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Nedavno sam prisustvovao liturgiji u grkokatolickoj crkvi svetih Cirila i Metoda na
zagrebackom Gornjem gradu. Spustivsi pogled s lijepog ikonostasa, uoc¢io sam poprili¢no
uobic¢ajen crkveni pod prekriven keramickim plocicama. PaZnju mi je privukla naizgled
nevazna ¢injenica da se na jednom mjestu poklapaju vrhovi tamnih trokutastih plo¢ica i
svijetlih kvadratnih plocica. Izbrojao sam plocice do iduc¢eg poklapanja i na brzinu uslikao
iducu fotografiju.

T

Slika 1: Fotografija poda i naznac¢eno podudaranje vrhova ploc¢ica

Vrativsi se kuéi, pogledao sam fotografiju i primijetio da sam u brzini fotografijom
obuhvatio samo prvo poklapanje vrhova (na Slici 1 istaknuto strelicom). Ako sam dobro
zapamtio, do iduceg takvog podudaranja bilo je 12 tamnih trokutastih plocica, odnosno
17 svijetlih kvadratnih plo¢ica. Prvo pitanje koje sam si postavio bilo je mogu li te brojeve
nekako graficki i numericki potvrditi iz same slike.



1 Rekonstrukcija tocaka izvan slike

Kako bismo ovaj problem malo preciznije matematicki modelirali, pretpostavljamo sada i
u nastavku da su sve svijetle plocice kvadratne i istih dimenzija. Iz bordure u kojoj se po-
javljuju, mozemo vidjeti da je svaka tamna ploc¢ica dobivena kao polovica takvog kvadrata
prerezana jednom dijagonalom. Takoder ¢emo zanemariti uske fuge medu ploc¢icama jer
ih mozemo uzduzno podijeliti popola i pridodati plocicama izmedu kojih se nalaze.

Oznac¢imo vrhove uz stranice tamnih trokuta redom A;, As, A3 ... kao na Slici 2. Na
istoj slici, oznaceni su i odgovarajuci vrhovi svijetlih ¢etverokuta s By, By, Bs, . ..

Slika 2: Fotografija poda na kojoj su oznaceni pojedini ¢vorovi

Ako pretpostavimo da je A5 = Bg, je li zaista A7 tako blizu Bys da bi, promatrajuéi
u stvarnosti ili na fotografiji, izgledalo kao da se te dvije tocke podudaraju? Primijetimo
da iz malih dimenzija fotografije, na Slici 2 moze izgledati kao da su Ao i B3 ista tocka,
no u stvarnosti, ili povecavsi taj dio fotografije kao na Slici 3, vidimo da su ti vrhovi samo
dosta blizu, ali o¢ito razli¢iti. Takvu situaciju u kojoj su fuge blizu, ali se ne poklapaju,
pokusavaju svi keramicari izbje¢i, no ovdje je zbog izbora uzorka bila neizbjezna.

Slika 3: Uveéani dio fotografije na kojemu se vidi da se vrhovi Ay i B3 ne podudaraju



Mozemo li, dakle, nekako iz same fotografije na Slici 2 rekonstruirati polozaj toc¢aka
A7 1 Bog? Kako bismo to uéinili, pitamo se $to je ostalo isto na fotografiji u odnosu na
stvarni pod crkve. Jasno je da udaljenosti nisu sac¢uvane jer je jedna ploc¢ica u stvarnosti
veca od citave fotografije otisnute na stranici ¢asopisa. Takoder ne moZzemo reéi ni da su
udaljenosti jednoliko smanjene u nekom mjerilu (primjerice da 30 cm u stvarnosti odgovara
1 em na fotografiji) jer bi tada sve svijetle plo¢ice na fotografiji bile kvadrati. Nije ostao
oc¢uvan ni omjer u kojemu tocka dijeli duzinu kojoj pripada. To vidimo primjerice iz toga
$to A, nije poloviste A;As i By nije poloviste B;Bs. No, premda nisu ostale sa¢uvane
duljine ni djelisni omjeri, zac¢udujuca, ali vrlo vazna ¢injenica je da su ostali sacuvani
omjeri djelisnih omjera cetiriju kolinearnih toc¢aka. Prije preciznije definicije, primijetimo
jo$ jedno svojstvo koje smo zbog ociglednosti preskocili, ali bez njega ne bismo mogli ni
zapocCeti ovu diskusiju. Naime, pravci u stvarnosti ostali su pravci i na fotografiji, tj. bilo
koje tri kolinearne tocke preslikale su se u kolinearne tocke.

Za Cetiri kolinearne tocke A, B, C, D, njihov dvoomjer se definira kao

AC AD  AC-BD
ABCD) =56 3D ~ BC-AD'

gdje su AC, BD, BC, AD orijentirane duljine, tj. odaberemo po volji jedan smjer na
pravcu AB kao pozitivan, a drugi je onda negativan te je npr. AC = —CA.

Oznacimo s X’ tofku na podu crkve koja odgovara tocki X na fotografiji. O¢ito je
BB, = ByB, = BB, pa je
_ BiBy-ByB;, 2.2 4

_ =TT T 1333,
B.B,-B/B, 1-3 3

(B1B3B3By)

Izmjerite sada sami s pomoc¢u ravnala udaljenosti odgovarajué¢ih tocaka na Slici 2 i iz-

racunajte (B;ByBsBy). Ja ¢u koristiti udaljenosti koje sam dobio ubacivsi fotografiju u

program Geogebra u kojemu su (do)crtane sve slike u ovom ¢lanku. Dobivamo
B1B3-ByBy  4.84-4.03

ByByBsBy) = — —1.335. ..
(BB B3 Ba) BoBs - BiBy  2.19-6.67

I uz greske zbog idealizacije situacije i pogreske mjerenja, ovo se ¢ini kao dosta uvjerljiv
poticaj da pokusamo dokazati tvrdnju o o¢uvanju dvoomjera. Tko zZeli, moze ponoviti
racun za neku drugu ¢etvorku kolinearnih tocaka na fotografiji.

Teorem (Pappus). Ako su A, B,C, D Zdetiri tocke na praveu m, a A',B',C', D’ tocke
pravea p takve da pravei AA', BB', CC', DD' svi prolaze istom tockom O, onda je
(ABCD) = (A'B'C'D").

Mozemo zamisljati da na Slici 4 pravac p predstavlja poplocani pod, m ekran mobitela,
a O nase oko (ili, malo realisti¢nije, m paralelu s mobitelom, a O objektiv mobitela kojim
je uslikana fotografija).

Dokaz. Ozna¢imo s v udaljenost tocke O od pravca m. Za trokute ACO, BCO, ADO,
BDO povrsinu prikazemo na dva razli¢ita nacina: polovica umnoska duljina stranice i
visine ili polovica umnoska duljina stranica i sinusa kuta izmedu njih. Sli¢no napravimo



A4 B oD

Slika 4: Ilustracija Papusova teorema

i za trokute A’C'O, B'C'O, A’D'O, B'D’O te dobivamo

(ABCD) — AC-BD _ 1AC-v-1BD-v _ P(ACO) P(BDO)
BC-AD ~ IBC-v-1AD-v ~ P(BCO)P(ADO)
LAO - COsin 9AOC - LBO - DOsin <BOD
1BO - COsin<BOC - LAO - DO sin <AOD
sin <AOC - sin<<BOD  sin<A'OC" - sin<B'OD’
sin <BOC - sin<AOD _ sin <B'OC" - sin <A'OD’
P(A'C'O)P(B'D'O) A'C'-B'D' o
~ P(B'C'O)P(AD'O)  BC'-AD (ABCD). -

Primijenimo li sada Papusov teorem primjerice za tocke A;, Az, As, A17, dobivamo iz

(AyAsAs Ary) = A1 A5 - A Ay, _ A1 As(AsAs + AsAqq) _ 11.69(4.45 + A5 Ay7)

AzAs - AjArr AAs(A1As + AsArr)  4.45(11.69 + AsAgr)
T VA

ALAL - ALAL, 24160 40

(A A3 A5 AL)

da je A5A17 (: 9998) =3.79 BlBQ.
Sliéno, za tocke Bl, Bg, B@ = A5, B23 VI‘ijedi

BlBﬁ(BgBﬁ —|— BGB23) 96(477 + BGB23)
(BlB3B6BQ3) = =

B3Bs(B1Bg + BgBag)  4.77(9.6 + B Bas)
_ B{By-BiBl; 5-20
~ ByBL- BBy,  3-22

(B.B,B.B.s) —1515...,

pPa je BﬁBQg = A5B23 (: 9942) =3.77 BlBQ. Zato je
A17ng = —A5A17 + A5ng = —0.02 B1B2.

Osim numericke potvrde da su tocke A7 i Bog blizu, u to se mozemo uvjeriti i geome-
trijski. Koriste¢i Papusov teorem, konstruiramo iz tocaka A;, Az, As tocku A7 Najprije
na nekom polupravcu iz A; razli¢itom od A; A, odredimo neke tocke As, As, A7 takve da
je o

A1As : AsAs : AsAp =2:2:12.



Slika 5: Konstrukcija to¢aka A;; i Bos (neki dijelovi fotografije posvijetljeni su radi
preglednosti)

Sjeciste pravaca A3Zg i A5Z5 nazovemo 6, pa je presjek 51117 i A1 As tocka Aq7. Slicno
iz By, B3, Bg konstruiramo Bsz. Na Slici 5 ponovno vidimo da su tocke A7 i Bag blizu.

Prikazana metoda je korisna jer pomoc¢u nje mozemo izvuéi razli¢ite informacije s
fotografije (vidi npr. [3] za opcenitije rezultate i neke primjene), pa i nadopuniti dijelove
koji nedostaju, kao §to smo se upravo uvjerili. Ipak, za provjeru da su tocke A7 i Bos
blizu, nije nam uopé¢e trebala fotografija.

2 Racionalne aproksimacije broja v/2

Oznacimo li s a duljinu stranice kvadratne plocice u stvarnosti, vidimo da je B.B, =
(¢ — k)a za prirodne brojeve k i /.

Iz pruge na Slici 1 vidimo da dvije tamne trokutaste plocice i dvije polovice svije-
tlog kvadrata ¢ine kvadrat sa stranicom duljine A} A). Izjedna¢avanjem povrsina, slijedi
Al Al = a/2, pa smo ovako i geometrijski pokazali Pitagorin teorem u ovom posebnom
slu¢aju jednakokra¢nog pravokutnog trokuta. Dobivamo da je A} A} = (£ — k)av/2.

Sada vidimo da uz pretpostavku A = By, tvrdnja da je A}, blizu Bj; zapravo kaze
da je 12av/2 priblizno jednako 17a, tj. da je % dobra aproksimacija broja /2. Zaista,
V2 =1.41421. .., dok je }—; = 1.41666. . ..

Broj v/2 je iracionalan, pa je A} # B} za (k,£) # (5,6). MoZemo nadi racionalne
brojeve po volji blizu v/2. Primjerice, 2 = 14 — 1 414 je blize v/2, nego §to je to 1, no

» 500 1000 127
nazivnik drugog razlomka je puno manji uz ipak poprilicno dobru kvalitetu aproksimacije.



Za odredivanje dobrih racionalnih aproksimacija iracionalnim brojevima koristimo ve-
rizne razlomke. Jednostavni veriini razlomak realnog broja « je izraz oblika

1
o = ag+
1
aq +
1
az +
1
as + —
koji obi¢no pisemo u obliku [ag, a1, as, as, ...] jer tako zauzima manje mjesta. Ovdje je
ap cijeli broj, dok su aq, as, as, ... prirodni brojevi. Verizni razlomak moze biti konac¢an
ili beskonacan. Uzmemo li samo konacan pocetni dio, dobivamo takozvane konvergente
Po = lag,ay,...,a,], racionalne brojeve za koje se pokazuje da su vrlo blizu po¢etnom

lgrfoju a. Zainteresirane Citatelje upucujemo da o teoriji veriznih razlomaka procitaju vise
u [1, §8], te se informiraju o primjenama u kriptografiji [1, §9.3], kalendaru [2] i glazbi [5].

Mi éemo se usredotoéiti samo na razvoj u verizni razlomak broja v/2 jer ¢e nam to
pomoci da bolje razumijemo zas$to je primjerice % dobra aproksimacija od v/2, a % nije.
Za razvoj od v/2 u verizni razlomak, posluZit ¢e nam jednostavna jednakost (v/2—1)(v/2+
1) = 1 koju pomoc¢u Euklidovog teorema o visini na hipotenuzu, ili direktno iz sli¢nosti
nekih trokuta, mozemo geometrijski interpretirati kao tvrdnju da je kut naznacen na Slici

6 u stvarnosti (tj. na podu, a ne na fotografiji) pravi kut.

Ay

Slika 6: Geometrijska interpretacija jednakosti (v/2 — 1)(v/2 + 1) = 12

Odmah imamo da je

1 1

V24+1=24+4V2—-1=2+ =24+ ———=1[2,2,2..],
V2 +1

tj. vV2=11,2,2,...].
Oznac¢imo 1i s

DPn
— =01,2,2,...,2] zan >0,
dn [ A’_/]

n dvojki



konvergente od \/5, vidimo da su konvergente od 1+ V2 dane s % +1= 7% zan = 0.
Lako je pokazati da niz (g, )n>0 zadovoljava rekurziju

dn = 2(]n—1 + dn—2 Z2amn = 2, (21)

uz pocetne vrijednosti ¢o = 1, ¢ = 2. Naime, uzmemo li da je niz zapravo zadan tom
rekurzivnom relacijom, imamo

1 1 1
qn+1:2+ :2+—1 ::2+ 1 :2727"'727
in in 2+ 24— n+1
Gn-1 Gn—1 : 1
q o
n—2 2+_
ﬂ
qo

pa je to zaista konvergenta od 1+ /2. Zato, primijetivii da su razlomei skraceni, imamo

Gn+1 = Pn + Qn, tj~ Pn = Gn+1 — 4n-

Dakle, niz (g,)n>0 pocinje s 1,2,5,12,29,70,169,408, ... i zove se Pellov niz. Ime Johna
Pella, engleskog matematicara iz 17. stoljeca, susretat ¢emo i u nastavku ovog ¢lanka. Iako
Pell nije doprinio definiranju ili otkrivanju svojstava tih pojmova, zasluge mu je pogresno
pripisao veliki Svicarski matematicar Leonhard Euler, a nazivi su ostali uvrijezeni do
danas.

Iz prethodnog vidimo da niz (q’”ql;q”)wo konvergenti od /2 zapocinje s
1 3 7 17 41 99 239
1”2”5127 29" 707 169" "

Kazemo da je racionalan broj ¢, b > 0, dobra aproksimacija iracionalnog broja a ako
vrijedi

‘a—%‘:min{‘a—g‘ :x,yEZ,O<y<b}.
)

Drugim rijecima, nijedan racionalan broj s manjim nazivnikom nema manju pogresku
aproksimacije nego §to je ona razlomka 3.
Pokazat ¢emo da su sve dobre aproksimacije od v/2 u skupu konvergenti i sekundarnih

konvergenti tog broja. Ovdje su sekundarne konvergente razlomci oblika % zan > 1.
Zbog jednostavnosti ¢emo raditi s @ = 1+ +/2, ali odmah vidimo da to ne mijenja tvrdnju
jer je ¢ dobra aproksimacija od 1+ V2 ako i samo ako je F—1= aT_b dobra aproksimacija

od V2. Konvergente od 1 + V2 su q’;—zl = Iq’—z + 1, a sekundarne konvergente su

Gn+1 + dn . Pn + Pn-1
dn + dn—1 dn + dn—1

+ 1.

Kako bismo pokazali da su sve dobre aproksimacije od 1 + v/2 u uniji nizova

(Qn+1> 1 (Qn—i-l + Qn>
qn /=0 Gn + Qn_1/n>1’

moramo najprije prouciti kako ti nizovi rastu i padaju u skupu realnih brojeva.

7



Koristedi rekurziju (2.1) za ¢,, imamo da je za n > 2,

Gnn-2— 0@ 1= 2Gn-1+ @n—2)n—2 — 202 + @-3)tn-1 = (=) (@n-1Gn—3 — @>_5)
== (=1)"(gqo — 1) = (-1)"?(5-1=2%) = (=1)" (2.2)
i sli¢no
dn+149n—2 — @ndn—1 = 2(_1)n (23)

Dodefiniramo li ¢_ 5 = 11 ¢q_; = 0, vidimo da rekurzija za ¢, te prethodna dva identiteta
vrijede za n > 0. Sada iz (2.2) imamo

G Gt _ Gnn2— Gy _ (=1)"

gn—1 gn—2 Gn—19n—2 qn—1Qn—27
a analogno dobivamo i
qn+1 + dn . dn _ (_1)n+1
G+ -1 Q-1 (G + Go-1)Tn1
qn+1 + Gn _ Gn+1 _ (_1)n
G+ G- G (Gt G-1)C
Int1+Gn  Gny2 (=)™

Gn + gn—1 Qn+1 (QH + Qn71>Qn+1 .

Stoga za paran n vrijedi

dn—1 < Gn + Qn—1 < qn+1 < qn+4-2 < Gn+1 + Qn < qn

Gn—2 Gn—1 + Gn—2 dn dn+1 dn + dn—1 dn—1

1 razlika svaka dva susjedna razlomka 7 < 5 je najmanja moguca, tj. ¢ — 3 = %.
Pogledajmo kako to izgleda za prvih nekoliko ¢lanova niza konvergenti i sekundarnih

konvergenti od 1 + /2:
2 7 12 41 70 239 408 169 99 29 17 5

< << =< —< —/—< "+ < — < — < =<K < —.
1 3 5 17 29 99 169 0 41 12 7 2
Odredimo udaljenosti konvergenti i sekundarnih konvergenti od broja za ¢iji su verizni

razlomak definirane. Pomo¢u rekurzije za ¢lanove niza (g, ),>0, lako se provjeri da je

_ (1 + \/§>QH+1 + qn
1+V2= :
(1+ \/§)Qn + qn—1

a zatim, koristeéi (2.2), dobivamo

(1+\/§) N Gn+1 _ \/__ Gn + Gn-1 _ (_1>n (24)

Gn Gn (L+V2)gn + Gn-1) @’
nt1 T Qn 2 n 2(—1)"+!
(14+v2)— It Tl _ 5 2 v2(=1) . (2:5)

Vidimo da se niz konvergenti priblizava 1 + v/2 naizmjeni¢no odozdo i odozgo, a svaka je
konvergenta bliza 1 4+ v/2, nego §to je to bila prethodna konvergenta. Isto vrijedi i za niz
sekundarnih konvergenti.



Pretpostavimo sada da je ¢ dobra aproksimacija od 1+ v/2 koja nije ni konvergenta ni
sekundarna konvergenta od 1+ /2. Uzmimo da je 7> 1+ V2, a drugi slucaj se promatra
potpuno analogno. Tada postoje uzastopne (obi¢ne ili sekundarne) konvergente g i % od

1 + /2 takve da je

1+vV2<=<-< i P'Q-PQ =1.

QU

a
b

Ol v

Sada je

1 P a P P 1
S5 71</5—"H7-=

Qb Q b Q Q QQ
te smo dobili da je ) < b i ’1 + V2 — g‘ < }1 + V2 — %{, Sto je u kontradikeiji s
pretpostavkom da je ¢ dobra aproksimacija od 1+ V2.

Pokazali smo da su sve dobre aproksimacije od 1 + v/2 u nizu obi¢nih i sekundarnih
konvergenti toga broja. Kako bismo odredili koji od ¢lanova tih dvaju nizova zaista jesu
dobre aproksimacije, iskoristit ¢emo formule (2.4) i (2.5) za njihove udaljenosti od 1+ /2.
Iz tih formula odmah vidimo da je konvergenta q’;—:l bliza 1 + v/2, nego sve konvergente i
sekundarne konvergente s manjim nazivnikom. Dovoljno je provjeriti

n n n n+ Qn—
(1+v/2) — Lot <‘(1+\/§)— d ‘(1+\/§)—q+1 <‘(1+\/§)—ﬁ,
n n—1 n n—1 n—2

Sto vrijedi jer je niz (g,)n>_1 rastuéi.
S druge strane, sekundarna konvergenta % bit ¢e dobra aproksimacija od 1+ /2
ako i samo ako je bliza tome broju nego sto je konvergenta s najveé¢im nazivnikom manjim

od ¢, + ¢n_1, tj. ako i samo ako je

n +n
‘(1+\/§)_M
Gn + qn—1

V2 - 1

((1 +‘\/§)QH'+'Qn71)(Qn'+'anl) h ((1 +-\/§)qn-+-qn71)qn

< ‘(1+\/§) —~ q’;“

0nV2 < Gn + G
QH <;1'+*Vﬂi
Qn—l

a to prema (2.4) vrijedi ako i samo ako je n neparan.
Zato su sve konvergente i svaka druga sekundarna konvergenta (svaka manja od 14+/2)
dobre aproksimacije od 1+ v/2. Stoga su dobre aproksimacije od v/2 upravo oblika

Qn+1 — ¢ . Gnt+1 —qn—1
2 Tzasven>0 i ——"— za n neparan.

n dn + qn-1
Niz dobrih aproksimacija od v/2 zapoéinje s
L3 47 17 20 41 09 10 230
17273 57127 17729 707 997 169"
Razlomak % = Z—Z’ s kojim smo zapoceli ovu pricu je konvergenta i dobra aproksimacija

od v/2. Iz (2.4) imamo

V-2 = — —0.0024. ..
G (I+ V) +ae)es  (17+12v/2)12
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éinjenica da se i % pojavljuje u nizu dobrih aproksimacija, objasnjava nam situaciju
opisanu uz Sliku 3.
Razlomak % = 1;’—2 za koji je |\/_ — %‘ < 107* ne javlja se u promatranoj crkvi na
podu koji je za to prekratak. Ipak, ¢esto ga susre¢emo u svakodnevici. Naime, dimenzije
297 _ 99

papira formata A4 su 210 x 297 mm. Kako je 535 = =5, vidimo da je za sve prakticne

svrhe, omjer visine i §irine takvog lista papira upravo v/2 : 1. U to se lako mozete uvjeriti
tako da preklopite jedan list papira formata A4 na pola paralelno s kra¢om stranicom i
taj preklopljeni papir postavite u kut drugog papira koji niste savili tako da im se rubovi
kod jednog vrha poklapaju (Slika 7). Dijagonale ¢e im se takoder poklopiti §to nije tesko
provjeriti, primjerice, presavijanjem po dijagonali ve¢eg papira. Dakle, uzevsi da se duljine
stranica papira odnose u omjeru z : 1, iz sli¢nosti velikog i malog pravokutnika dobivamo
x:lzl:%,tj. 2=21i1r=+2

Slika 7: Presavijanjem papira formata A4 popola, dobivamo papir formata A5 koji mu
je slican

3 Cjelobrojne udaljenosti ¢vorova

Pogledajmo sada jedan naizgled nepovezani problem koji si takoder mozemo prirodno
postaviti promatramo li nasu fotografiju poda (Slika 1). Uzmemo li da je duljina stranice
kvadratne plocice jednaka 1, koji se ¢vorovi (sjecista fuga) na dijelu poda vidljivom na
fotografiji nalaze na cjelobrojnoj udaljenosti?

Situacija je prikazana na Slici 8. Radi lakSeg oznacavanja ¢vorova, uvodimo Kartezijev
koordinatni sustav tako da je tocka AL, tj. By ishodiste, pa primjerice B’ ima koordinate
(0,1).

Odmah vidimo da postoji mnogo parova ¢vorova koji su trivijalno na cjelobrojnoj
udaljenosti, npr. (1,1) i (1,-3) ili (—=v/2,—2v/2) i (0, —+/2). To su &vorovi koji leze
na istoj fugi medu ploc¢icama. Zato ¢e nas u nastavku zanimati samo netrivijalni parovi
¢vorova, tj. oni koji se ne nalaze uzduz iste fuge i udaljenost im je cijeli broj. Razmotrit
¢emo ova] problem kroz vise slucajeva u ovisnosti o podruc¢ju na kojemu se nalaze trazeni
¢vorovi.

Sve vidljive ¢vorove moZzemo rasporediti u sljedece skupove (koristimo vizualno grupi-
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Slika 8: Prikaz poda i ¢vorova vidljivih na fotografiji

ranje u desne, lijeve i srednje tocke):

D={(z,y) : v€{0,1,2}, y € {-5,—4,...,9} },
L={(-2-v2,-2),(-2—-Vv2,~-1)}u
{(z,y) - 2 € {-1-v2,—V2}, y € {-5,—4,...,—1}},
S =S,USsUSp,
Sy ={(—V2,uV?2) : ue {-4,-3,-2,-1}},
Sg = {(—?, —\/75 +uv?2) s ue{-3,-2,-1}},
Sp = {(0,uv2) : u € {~4,-3,...,6}}.
Slu¢aj 1. Pretpostavimo da su oba ¢vora (z1,y1) i (z2,y2) u D ili da su oba u L. Iz
Pitagorinog teorema znamo da je kvadrat udaljenosti tih dviju tofaka jednak (z; —z2)* +
(y1 — y2)?, pa treba rijesiti jednadzbe 1+ y? = 22 i 4+ y? = 2% u skupu prirodnih brojeva.

Zay>2jy> <y’*+1<y?>+4 < (y+1)? te odmah vidimo da navedene jednadzbe
nemaju rjeSenja u prirodnim brojevima.
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Slucaj 2. Slucaj kada je jedan ¢vor u L, a jedan u S, zbog simetrije s obzirom na
V2

pravac x = —%%, mozemo ukljuciti u slucaj kada je jedan ¢vor u D, a jedan u S, pa sada
promatramo tu moguc¢nost. Neka je ¢vor (z,y) iz D.
Podslu¢aj 2.1. Neka je drugi évor (0, uv/2) u Sp. Buduéi da trazimo netrivijalne parove,
mora biti z = 1ili 2 = 2, pa dobivamo jednadzbe 14 (y—uv/2)? = 2214+ (y—uv/2)? = 22
Zbog iracionalnosti od v/2, odmah vidimo da je v = 0 ili y = 0. No, za u = 0, dobivamo
upravo Sluc¢aj 1 koji smo ve¢ obradili, pa moZzemo uzeti da je y = 0. Dobili smo jednadzbe
1+2u? =221442u® =22

Jednadzba 4 + 2u? = 22 povladi najprije da je z paran te stavimo z = 2w, a zatim i da
je u paran, pa uzmemo v = 2v. Nakon dijeljenja te jednadzbe s 4, dobivamo 1+ 2v? = w?
Sto je istog tipa kao i prva jednadzba. Dakle, dovoljno je promatrati 1 + 2u? = 22, tj.
22— %=1

Ovo je takozvana Pellova jednadzba i odmah vidimo da je usko vezana uz problem
bliskih aproksimacija broja v/2 koji smo netom prouc¢avali. Naime, 22 — 2u? = 1 mozemo

zapisati kao
z 1

u v2 u(z +uv/2) (3-1)

Nije smanjenje op¢enitosti uzeti da su z i u pozitivni, u protivnom ih se moze zamijeniti

s njima suprotnim brojevima koji takoder zadovoljavaju pocetnu Pellovu jednadzbu. Iz

(3.1) vidimo da je Z vrlo blizu V2. Stovise, pokazimo da je 2 dobra aproksimacija od V2.

Pretpostavimo suprotno, tj. da postoji neki racionalan broj é takavdajel <Y <u
i|v2— %] <2 -2 Nemoze biti Y = u jer bi zbog & # £ imali

v <ly s (é‘@*(f—%)\

g’\/_ ‘+‘\/___‘< z+U\/_) <% %

1 X =z

Sto je nemoguce. Dakle, Y 4+ 1 < u te imamo

z—l—ux/_) z+u\/_ 2’
|X+Y\/§|<|X—Y\/§|+2Y\/§<2Y\/§+§,

L1
|X—Y\/§|<Y‘ ‘

pa stoga vrijedi

Y(2YV2+1)
u(z + uv/2)
Y(2YV2+1) _ 2Y2V/2 + 1y -1
u-2uv2 0 2(Y + 122

Odavde bi slijedilo X? — 2Y2 = 0, §to zbog Y # 0 i iracionalnosti od v/2 nije moguce.
Pokazali smo da je 2 dobra aproksimacija od v/2, pa po prethodno dokazanim rezul-

X2 -2V = |(X - YV2)(X +YV2)| <

tatima slijedi da je 2 konvergenta ili sekundarna konvergenta u razvoju v/2 u verizni
razlomak. No, usporedmum (3.1) s formulama (2.4) i (2.5), vidimo da samo za ko-
nvergente veée od /2 vrijedi (3.1), pa su pozitivna rjesenja od z? — 2u? = 1 parovi
(z,u) € {(3,2),(17,12),(99,70),...}. Nije tesko pokazati, primjerice koriste¢i rekurziju
(2.1) za gy, da ta rjeSenja imaju oblik z + uv/2 = (1 4+ +/2)? za k prirodan broj.
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Uz ogranicenja na koordinate elemenata iz D i Sp, to nam daje sljedece netrivijalne
parove ¢vorova s cjelobrojnim udaljenostima:

{<170)7(07_2\/§)}7 {(170)7(072\/5)}7 {(27())7(07 _4\/§>}7 {(270)a(074\/§)}'

Za ¢vor iz L i ¢vor iz S, oCito nema trazenih parova.
Podslucaj 2.2. Cvor (z,y) je u D, a uzmimo sada da je drugi ¢vor (— X2 —? + u\/i)
u Sg. Dobivamo jednadzbu

)

<x+\/7§>2+<y+§—u\/§)2222,

(2242 +2u° —2u+ 1) + (z +y — 2yu)V2 = 2.

T

Bududi da je v/2 iracionalan, imamo = +y — 2yu = 0, tj. y = ST

ovdje z € {0,1,2}, u € {-3,-2,—1}.

Za x = 0 je y = 0 i mnoZenjem jednadzbe 2u? — 2u + 1 = 2% s 2, dobivamo (2u —
1)? — 22?2 = —1. Uskoro ¢emo prokomentirati ovakvu jednadzbu, ali za sada je dovoljno
provjeriti da za u € {—3,—2,—1} dobivamo 2u? — 2u + 1 € {25,13,5}, §to je kvadrat

V2
2 )

Prisjetimo se da je

samo za u = —3. Dobili smo netrivijalni par ¢vorova (0,0) i ( — —%5) na udaljenosti
5.

Zau € {—=3,—-2,—1}, broj 2u—1 € {-7,—5, =3} ne dijeli z € {1,2}, pa nema rjeSenja
jednadzbe. Primijetimo da bi za v = 0 imali da su x = 2, y = —2, z = 3 cijeli brojevi,
pa je udaljenost ¢vorova (2, —2) i ( - g, —72) cjelobrojna. Nazalost, druga tocka nije
vidljiva jer je pokrivena samim kutom tepiha.

Za L i Sg nema zadovoljavaju¢ih parova ¢vorova.

Podslu¢aj 2.3. Kao i prije, prvi évor (x,y) je u D, a drugi évor (—v/2,uv/2) je sada u

Sr. Imamo jednadzbu

(z+V2)* + (y — uv2)? = 22
(22 + 12 + 202 4+ 2) + 2(z — yu)V2 = 22,

7Zbog iracionalnosti broja v/2, mora biti z —yu = 0, pa je 22+ y> +2u®+2 = 22, odnosno
vul+y? + 20 +2 =22t (P +2)(u+1) =22

Za x = 2 je (y,u) € {(-2,-1),(2,1),(—1,-2),(1,2)}, no nijedan od tih parova ne
daje cijeli broj z.

Zax =1je (y,u) € {(—1,-1),(1,1)}, ali ponovno z nije cijeli.

Zax =0jey=0iliu=0. Uvjet w = 0 povlaci y> + 2 = 22, §to nema cjelobrojnih
rjeSenja, pa preostaje promatrati slu¢aj y = 0. Dobivamo jednadzbu 2(u® + 1) = 22,
odnosno, nakon supstitucije z = 2w, jednadzbu u?>—2w? = —1. Ovo je takozvana pellovska
jednadzba i potpuno analogno kao kod Pellove jednadzbe koja se pojavila u Podsluc¢aju
2.1, pokazuje se (uzmemo li |u| i [w| umjesto v i w) da je = dobra aproksimacija od V2
za koju je

U —1

w w(u+wy/?2)’
te usporedbom s formulama (2.4) i (2.5), zaklju¢ujemo da je “ konvergenta manja od
V2, tj. (Jul, |w]) € {(1,1),(7,5), (41,29),...}. Sliéno kao i za Pellovu jednadzbu, lako se
vidi da su rjeSenja generirana s (1 + V/2)?#=1 za k prirodan broj. Mnogo vige o opéenitim
Pellovim i pellovskim jednadzbama mozete naéi u [1, §§10.3,10.5].
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U nagoj situaciji, u obzir dolazi samo u = —1, no tocke (0,0) i (—v/2, —v/2) leze na
istoj fugi, pa nam taj par nije zanimljiv.

Budué¢i da tocka (—v/2,0) simetri¢na tocki (0,0) s obzirom na pravac z = —\/75 uopde
nije vidljiva, ne postoji ni netrivijalni par trazenih tocaka od kojih je jedna iz L, a druga
iz SD.

Sluéaj 3. Za jedan &vor iz L i jedan évor iz D, dobivamo jednadzbu oblika (z++/2)2 412 =
z2. Ponovno iz iracionalnosti od v/2 slijedi da je z = 0, ali y*>+2 = 2%, tj. (z—y)(z+y) = 2
nema rjeSenja u skupu cijelih brojeva.

Slucaj 4. Neka su sada oba ¢vora u S. Zbog simetrije s obzirom na pravac r = —
mozemo pretpostaviti da je jedan ¢vor u Sp, pa imamo dva podslucaja.

Podslu¢aj 4.1. Pretpostavimo da je drugi ¢vor u Sy. Promatramo jednadzbu (v/2)% +
(uv/2)? = 2%, tj. 2+ 2u®> = 2%, Nakon supstitucije z = 2w, dobivamo u? — 2uw? = —1,
a ovu pellovsku jednadzbu veé smo rijeSili u Podslucaju 2.3. Vidimo da ovdje dolaze u
obzir samo rjesenja (1,1) i (7,5). Prvo daje trivijalne parove ¢vorova, a drugo odgovara
parovima évorova oblika {(—+/2,tv/2), (0, (t +7)Vv/2)}, gdje je t € {—4, -3, -2, —1}.
Podsluc¢aj 4.2. Uzmimo sada da je drugi ¢vor u Sg. Jednadzba

()" + (5 vy -2

V2
2

ekvivalentna je (2u + 1)? — 222 = —1 §to nam daje rjefenja u = 0iu = 3. Zau = 0
dobivamo trivijalne parove ¢vorova, a za u = 3 parove ¢vorova oblika

{(— ? —? - NE), (0, (¢ + 3)\/5)}, gdje je t € {-3,-2,-1}.
Ovi parovi bili su ocekivani jer su njihove spojnice srednjice u odgovaraju¢im trokutima
kojima je jedna stranica dobivena spajanjem parova iz prethodnog podslucaja.

Ovim smo zavrsili potragu za ¢vorovima s cjelobrojnim udaljenostima. Za sve pro-
nadene netrivijalne parove ¢vorova, podebljano smo na Slici 9 naznacili duzine koje ih
spajaju. Za iscrtkane duzine postoje jos po dvije ili tri duzine koje se iz njih dobivaju
translacijom za visekratnik vektora (0, \/5) i koje radi preglednosti nisu prikazane na toj
slici.

Na fotografiji poda (Slika 1) koja je bila glavni poticaj za pisanje ovog ¢lanka, nalaze
se jo§ mnogi detalji koji bi mogli posluziti kao polaziSta za zanimljiva i bogata istrazivanja
dostupna i ucenicima. Primjerice, s geometrijskog gledista, mogli bismo proucavati elipse
u koje su se preslikale kruznice na desnom tepihu ili pak modificiranu Pickovu formulu
za reSetku na lijevom tepihu. S aspekta teorije brojeva, prirodno se javljaju rezultati
poput teorema o tri udaljenosti iz podrucja diofantskih aproksimacija. Ne bi bilo tesko
na¢i ni materijala za pitanja iz kombinatorike, npr. prebrojavanja odgovarajuc¢ih putova
u cjelobrojnoj mrezi.

Ipak, ovdje ¢emo pricu za sada zavrsiti. éitatelje koji ¢e Setati Gricem pozivam da
bar nakratko udu u crkvu svetih Cirila i Metoda. Nemojte svoju paZnju zaustaviti samo
na podu crkve, koji uostalom nije posebno znacajan, nego podignite pogled i promotrite
vrlo lijepi ikonostas. Na njemu, osim umjetnickih i vjerskih tema, takoder mozete uociti
neke matematicke motive i probleme. Ali to je ve¢ neka druga prica.
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Slika 9: Podebljano su prikazane netrivijalne duzine cjelobrojne duljine
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