
Accuracy and efficiency of one–sided
bidiagonalization algorithm

Nela Bosner
Department of Mathematics, University of Zagreb

Bijenička cesta 30, 10000 Zagreb
Croatia

June 1, 2004

1

1 The singular value decomposition (SVD)

The singular value decomposition (SVD) of a general
matrix is the fundamental theoretical and computational
tool in numerical linear algebra.

Definition 1. Let A ∈ Rm×n be a general matrix.
The singular value decomposition of matrix A is a fac-
torization of form

A = U

[
Σ
0

]
V T ,

where U ∈ Rm×m and V ∈ Rn×n are orthogonal,
and Σ = diag(σ1, . . . , σn) ∈ Rn×n is diagonal with
σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

∗ ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗
=

∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗

∗ = general rectangular matrix
∗ = orthogonal matrix
∗ = diagonal matrix

2

Application of SVD :

• Solving symmetric definite eigenvalue problem, where
matrix is factorized as A = GTG

• Linear least squares

• Total least squares

• Orthogonal Procrustes problem

• Finding intersection of two null–spaces

• Finding principal angles between two subspaces

• Handling rank deficiency and subset selection

3

2 Numerical computation of SVD

What is important for algorithms that solve SVD nu-
merically?

• Numerical stability — algorithm produces a result
with small error.

• Efficiency — algorithm is fast when applied on mod-
ern computers.

Computing SVD :

1. Reduction of the matrix to bidiagonal form via or-
thogonal transformations. SVD of bidiagonal matrix
is computed with an iterative method, in full accu-
racy. (faster)

2. Jacobi SVD algorithm. (more robust)

4

3 LAPACK routine for solving SVD

LAPACK routine GESVD uses the 1. approach, with
Householder bidiagonalization. The bidiagonal-
ization produces U and V as products of appropriate
Householder reflectors:

UTAV =

[
B
0

]
, B =




α1 β1
.

. . . βn−1

αn


 ∈ Rn×n,

where

U = U1 · · ·Un ∈ Rm×m, V = V1 · · ·Vn−2 ∈ Rn×n,

Ui, Vj are Householder reflectors.

Algorithm 1 (Householder bidiagonalization).

A =

∗ ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗
→

∗ ∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗
→

∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗
→

∗ ∗∗ ∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗
→

→
∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗

→
∗ ∗∗ ∗∗ ∗∗∗∗

→
∗ ∗∗ ∗∗ ∗∗ =

[
B
0

]

5

3.1 Numerical analysis of Householder
bidiagonalization

When the bidiagonalization is performed on computer,
in finite precision arithmetic, then

• bidiagonalization is numerically backward stable:

A + δA = Ũ

[
Σ̃
0

]
Ṽ T ,

where Ũ , Σ̃, Ṽ are computed matrices, and

‖δA‖ ≤ O(ε)‖A‖.
• computed matrices Ũ and Ṽ are numerically orthog-

onal:
Ũ = Û + δU, ‖δU‖ ≤ O(ε),

Ṽ = V̂ + δV, ‖δV ‖ ≤ O(ε),

(ε is unit roundoff.)

3.2 Drawbacks of Householder
bidiagonalization

• Bidiagonalization involves much more computational
work than iterative method for computing singular
values of B.

6

• Bidiagonalization is two-sided algorithm, which em-
ploys both pre-multiplication and post-multiplication
of A by Householder reflections. It is difficult to im-
plement it efficiently on multiprocessor systems
with distributed memory.

7

4 Ralha one-sided bidiagonalization

Main steps of the algorithm:

• Triorthogonalization
matrix is post-multiplied with a sequence of n − 2
Householder reflectors:

A0 = A, Ai = Ai−1Hi, i = 1, . . . , n− 2.

Householder reflectors are chosen so that

F = An−2 is triorthogonal:

for columns fi, fj of F

fT
i fj = 0, |i− j| > 1.

This implies that F TF is tridiagonal.

•A variant of the Gram–Schmidt orthogo-
nalization
The columns of F are orthogonalized only against
adjacent columns, producing

F = QB,

where Q ∈ Rm×n is orthogonal and B ∈ Rn×n is re-
quired upper bidiagonal matrix, whose singular val-
ues are those of A.

8

Algorithm 2 (Ralha one-sided bidiagonaliza-
tion). Implicitly:

ATA =
∗ ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗

→
∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗

→
∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗

→ F TF

Explicitly:

A → F →
∗
→

∗ ∗∗ →
∗ ∗∗ ∗∗ →

∗ ∗∗ ∗∗ ∗∗
= B

4.1 Improvements in Ralha one-sided bidiago-
nalization

• The version of Gram–Schmidt orthogonalization in
this algorithm substitutes pre-multiplication with a
sequence of Householder reflection in Householder
bidiagonalization. Thus, the second part of the algo-
rithm requires only O(mn) flops instead of O(n2m)
flops.

• Algorithm is one-sided: the most of the algorithm
can be expressed in simple operations on columns of
transformed matrix. Thus, it can be implemented
on multiprocessor systems with distributed
memory.

9

4.2 Drawbacks of Ralha one-sided bidiagonal-
ization

• Possible great loss of triorthogonality of the com-
puted matrix F̃ . This means that F̃ T F̃ can be far
from tridiagonal form. Thus, this method cannot
be numerically backward stable.

• Possible great loss of orthogonality of the com-
puted matrix Ũ .

10

5 Barlow one-sided bidiagonalization

Main steps of the algorithm:

•Direct bidiagonalization
one step of Gram–Schmidt orthogonalization and post-
multiplication with one Householder reflector are per-
formed simultaneously:

ui is produced from orthogonalization against adja-
cent column,

Ui = [ui, . . . , ui] i = 1, . . . , n

A0 = A, Ai = Ai−1Hi i = 1, . . . , n− 2,

and Hi i chosen so that

UT
i Ai−1Hi = Bi ∈ Ri×n

is bidiagonal.

11

Algorithm 3 (Barlow one-sided bidiagonaliza-
tion). Simultaneous computation:

A =

∗ ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗
→

∗∗∗∗∗∗
→

∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗
→

∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗
→

∗ ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗
= F

B = ¤ → ∗ → ∗ ∗∗ → ∗ ∗∗ ∗∗ →
∗ ∗∗ ∗∗ ∗∗

5.1 Improvements in Barlow one-sided bidiag-
onalization

• The same number of flops as in the Ralha one-sided
bidiagonalization.

• It can be implemented on multiprocessor systems
with distributed memory.

• NUMERICALLY BACKWARD STABLE.

5.2 Drawbacks of Barlow one-sided bidiago-
nalization

• Possible great loss of orthogonality of the com-
puted matrix Ũ .

12

6 Backward stability of Barlow bidiagonaliza-
tion

• shown by Barlow

• our proof, different approach

Theorem 1. If B̃ is the bidiagonal matrix computed
by Algorithm 3 without breakdown, then there exist
an (m + n) × (m + n) orthogonal matrix P̂ , an or-
thogonal n×n matrix V̂ and backward perturbations
∆A, δA such that[

B̃
0

]
= P̂ T

[
∆A

A + δA

]
V̂ ,

∥∥∥∥
[

∆A
δA

]∥∥∥∥
F

≤ ξ‖A‖F ,

(1)
where 0 ≤ ξ ≤ O(mn2ε) + O(ε2). The computed
approximation Ṽ of the matrix V̂ satisfies

‖Ṽ − V̂ ‖F ≤ O(n2ε). (2)

Further, there exist an orthonormal Û and perturba-
tion δÂ such that

A + δÂ = ÛB̃V̂ T , ‖δÂ‖F ≤
√

2ξ‖A‖F . (3)

Corollary 1. If σi ≥ · · · ≥ σn are the singular values
of A, then the singular values σ̃1 ≥ · · · ≥ σ̃n of B̃
from Theorem 1 satisfy

max
i=1,...,n

|σ̃i − σi| ≤ ξ

√√√√
n∑

j=1

σ2
j .

13

Corollary 2. If the Algorithm 3 is implemented in
parallel with certain data distribution, then the as-
sertion of Theorem 1 remains true for both House-
holder and Givens transformation based eliminations.

14

7 Efficiency of Barlow bidiagonalization

Computing full SVD.

7.1 Floating point operation count

Algorithm 1 Algorithm 1 with QR Algorithms 2 & 3

8mn2 +
4

3
n3 6mn2 +

20

3
n3 5mn2 +

10

3
n3

7.2 Numerical computations

• Computations were performed in
Advanced computing laboratory on Department of
Mathematics, University of Zagreb.

• The laboratory consists of 20 computers, connected
in local 1Gb network.

• The propositions of computers are:
2 processors Athlon Mp 1800+
Frequency 1533MHz
L1 Cache 64Kb
L2 Cache 256Kb
RAM 1Gb

15

7.3 Execution time

Numerical results (time in seconds)
m× n Barlow LAPACK ∆t%

100×100 0.01 0.01 0.00%
200×200 0.14 0.15 6.67%
500×50 0.01 0.01 0.00%
500×100 0.05 0.04 -25.00%
500×500 3.87 3.47 -11.53%
1000×100 0.14 0.09 -55.56%
1000×500 6.19 4.43 -39.73%
1000×1000 39.19 36.95 -6.06%
2000×200 1.46 0.61 -139.34%
2000×1000 55.25 41.63 -32,72
2000×2000 359.05 326,75 -9.89%
3000×3000 1514.46 1300.94 -16.41%

7.4 Conclusion

• Despite the fact that SVD solver with Barlow one-
sided bidiagonalization require less floating point op-
erations, execution time is longer than the execution
time of LAPACK routine.

• This happens because LAPACK routine has opti-
mized usage of cache memory, and that’s not the
case with Barlow bidiagonalization.

16

8 Block version of Barlow one-sided bidiago-
nalization

Optimizes usage of cache memory for Barlow one-sided
bidiagonalization.

• Transformations by Householder reflectors are aggre-
gated. Matrix A is updated in every b steps. Algo-
rithm uses more BLAS-3 operations.
(b=”dimension of the block”)

• Algorithm implements BLAS-2.5 approach proposed
by G.W.Howell. Operations on same data, that were
performed on different places in Algorithm 3, are now
performed at once. These operations are

x ← x + ATy

w ← w + Ax

or
A ← A + uvT

x ← ATy

w ← w + Ax

17

9 Backward stability of block Barlow bidiag-
onalization

Theorem 2. If B̃ is the bidiagonal matrix computed
by block version of Algorithm 3 with block dimension
b without breakdown, then there exist an (m + n) ×
(m + n) orthogonal matrix P̂ , an orthogonal n × n
matrix V̂ and backward perturbations ∆A, δA such
that[

B̃
0

]
= P̂ T

[
∆A

A + δA

]
V̂ ,

∥∥∥∥
[

∆A
δA

]∥∥∥∥
F

≤ ξ‖A‖F ,

(4)
where 0 ≤ ξ ≤ O(bmn2ε) + O(ε2). The computed
approximation Ṽ of the matrix V̂ satisfies

‖Ṽ − V̂ ‖F ≤ O(n2ε). (5)

Further, there exist an orthonormal Û and perturba-
tion δÂ such that

A + δÂ = ÛB̃V̂ T , ‖δÂ‖F ≤
√

2ξ‖A‖F . (6)

18

10 Efficiency of block Barlow bidiagonaliza-
tion

Numerical results (time in seconds)
m× n block Barlow LAPACK ∆t% ∆tB%

100×100 0.01 0.01 0.00% 0.00%
200×200 0.13 0.15 13.33% 7.14%
500×50 ∗0.01 0.01 0.00% 0.00%
500×100 ∗0.04 0.04 0.00% 20.00%
500×500 3.40 3.63 6.34% 16.02%
1000×100 ∗0.09 0.09 0.00% 35.71%
1000×500 ∗4.04 4.45 9.21% 35.06%
1000×1000 34.55 37.43 7.69% 12.96%
2000×200 ∗0.58 0.60 3.33% 46.30%
2000×1000 ∗39.22 41.20 4.81% 28.27%
2000×2000 324.59 336.49 3.54% 12.22%
3000×3000 1261.34 1318.24 4.32% 17.81%
∗ — QR factorization is performed before SVD.

19

11 Parallel version of Barlow one-sided bidi-
agonalization

Respectable decrease in execution time.

1. Algorithm is performed on more processors simulta-
neously.

2. Each matrix is distributed over the memories of every
processor.

3. Communication between processors is optimized. (In-
terprocessors communication is most time consum-
able.)

In our case we used following propositions.

1. Processors were organized in linear order.

1 ←→ 2 ←→ 3 ←→ 4

2. Matrix layout was one-dimensional block-cyclic
row distribution. Each m × n matrix is divided
in mb×n blocks of continuous rows. (mb=block row
dimension.) Blocks are distributed across the proces-
sors in cyclic order.
Good load balancing.

20

A =

1
2
3
4
5
6
7
8

→

1
1
5
l

2
2
6
l

3
3
7
l

4
4
8

3. Interprocessors communication required only for broad-
casting Hauseholder vectors and computing scalar
products.

Parallel version of algorithm performs the same opera-
tions as serial non-block version. (Parallel block version
has too big overhead.) Results of Theorem 1 hold for
this version as well.

21

12 Efficiency of parallel Barlow bidiagonaliza-
tion

Numerical results
(time in seconds – the worst time on all #p processors)

m× n # p parallel Barlow ScaLAPACK ∆t%

1000×100 4 0.25 0.51 50.98%
1000×500 4 3.00 4.24 29.25%
1000×1000 4 13.42 16.90 20.59%

8 9.11 17.12 46.79%
16 8.15 17.60 53.69%

2000×200 4 0.81 1.46 44.52%
2000×1000 4 17.50 18.38 4.79%

8 11.75 18.63 36.93%
2000×2000 4 105.38 106.97 1.49%

8 53.77 70.68 23.92%
16 33.92 61.18 44.56%

4000×200 8 1.11 3.12 64.42%
4000×1000 8 18.59 23.20 19.87%

16 12.47 21.26 41.35%
4000×4000 8 427.87 473.78 9.69%

16 196.28 254.07 22.75%
5000×100 8 0.54 2.03 73.40%
5000×1000 16 14.03 21.79 35.61%
5000×5000 16 400.02 478.53 16.41%
8000×1000 16 17.78 24.77 28.22%
8000×8000 16 2348.45 2546.79 7.79%
10000×1000 16 22.04 25.87 14.80%
10000×10000 16 3663.53 3735.78 1.93%

22

13 Conclusion

• Ralha’s assumption that the one-sided bidiagonaliza-
tion is much more efficient on parallel computers than
ScaLAPACK routine is proved to be right by numer-
ous numerical examples.

• Barlow’s assumption about numerical stability of his
modification of one-sided bidiagonalization is also proved
to be right.

• Our block version of one-sided bidiagonalization de-
tains the numerical stability property, and de-
creases execution time by optimizing communication
between fast and slow memory.

• In future work we can use some gained time in im-
proving orthogonality of matrix Ũ .

23

