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1 The singular value decomposition (SVD)

The singular value decomposition (SVD) of a general
matrix is the fundamental theoretical and computational
tool in numerical linear algebra.

Definition 1. Let A € R™ " be a general matrix.
The singular value decomposition of matriz A is a fac-
torization of form

A:U[§]VT,

where U € R™™ and V € R™" are orthogonal,
and ¥ = diag(oy,...,0,) € R™" is diagonal with
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*x = general rectangular matrix

x = orthogonal matrix

= diagonal matrix



Application of SVD :

e Solving symmetric definite eigenvalue problem, where
matrix is factorized as A = GT'G

e Linear least squares

e Total least squares

e Orthogonal Procrustes problem

e [inding intersection of two null-spaces

e Finding principal angles between two subspaces

e Handling rank deficiency and subset selection



2 Numerical computation of SVD

What is important for algorithms that solve SVD nu-
merically?

e Numerical stability — algorithm produces a result
with small error.

e fficiency — algorithm is fast when applied on mod-
ern computers.

Computing SVD :

1. Reduction of the matrix to bidiagonal form via or-
thogonal transformations. SVD of bidiagonal matrix
is computed with an iterative method, in full accu-
racy. (faster)

2. Jacobi SVD algorithm. (more robust)



3 LAPACK routine for solving SVD

LAPACK routine . GESVD uses the 1. approach, with
Householder bidiagonalization. The bidiagonal-
ization produces U and V' as products of appropriate

Householder reflectors:
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Ui, V; are Householder reflectors.

Algorithm 1 (Householder bidiagonalization).
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31 Numerical analysis of Householder
bidiagonalization

When the bidiagonalization is performed on computer,
in finite precision arithmetic, then

e bidiagonalization is numerically backward stable:

~

A+5A:z7[§]fﬂ,

where U, 3, V are computed matrices, and
[0A] < O(e)[|All

e computed matrices U and V are numerically orthog-
onal:

U=U+6U, |[6U] <O(e),
V=V+48V, ||6V] <O,

(€ is unit roundoff.)

3.2 Drawbacks of Householder
bidiagonalization

e Bidiagonalization involves much more computational
work than iterative method for computing singular
values of B.



e Bidiagonalization is two-sided algorithm, which em-
ploys both pre-multiplication and post-multiplication
of A by Householder reflections. It is difficult to im-
plement it efficiently on multiprocessor systems
with distributed memory.



4 Ralha one-sided bidiagonalization

Main steps of the algorithm:

e Triorthogonalization
matrix is post-multiplied with a sequence of n — 2
Householder reflectors:

Ag=A, A, =A,_1H;, i=1,...,n—2.
Householder reflectors are chosen so that
F=A,_ 5 is triorthogonal:
for columns f;, f; of F
fi fi=0, li—jl>1
This implies that FZF is tridiagonal.

e A variant of the Gram—Schmidt orthogo-
nalization
The columns of F' are orthogonalized only against
adjacent columns, producing

F=0QB,

where ) € R™*" is orthogonal and B € R™*" is re-
quired upper bidiagonal matrix, whose singular val-
ues are those of A.



Algorithm 2 (Ralha one-sided bidiagonaliza-
tion). Implicitly:
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Explicitly:

A— F — — — — = B

11 Improvements in Ralha one-sided bidiago-
nalization

e The version of Gram—Schmidt orthogonalization in
this algorithm substitutes pre-multiplication with a
sequence of Householder reflection in Householder
bidiagonalization. Thus, the second part of the algo-
rithm requires only O(mn) flops instead of O(n*m)
flops.

e Algorithm is one-sided: the most of the algorithm
can be expressed in simple operations on columns of
transformed matrix. Thus, it can be implemented
on multiprocessor systems with distributed
memory.



12 Drawbacks of Ralha one-sided bidiagonal-
ization

e Possible great loss of triorthogonality of the com-
puted matrix F. This means that FZF can be far
from tridiagonal form. Thus, this method cannot
be numerically backward stable.

e Possible great loss of orthogonality of the com-
puted matrix U.
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5 Barlow one-sided bidiagonalization

Main steps of the algorithm:

e Direct bidiagonalization
one step of Gram—Schmidt orthogonalization and post-
multiplication with one Householder reflector are per-
formed simultaneously:

u; is produced from orthogonalization against adja-
cent column,

Ui=uj,...,u;| i=1,....,n
Ay=A, A, =A_H i=1...,n—2,
and H; 1 chosen so that
U'A;_1H; = B; € R™"

is bidiagonal.
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Algorithm 3 (Barlow one-sided bidiagonaliza-
tion). Simultaneous computation:
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5. Improvements in Barlow one-sided bidiag-
onalization

e The same number of flops as in the Ralha one-sided
bidiagonalization.

e [t can be implemented on multiprocessor systems
with distributed memory:.

o NUMERICALLY BACKWARD STABLE.

5.2 Drawbacks of Barlow one-sided bidiago-
nalization

e Possible great loss of orthogonality of the com-
puted matrix U.
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6 Backward stability of Barlow bidiagonaliza-
tion

e shown by Barlow
e our proof, different approach

Theorem 1. If B is the bidiagonal matriz computed
by Algorithm 3 without breakdown, then there exist
an (m +n) x (m 4+ n) orthogonal matriz P, an or-
thogonal n X n matrix V and backward perturbations

AA, 0A such that
< &[[AllF,

HEar=ALE i ()

where 0 < § < O(mn’e) + O(¢*). The computed
approrimation V of the matriz V satisfies

[V = Vl[r < O(n’). (2)
Further, there exist an orthonormal U and perturba-
tion 0 A such that

A+0A=UBV", |I6A|r <V2|Allr.  (3)
Corollary 1. Ifo; > --- > 0, are the singular values

of A, then the singular values &, > -+ > &, of B
from Theorem 1 satisfy




Corollary 2. If the Algorithm 3 1s implemented n
parallel with certain data distribution, then the as-
sertion of Theorem 1 remains true for both House-
holder and Givens transformation based eliminations.
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7 Efficiency of Barlow bidiagonalization

Computing full SVD.

71 Floating point operation count

Algorithm 1 | Algorithm 1 with QR | Algorithms 2 & 3

4 20 10
Smn’ + gn?’ 6mn’ + gng 5mn’ + gn?’

72 INNumerical computations

e Computations were performed in
Advanced computing laboratory on Department of
Mathematics, University of Zagreb.

e The laboratory consists of 20 computers, connected
in local 1Gb network.

e The propositions of computers are:
2 processors | Athlon Mp 1800+

Frequency 1533MHz
.1 Cache 64Kb
.2 Cache 256 Kb

RAM 1Gb

1=



7.3

Execution time

Numerical results (time in seconds)

m X n | Barlow | LAPACK At%
100x 100 0.01 0.01 0.00%
200x200 0.14 0.15 6.67%
500 x50 0.01 0.01 0.00%
500x 100 0.05 0.04 -25.00%
500 x 500 3.87 3.47| -11.53%

1000 x 100 0.14 0.09 | -55.56%
1000 x 500 0.19 4.43 | -39.73%
1000x 1000 | 39.19 36.95| -6.06%
2000x 200 1.46 0.61 -139.34%
20001000 | 55.25 41.63 -32,72
2000%2000| 359.05| 326,75| -9.89%
3000x 3000 | 1514.46 | 1300.94 | -16.41%

74 Conclusion

e Despite the fact that SVD solver with Barlow one-
sided bidiagonalization require less floating point op-
erations, execution time is longer than the execution

time of LAPACK routine.

e This happens because LAPACK routine has opti-
mized usage of cache memory, and that’s not the

case with Barlow bidiagonalization.

1R




8 Block version of Barlow one-sided bidiago-
nalization

Optimizes usage of cache memory for Barlow one-sided
bidiagonalization.

e Transformations by Householder reflectors are aggre-
gated. Matrix A is updated in every b steps. Algo-
rithm uses more BLAS-3 operations.

( b="dimension of the block”)

e Algorithm implements BLAS-2.5 approach proposed
by G.W.Howell. Operations on same data, that were
performed on different places in Algorithm 3, are now
performed at once. These operations are

A — A+ !

T
r — v+ Ay or x<—ATy

w «— w -+ Ax
w «— w+ Ax

17



9 Backward stability of block Barlow bidiag-
onalization

Theorem 2. If B is the bidiagonal matriz computed
by block version of Algorithm 8 with block dimension
b without breakdown, then there exist an (m +n) X
(m 4+ n) orthogonal matrix P, an orthogonal n X n
matriz V and backward perturbations AA, §A such

that
< €||AHF7

HEar=ALE i ()

where 0 < & < O(bmn’e) + O(e*). The computed
approximation V' of the matriz V' satisfies

|V = Vl|r < On%). (5)

Further, there exist an orthonormal U and perturba-
tion 0A such that

A+6A=UBV", |6Allr < V2| Allr.  (6)




10 Efficiency of block Barlow bidiagonaliza-
tion

Numerical results (time in seconds)

m x n | block Barlow  LAPACK At% | Atg%
100x 100 0.01 0.01] 0.00%| 0.00%
200x 200 0.13 0.15]13.33% 7.14%
500x 50 *0.01 0.01] 0.00%| 0.00%
500x 100 *0.04 0.041 0.00% | 20.00%
500x 500 3.40 3.63| 6.34% | 16.02%

1000 x 100 *0.09 0.09| 0.00% | 35.71%
1000 x 500 “4.04 4451 9.21% | 35.06%
1000x 1000 34.55 3743 7.69% | 12.96%
2000200 “0.58 0.60 3.33%

2000x 1000 *39.22 41.20 4.81% | 28.27%
2000x 2000 324.59 336.49 | 3.54% | 12.22%
3000 x 3000 1261.34| 131824 4.32% | 17.81%

* — QR factorization is performed before SVD.
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11 Parallel version of Barlow one-sided bidi-
agonalization

Respectable decrease in execution time.

1. Algorithm is performed on more processors simulta-
neously.

2. BEach matrix is distributed over the memories of every
Processor.

3. Communication between processors is optimized. (In-
terprocessors communication is most time consum-

able.)

In our case we used following propositions.

1. Processors were organized in linear order.

1 [«—| 2 |+—— —| 4

2. Matrix layout was one-dimensional block-cyclic
row distribution. Fach m X n matrix is divided
in my X n blocks of continuous rows. (mp=Dblock row
dimension.) Blocks are distributed across the proces-
sors in cyclic order.

Good load balancing,

9N



1 1
5
1
5 [
2
2
1 6
A= - —> 1
6
3 !
4 4
8

3. Interprocessors communication required only for broad-
casting Hauseholder vectors and computing scalar
products.

Parallel version of algorithm performs the same opera-
tions as serial non-block version. (Parallel block version
has too big overhead.) Results of Theorem 1 hold for
this version as well.
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12 Efficiency of parallel Barlow bidiagonaliza-

tion

Numerical results
(time in seconds — the worst time on all #p processors)

m X n # p | parallel Barlow | ScaLAPACK A%
1000 x 100 4 0.25 0.51] 50.98%
1000 x 500 4 3.00 4.241 29.25%
1000x 1000 4 13.42 16.90 | 20.59%

8 9.11 17.12 | 46.79%

16 8.15 17.60| 53.69%

2000x 200 4 0.81 1.46 | 44.52%
2000x 1000 4 17.50 1838 4.79%
8 11.75 18.63 | 36.93%

2000x 2000 4 105.38 106.97| 1.49%
8 53.77 70.68| 23.92%

16 33.92 61.18 | 44.56%

4000 x 200 8 1.11 3.12 64.42%
4000x 1000 8 18.59 23.20| 19.87%
16 12.47 21.26| 41.35%

4000 x 4000 8 427 .87 473.78 | 9.69%
16 196.28 254.07 | 22.75%

5000x 100 8 0.54 2.03 | 73.40%
5000x 1000 16 14.03 21.79| 35.61%
5000 x 5000 16 400.02 478.53 | 16.41%
8000x 1000 16 17.78 24.77 | 28.22%
8000 x 8000 16 2348.45 2546.79 | 7.79%
10000 x 1000 16 22.04 25.87 | 14.80%
10000x 10000 | 16 3663.53 3735.78 1 1.93%

DD




13 Conclusion

e Ralha’s assumption that the one-sided bidiagonaliza-
tion is much more efficient on parallel computers than
ScaLAPACK routine is proved to be right by numer-
ous numerical examples.

e Barlow’s assumption about numerical stability of his
modification of one-sided bidiagonalization is also proved
to be right.

e Our block version of one-sided bidiagonalization de-
tains the numerical stability property, and de-
creases execution time by optimizing communication
between fast and slow memory:.

e [n future work we can use some gained time in im-
proving orthogonality of matrix U.
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