

70
<

99

41
<

29

12
<

17

7
<

5

2
.

Odredimo udaljenosti konvergenti i sekundarnih konvergenti od broja za £iji su veriºni
razlomak de�nirane. Pomo¢u rekurzije za £lanove niza (qn)n>0, lako se provjeri da je

1 +
√
2 =

(1 +
√
2)qn+1 + qn

(1 +
√
2)qn + qn−1

,

a zatim, koriste¢i (2.2), dobivamo

(1 +
√
2)− qn+1

qn
=
√
2− qn + qn−1

qn
=

(−1)n(
(1 +

√
2)qn + qn−1

)
qn
, (2.4)

(1 +
√
2)− qn+1 + qn

qn + qn−1
=
√
2− 2qn

qn + qn−1
=

√
2(−1)n+1(

(1 +
√
2)qn + qn−1

)
(qn + qn−1)

. (2.5)

Vidimo da se niz konvergenti pribliºava 1 +
√
2 naizmjeni£no odozdo i odozgo, a svaka je

konvergenta bliºa 1 +
√
2, nego ²to je to bila prethodna konvergenta. Isto vrijedi i za niz

sekundarnih konvergenti.
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Pretpostavimo sada da je a
b
dobra aproksimacija od 1+

√
2 koja nije ni konvergenta ni

sekundarna konvergenta od 1+
√
2. Uzmimo da je a

b
> 1+

√
2, a drugi slu£aj se promatra

potpuno analogno. Tada postoje uzastopne (obi£ne ili sekundarne) konvergente P
Q
i P ′

Q′
od

1 +
√
2 takve da je

1 +
√
2 <

P

Q
<
a

b
<
P ′

Q′
i P ′Q− PQ′ = 1.

Sada je
1

Q′b
6
P ′

Q′
− a

b
<
P ′

Q′
− P

Q
=

1

Q′Q

te smo dobili da je Q < b i
∣∣1 +

√
2 − P

Q

∣∣ < ∣∣1 +
√
2 − a

b

∣∣, ²to je u kontradikciji s
pretpostavkom da je a

b
dobra aproksimacija od 1 +

√
2.

Pokazali smo da su sve dobre aproksimacije od 1 +
√
2 u nizu obi£nih i sekundarnih

konvergenti toga broja. Kako bismo odredili koji od £lanova tih dvaju nizova zaista jesu
dobre aproksimacije, iskoristit ¢emo formule (2.4) i (2.5) za njihove udaljenosti od 1+

√
2.

Iz tih formula odmah vidimo da je konvergenta qn+1

qn
bliºa 1 +

√
2, nego sve konvergente i

sekundarne konvergente s manjim nazivnikom. Dovoljno je provjeriti∣∣∣(1+√2)− qn+1

qn

∣∣∣ < ∣∣∣(1+√2)− qn
qn−1

∣∣∣ i
∣∣∣(1+√2)− qn+1

qn

∣∣∣ < ∣∣∣(1+√2)− qn + qn−1
qn−1 + qn−2

∣∣∣,
²to vrijedi jer je niz (qn)n>−1 rastu¢i.

S druge strane, sekundarna konvergenta qn+1+qn
qn+qn−1

bit ¢e dobra aproksimacija od 1+
√
2

ako i samo ako je bliºa tome broju nego ²to je konvergenta s najve¢im nazivnikom manjim
od qn + qn−1, tj. ako i samo ako je∣∣∣(1 +√2)− qn+1 + qn

qn + qn−1

∣∣∣ 6 ∣∣∣(1 +√2)− qn+1

qn

∣∣∣
√
2(

(1 +
√
2)qn + qn−1

)
(qn + qn−1)

6
1(

(1 +
√
2)qn + qn−1

)
qn

qn
√
2 6 qn + qn−1

qn
qn−1

6 1 +
√
2,

a to prema (2.4) vrijedi ako i samo ako je n neparan.
Zato su sve konvergente i svaka druga sekundarna konvergenta (svaka manja od 1+

√
2)

dobre aproksimacije od 1 +
√
2. Stoga su dobre aproksimacije od

√
2 upravo oblika

qn+1 − qn
qn

za sve n > 0 i
qn+1 − qn−1
qn + qn−1

za n neparan.

Niz dobrih aproksimacija od
√
2 zapo£inje s

1

1
,
3

2
,
4

3
,
7

5
,
17

12
,
24

17
,
41

29
,
99

70
,
140

99
,
239

169
, . . .

Razlomak 17
12

= p3
q3

s kojim smo zapo£eli ovu pri£u je konvergenta i dobra aproksimacija
od
√
2. Iz (2.4) imamo

√
2− p3

q3
=

−1(
(1 +

√
2)q3 + q2

)
q3

=
−1

(17 + 12
√
2)12

= −0.0024 . . .
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�injenica da se i 7
5
pojavljuje u nizu dobrih aproksimacija, obja²njava nam situaciju

opisanu uz Sliku 3.
Razlomak 99

70
= p5

q5
za koji je

∣∣√2 − 99
70

∣∣ < 10−4 ne javlja se u promatranoj crkvi na
podu koji je za to prekratak. Ipak, £esto ga susre¢emo u svakodnevici. Naime, dimenzije
papira formata A4 su 210 × 297 mm. Kako je 297

210
= 99

70
, vidimo da je za sve prakti£ne

svrhe, omjer visine i ²irine takvog lista papira upravo
√
2 : 1. U to se lako moºete uvjeriti

tako da preklopite jedan list papira formata A4 na pola paralelno s kra¢om stranicom i
taj preklopljeni papir postavite u kut drugog papira koji niste savili tako da im se rubovi
kod jednog vrha poklapaju (Slika 7). Dijagonale ¢e im se tako�er poklopiti ²to nije te²ko
provjeriti, primjerice, presavijanjem po dijagonali ve¢eg papira. Dakle, uzev²i da se duljine
stranica papira odnose u omjeru x : 1, iz sli£nosti velikog i malog pravokutnika dobivamo
x : 1 = 1 : x

2
, tj. x2 = 2 i x =

√
2.

Slika 7: Presavijanjem papira formata A4 popola, dobivamo papir formata A5 koji mu
je sli£an

3 Cjelobrojne udaljenosti £vorova

Pogledajmo sada jedan naizgled nepovezani problem koji si tako�er moºemo prirodno
postaviti promatramo li na²u fotogra�ju poda (Slika 1). Uzmemo li da je duljina stranice
kvadratne plo£ice jednaka 1, koji se £vorovi (sjeci²ta fuga) na dijelu poda vidljivom na
fotogra�ji nalaze na cjelobrojnoj udaljenosti?

Situacija je prikazana na Slici 8. Radi lak²eg ozna£avanja £vorova, uvodimo Kartezijev
koordinatni sustav tako da je to£ka A′5, tj. B

′
6 ishodi²te, pa primjerice B′7 ima koordinate

(0, 1).
Odmah vidimo da postoji mnogo parova £vorova koji su trivijalno na cjelobrojnoj

udaljenosti, npr. (1, 1) i (1,−3) ili (−
√
2,−2

√
2) i (0,−

√
2). To su £vorovi koji leºe

na istoj fugi me�u plo£icama. Zato ¢e nas u nastavku zanimati samo netrivijalni parovi

£vorova, tj. oni koji se ne nalaze uzduº iste fuge i udaljenost im je cijeli broj. Razmotrit
¢emo ovaj problem kroz vi²e slu£ajeva u ovisnosti o podru£ju na kojemu se nalaze traºeni
£vorovi.

Sve vidljive £vorove moºemo rasporediti u sljede¢e skupove (koristimo vizualno grupi-
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Slika 8: Prikaz poda i £vorova vidljivih na fotogra�ji

ranje u desne, lijeve i srednje to£ke):

D =
{
(x, y) : x ∈ {0, 1, 2}, y ∈ {−5,−4, . . . , 9}

}
,

L = {(−2−
√
2,−2), (−2−

√
2,−1)}∪{

(x, y) : x ∈ {−1−
√
2,−
√
2}, y ∈ {−5,−4, . . . ,−1}

}
,

S = SL ∪ SS ∪ SD,

SL =
{
(−
√
2, u
√
2) : u ∈ {−4,−3,−2,−1}

}
,

SS =
{
(−
√
2
2
,−
√
2
2
+ u
√
2) : u ∈ {−3,−2,−1}

}
,

SD =
{
(0, u
√
2) : u ∈ {−4,−3, . . . , 6}

}
.

Slu£aj 1. Pretpostavimo da su oba £vora (x1, y1) i (x2, y2) u D ili da su oba u L. Iz
Pitagorinog teorema znamo da je kvadrat udaljenosti tih dviju to£aka jednak (x1−x2)2+
(y1− y2)2, pa treba rije²iti jednadºbe 1+ y2 = z2 i 4+ y2 = z2 u skupu prirodnih brojeva.
Za y > 2 je y2 < y2 + 1 < y2 + 4 < (y + 1)2 te odmah vidimo da navedene jednadºbe
nemaju rje²enja u prirodnim brojevima.
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Slu£aj 2. Slu£aj kada je jedan £vor u L, a jedan u S, zbog simetrije s obzirom na
pravac x = −

√
2
2
, moºemo uklju£iti u slu£aj kada je jedan £vor u D, a jedan u S, pa sada

promatramo tu mogu¢nost. Neka je £vor (x, y) iz D.
Podslu£aj 2.1. Neka je drugi £vor (0, u

√
2) u SD. Budu¢i da traºimo netrivijalne parove,

mora biti x = 1 ili x = 2, pa dobivamo jednadºbe 1+(y−u
√
2)2 = z2 i 4+(y−u

√
2)2 = z2.

Zbog iracionalnosti od
√
2, odmah vidimo da je u = 0 ili y = 0. No, za u = 0, dobivamo

upravo Slu£aj 1 koji smo ve¢ obradili, pa moºemo uzeti da je y = 0. Dobili smo jednadºbe
1 + 2u2 = z2 i 4 + 2u2 = z2.

Jednadºba 4+2u2 = z2 povla£i najprije da je z paran te stavimo z = 2w, a zatim i da
je u paran, pa uzmemo u = 2v. Nakon dijeljenja te jednadºbe s 4, dobivamo 1+2v2 = w2

²to je istog tipa kao i prva jednadºba. Dakle, dovoljno je promatrati 1 + 2u2 = z2, tj.
z2 − 2u2 = 1.

Ovo je takozvana Pellova jednadºba i odmah vidimo da je usko vezana uz problem
bliskih aproksimacija broja

√
2 koji smo netom prou£avali. Naime, z2 − 2u2 = 1 moºemo

zapisati kao
z

u
−
√
2 =

1

u(z + u
√
2)
. (3.1)

Nije smanjenje op¢enitosti uzeti da su z i u pozitivni, u protivnom ih se moºe zamijeniti
s njima suprotnim brojevima koji tako�er zadovoljavaju po£etnu Pellovu jednadºbu. Iz
(3.1) vidimo da je z

u
vrlo blizu

√
2. �tovi²e, pokaºimo da je z

u
dobra aproksimacija od

√
2.

Pretpostavimo suprotno, tj. da postoji neki racionalan broj X
Y
takav da je 1 6 Y 6 u

i
∣∣√2− X

Y

∣∣ < z
u
−
√
2. Ne moºe biti Y = u jer bi zbog X

Y
6= z

u
imali

1

Y
6
∣∣∣X
Y
− z

u

∣∣∣ = ∣∣∣(X
Y
−
√
2
)
+
(√

2− z

u

)∣∣∣
6
∣∣∣√2− X

Y

∣∣∣+ ∣∣∣√2− z

u

∣∣∣ < 2

u(z + u
√
2)
<

1

u
=

1

Y
,

²to je nemogu¢e. Dakle, Y + 1 6 u te imamo

|X − Y
√
2| < Y

∣∣∣z
u
−
√
2
∣∣∣ = Y

u(z + u
√
2)
<

1

z + u
√
2
<

1

2
,

|X + Y
√
2| 6 |X − Y

√
2|+ 2Y

√
2 < 2Y

√
2 +

1

2
,

pa stoga vrijedi

∣∣X2 − 2Y 2
∣∣ = ∣∣(X − Y√2)(X + Y

√
2)
∣∣ < Y (2Y

√
2 + 1

2
)

u(z + u
√
2)

<
Y (2Y

√
2 + 1

2
)

u · 2u
√
2

6
2Y 2
√
2 + 1

2
Y

2(Y + 1)2
√
2
< 1.

Odavde bi slijedilo X2 − 2Y 2 = 0, ²to zbog Y 6= 0 i iracionalnosti od
√
2 nije mogu¢e.

Pokazali smo da je z
u
dobra aproksimacija od

√
2, pa po prethodno dokazanim rezul-

tatima slijedi da je z
u
konvergenta ili sekundarna konvergenta u razvoju

√
2 u veriºni

razlomak. No, uspore�uju¢i (3.1) s formulama (2.4) i (2.5), vidimo da samo za ko-
nvergente ve¢e od

√
2 vrijedi (3.1), pa su pozitivna rje²enja od z2 − 2u2 = 1 parovi

(z, u) ∈ {(3, 2), (17, 12), (99, 70), . . .}. Nije te²ko pokazati, primjerice koriste¢i rekurziju
(2.1) za qn, da ta rje²enja imaju oblik z + u

√
2 = (1 +

√
2)2k za k prirodan broj.
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Uz ograni£enja na koordinate elemenata iz D i SD, to nam daje sljede¢e netrivijalne
parove £vorova s cjelobrojnim udaljenostima:

{(1, 0), (0,−2
√
2)}, {(1, 0), (0, 2

√
2)}, {(2, 0), (0,−4

√
2)}, {(2, 0), (0, 4

√
2)}.

Za £vor iz L i £vor iz SL o£ito nema traºenih parova.
Podslu£aj 2.2. �vor (x, y) je u D, a uzmimo sada da je drugi £vor

(
−
√
2
2
,−
√
2
2
+ u
√
2
)

u SS. Dobivamo jednadºbu (
x+

√
2

2

)2
+
(
y +

√
2

2
− u
√
2
)2

= z2,

(x2 + y2 + 2u2 − 2u+ 1) + (x+ y − 2yu)
√
2 = z2.

Budu¢i da je
√
2 iracionalan, imamo x + y − 2yu = 0, tj. y = x

2u−1 . Prisjetimo se da je
ovdje x ∈ {0, 1, 2}, u ∈ {−3,−2,−1}.

Za x = 0 je y = 0 i mnoºenjem jednadºbe 2u2 − 2u + 1 = z2 s 2, dobivamo (2u −
1)2 − 2z2 = −1. Uskoro ¢emo prokomentirati ovakvu jednadºbu, ali za sada je dovoljno
provjeriti da za u ∈ {−3,−2,−1} dobivamo 2u2 − 2u + 1 ∈ {25, 13, 5}, ²to je kvadrat
samo za u = −3. Dobili smo netrivijalni par £vorova (0, 0) i

(
−
√
2
2
,−7

√
2

2

)
na udaljenosti

5.
Za u ∈ {−3,−2,−1}, broj 2u−1 ∈ {−7,−5,−3} ne dijeli x ∈ {1, 2}, pa nema rje²enja

jednadºbe. Primijetimo da bi za u = 0 imali da su x = 2, y = −2, z = 3 cijeli brojevi,
pa je udaljenost £vorova (2,−2) i

(
−
√
2
2
,−
√
2
2

)
cjelobrojna. Naºalost, druga to£ka nije

vidljiva jer je pokrivena samim kutom tepiha.
Za L i SS nema zadovoljavaju¢ih parova £vorova.

Podslu£aj 2.3. Kao i prije, prvi £vor (x, y) je u D, a drugi £vor (−
√
2, u
√
2) je sada u

SL. Imamo jednadºbu

(x+
√
2)2 + (y − u

√
2)2 = z2

(x2 + y2 + 2u2 + 2) + 2(x− yu)
√
2 = z2.

Zbog iracionalnosti broja
√
2, mora biti x− yu = 0, pa je x2+ y2+2u2+2 = z2, odnosno

y2u2 + y2 + 2u2 + 2 = z2, tj. (y2 + 2)(u2 + 1) = z2.
Za x = 2 je (y, u) ∈ {(−2,−1), (2, 1), (−1,−2), (1, 2)}, no nijedan od tih parova ne

daje cijeli broj z.
Za x = 1 je (y, u) ∈ {(−1,−1), (1, 1)}, ali ponovno z nije cijeli.
Za x = 0 je y = 0 ili u = 0. Uvjet u = 0 povla£i y2 + 2 = z2, ²to nema cjelobrojnih

rje²enja, pa preostaje promatrati slu£aj y = 0. Dobivamo jednadºbu 2(u2 + 1) = z2,
odnosno, nakon supstitucije z = 2w, jednadºbu u2−2w2 = −1. Ovo je takozvana pellovska
jednadºba i potpuno analogno kao kod Pellove jednadºbe koja se pojavila u Podslu£aju
2.1, pokazuje se (uzmemo li |u| i |w| umjesto u i w) da je u

w
dobra aproksimacija od

√
2

za koju je
u

w
−
√
2 =

−1
w(u+ w

√
2)
,

te usporedbom s formulama (2.4) i (2.5), zaklju£ujemo da je u
w

konvergenta manja od√
2, tj. (|u|, |w|) ∈ {(1, 1), (7, 5), (41, 29), . . .}. Sli£no kao i za Pellovu jednadºbu, lako se

vidi da su rje²enja generirana s (1 +
√
2)2k−1 za k prirodan broj. Mnogo vi²e o op¢enitim

Pellovim i pellovskim jednadºbama moºete na¢i u [1, ��10.3, 10.5].
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U na²oj situaciji, u obzir dolazi samo u = −1, no to£ke (0, 0) i (−
√
2,−
√
2) leºe na

istoj fugi, pa nam taj par nije zanimljiv.
Budu¢i da to£ka (−

√
2, 0) simetri£na to£ki (0, 0) s obzirom na pravac x = −

√
2
2

uop¢e
nije vidljiva, ne postoji ni netrivijalni par traºenih to£aka od kojih je jedna iz L, a druga
iz SD.
Slu£aj 3. Za jedan £vor iz L i jedan £vor izD, dobivamo jednadºbu oblika (x+

√
2)2+y2 =

z2. Ponovno iz iracionalnosti od
√
2 slijedi da je x = 0, ali y2+2 = z2, tj. (z−y)(z+y) = 2

nema rje²enja u skupu cijelih brojeva.
Slu£aj 4. Neka su sada oba £vora u S. Zbog simetrije s obzirom na pravac x = −

√
2
2
,

moºemo pretpostaviti da je jedan £vor u SD, pa imamo dva podslu£aja.
Podslu£aj 4.1. Pretpostavimo da je drugi £vor u SL. Promatramo jednadºbu (

√
2)2 +

(u
√
2)2 = z2, tj. 2 + 2u2 = z2. Nakon supstitucije z = 2w, dobivamo u2 − 2w2 = −1,

a ovu pellovsku jednadºbu ve¢ smo rije²ili u Podslu£aju 2.3. Vidimo da ovdje dolaze u
obzir samo rje²enja (1, 1) i (7, 5). Prvo daje trivijalne parove £vorova, a drugo odgovara
parovima £vorova oblika {(−

√
2, t
√
2), (0, (t+ 7)

√
2)}, gdje je t ∈ {−4,−3,−2,−1}.

Podslu£aj 4.2. Uzmimo sada da je drugi £vor u SS. Jednadºba(√2
2

)2
+
(√2

2
+ u
√
2
)2

= z2

ekvivalentna je (2u + 1)2 − 2z2 = −1 ²to nam daje rje²enja u = 0 i u = 3. Za u = 0
dobivamo trivijalne parove £vorova, a za u = 3 parove £vorova oblika{(

−
√
2

2
,−
√
2

2
+ t
√
2
)
,
(
0, (t+ 3)

√
2
)}
, gdje je t ∈ {−3,−2,−1}.

Ovi parovi bili su o£ekivani jer su njihove spojnice srednjice u odgovaraju¢im trokutima
kojima je jedna stranica dobivena spajanjem parova iz prethodnog podslu£aja.

Ovim smo zavr²ili potragu za £vorovima s cjelobrojnim udaljenostima. Za sve pro-
na�ene netrivijalne parove £vorova, podebljano smo na Slici 9 nazna£ili duºine koje ih
spajaju. Za iscrtkane duºine postoje jo² po dvije ili tri duºine koje se iz njih dobivaju
translacijom za vi²ekratnik vektora (0,

√
2) i koje radi preglednosti nisu prikazane na toj

slici.

Na fotogra�ji poda (Slika 1) koja je bila glavni poticaj za pisanje ovog £lanka, nalaze
se jo² mnogi detalji koji bi mogli posluºiti kao polazi²ta za zanimljiva i bogata istraºivanja
dostupna i u£enicima. Primjerice, s geometrijskog gledi²ta, mogli bismo prou£avati elipse
u koje su se preslikale kruºnice na desnom tepihu ili pak modi�ciranu Pickovu formulu
za re²etku na lijevom tepihu. S aspekta teorije brojeva, prirodno se javljaju rezultati
poput teorema o tri udaljenosti iz podru£ja diofantskih aproksimacija. Ne bi bilo te²ko
na¢i ni materijala za pitanja iz kombinatorike, npr. prebrojavanja odgovaraju¢ih putova
u cjelobrojnoj mreºi.

Ipak, ovdje ¢emo pri£u za sada zavr²iti. �itatelje koji ¢e ²etati Gri£em pozivam da
bar nakratko u�u u crkvu svetih �irila i Metoda. Nemojte svoju paºnju zaustaviti samo
na podu crkve, koji uostalom nije posebno zna£ajan, nego podignite pogled i promotrite
vrlo lijepi ikonostas. Na njemu, osim umjetni£kih i vjerskih tema, tako�er moºete uo£iti
neke matemati£ke motive i probleme. Ali to je ve¢ neka druga pri£a.
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Slika 9: Podebljano su prikazane netrivijalne duºine cjelobrojne duljine
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