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Dulac or almost regular germs

Definition [Ilyashenko].
Parabolic almost regular germ (Dulac germ):

f ∈ C∞(0, d)

extends to a holomorphic germ f to a standard quadratic
domain Q:

Q = Φ(C+ \K(0, R)), Φ(η) = η + C(η + 1)
1
2 , C, R > 0,

in the logarithmic chart ξ = − log z.



Standard quadratic domain

rk := r(ϕk) ∼ e−C
√

|k|π
2 , k → ±∞,

ϕk ∈
(
(k − 1)π, (k + 1)π

)



f admits the Dulac asymptotic expansion:

f(z) ∼z→0 1 · z +

∞∑
k=1

zαiPi(− log z),

i.e. f(z)− z −
n∑
i=1

zαiPi(− log z) = O(zαn), n ∈ N,

αi > 1, strictly increasing to +∞,
αi finitely generated 2,
Pi polynomials.

R+ invariant under f (i.e. coefficients of f̂ real!)

2There exist βk, k = 1 . . . n, such that: αi ∈ Nβ1 + . . .+ Nβn.



Motivation and history

first return maps for polycycles with hyperbolic saddle singular
points – n saddle vertices with hyperbolicity ratios βi > 0
(Dulac)
locally at the saddle{

ẋ = x+ h.o.t.

ẏ = −βiy + h.o.t.



Motivation and history

Dulac’s problem: accumulation of limit cycles on a hyperbolic
polycycle possible?

limit cycles = fixed points of the first return map

Dulac: accumulation ⇒ trivial power-log asymptotic
expansion of the first return map ⇒ trivial germ on R+

(Dulac’s mistake)

the problem: Dulac asymptotic expansion does not uniquely
determine f on R+ (add any exponentially small term
w.r.t. x!), e.g.

f(x) ∼ x+ x2− log x, f(x) + e−1/x ∼ x+ x2− log x, x→ 0

Ilyashenko’s solution: first return maps extendable to a SQD

SQD sufficiently large complex domain: by a variant of
maximum modulus principle (Phragmen-Lindelöf ), Dulac’s
expansion uniquely determines the germ on a SQD!



Questions

? goal: theory like the standard theory of Birkhoff, Ecalle, Voronin, Kimura, Leau etc.

for parabolic analytic germs Diff(C, 0)

formal classification of parabolic Dulac germs – by a
sequence (!!! not necesarily convergent) of formal
power-logarithmic changes of variables

ĝ = ϕ̂−1 ◦ f0 ◦ ϕ̂,

f̂ , f0 Dulac expansions, f0 simple 3-monomial expression
ϕ̂(z) = z + h.o.t. diffeo- with power-log asymptotic expansion



simpler question: is a Dulac germ formally embeddable as
time-one map in a flow of an analytic vector field ξ(z) ddz
defined on a standard quadratic domain? (= describe trivial
analytic class)

g = ϕ̂−1 ◦ f̃0 ◦ ϕ̂,

f, f̃0 Dulac germs,
f̃0 time-one map of an analytic vector field on Q,



Why formal classification?

motivated by analytic classification of parabolic Dulac germs

g = ϕ−1 ◦ f ◦ ϕ,

f, g Dulac germs on Q, ϕ(z) = z + o(z) analytic on Q

ϕ admits ϕ̂ as its asymptotic expansion?

domains of analytic ’summability’ of ϕ̂



Historical results - germs of parabolic analytic
diffeomorphisms

(Fatou ∼ end of 19th century; Birkhoff∼ 1950; Ecalle,
Voronin∼ 1980, . . .)

f ∈ Diff(C, 0), f(z) = z + a1z
k+1 + a2z

k+2 + . . . , k ∈ N

• Formal embedding
= formal reduction to a time-one map of a vector field:

f0(z) = Exp(
zk+1

1 + ρzk
d

dx
).id = z + zk+1 + (ρ+

k + 1

2
)z2k+1 + . . .

Step-by-step elimination of monomials from f :

ϕ`(z) =

{
az, a 6= 1,

z + cz`, ` ∈ N
↔ ϕ̂(z) = az +

∑∞
k=2 ckz

k ∈ C[[z]]

(formal changes of variables)

⇒ (k, ρ), k ∈ N, ρ ∈ C . . . (ρ = Res0

(
1

z−f(z)

)
) formal invariants

for f .



Example

f(z) = z + z2 + z3 + . . . = z
1−z time-one map of z2 d

dy .

Example

g(z) = ez − 1 = z + z2 + z3 + . . . not a time-one map of a vector
field, formally embeddable in z2 d

dy



Historical results - germs of analytic diffeomorphisms

• Is g analytically embeddable, or just formally?
↔ Does ϕ̂ converge to an analytic function at 0?

Leau-Fatou flower theorem (1987):
? 2k analytic conjugacies ϕi of f to f0, all expanding in ϕ̂
? defined on 2k petals invariant under local discrete dynamics

? k attracting directions: (−a1)−
1
k ; k repelling directions: a

− 1
k

1

k = 3 → 6 petals, f(z) = z + z4 + . . .

→ in general, analytic embedding in a flow only on open sectors
→ the analytic class of f in direct relation with this question



Formal embedding into flows for Dulac germs
(non-analytic at 0)

• elimination term-by-term by an adapted ’sequence’ of
non-analytic elementary changes of variables:

ϕ(z) = az; ϕα,m(z) = z+czα`m, m ∈ Z, α > 0, (α,m) � (1, 0).

Example (MRRZ, 2016)

0. f(z) = z − z2`−1 + z2 + z3,

1. ϕ1(z) = z + c1z`, c1 ∈ C,
f1(z) = ϕ−1

1 ◦ f ◦ ϕ1(z) = z − z2`−1 + a1z
2` + h.o.t,

2. ϕ2(z) = z + c2z`
2, c2 ∈ R,

f2(z) = ϕ−1
2 ◦ f ◦ ϕ2(z) = z + z2`−1 + a2z

2`2 + h.o.t,

3. ϕ3(z) = z + c3z`
3, c3 ∈ R,

f3(z) = ϕ−1
3 ◦ f ◦ ϕ3(z) = z + z2`−1 + a2z

2`3 + h.o.t,

...

` := − 1
log z



The visualisation of the reduction procedure



The description of the formal change of variables

• more than just a formal series composition of changes of
variables: a transfinite composition, → produces a transseries ϕ̂:

? in the process, prove that every change has its successor change

? prove the formal convergence of composition of changes of
variables: by transfinite induction1 in the formal topology2

1 a generalization of the mathematical induction from N to ordinal
numbers: existence of a successor element and a limit element,
2 i.e. in each step of composition the support remains well-ordered; the
coefficient of each monomial in the support stabilizes in the course of
composition.



A broader class closed to embeddings: the class of
power-log transseries L̂

...contains both the Dulac germ expansions f 7→ f̂ and the formal
changes of variables

L̂ . . . f̂(z) =
∑
α∈S

∞∑
k=Nα

aα,kz
α`k, aα,k ∈ R, Nα ∈ Z,

S ⊆ (0,∞) well-ordered (here: finitely gen.)

Similarly we define L̂2, L̂3, etc. and

L̂ := ∪k∈NL̂k.

(iterated logarithms admitted!)

(L. van den Dries, A. Macintyre, D. Marker, Logarithmic-exponential
series. Ann. Pure Appl. Logic 111 (2001))

` := − 1
log x



Theorem (Formal embedding theorem for Dulac germs, MRRZ
2016)

f̂(z) = z−azα`m +h.o.t. parabolic Dulac, a > 0, α > 1, m ∈ N−.
⇒ formally in L̂ conjugated to:

f0(z) = exp
( −zα`m

1− α
2 z

α−1`k +
(
k
2 − ρ

)
zα−1`k+1

d

dz

)
.id =

=z − zα`m + ρz2α−1`2m+1 + h.o.t.

? (α,m, ρ), ρ ∈ R . . . formal invariants (ρ =
[
`
z

]
1

z−f(z)) for Dulac
germ

? f0(z) a time-one map of an analytic vector field on SQD (Q+)



Example continued

Example (continued)

f0(z) = exp
(
− z2`−1

1− z`−1 +
(
b− 1

2

)
z

)
.id =

= z − z2`−1 + bz3`−1 + h.o.t.,

f0 = ϕ̂−1 ◦ f̂ ◦ ϕ̂, ϕ̂ ∈ L̂ – a transfinite change of variables



Parallel construction: the (formal) Fatou coordinate and
Abel equation ” = ” (formal) embedding in a vector field

’Equivalent’ problems:

1 (formal) conjugation of f to f0 (time-one map of an analytic
vector field)

2 (formal) Fatou coordinate for f

Ψ(f(z))−Ψ(z) = 1 (Abel equation)
Ψ̂(f̂(z))− Ψ̂(z) = 1 (formal Abel equation)

Ψ = Ψ0 ◦ ϕ, Ψ̂ = Ψ0 ◦ ϕ̂

∗ the Fatou coordinate represents the time:

Ψ̂(f̂ t(x0))− Ψ̂(x0) = t.



Non-uniqueness of asymptotic expansion of a germ in L̂

When do we say that Ψ̂ is the transserial asymptotic expansion of
Ψ?

Caution! Transserial asymptotic expansion is not well-defined
(unique), if we do not prescribe a canonical summation method on
limit ordinal steps (dictated here by Abel equation)!
→ ambiguity: choice of the sum in ` at limit ordinal steps



Example

f(z) = z + z2 `
1−` + z5

Some possible asymptotic expansions:

f̂1(z) = z + z2(` + `2 + `3 + . . .) + z5

f̂2(z) = z + z2(` + `2 + `3 + . . .)− z3 + z5, etc.

f̂1: canonical (convergent sum) at the first limit ordinal step:

` + `2 + `3 + . . . 7→ `

1− `

f̂2: ` + `2 + `3 + . . . 7→ `
1−` + e−

3
`

(
z = e−1/`

)
Moreover: (?) canonical choice if series in ` was divergent (Fatou
coordinate)



Sketch of the proof / method of summation

f(z) ∼ f̂(z) = z + zα1P1(− log z) + zα2P2(− log z) + . . .

solve (formal) Abel equation by blocks

Ψ̂(z + zα1P1(`−1) + . . .)− Ψ̂(z) = 1

Ψ̂(z) :=
∑
zβi T̂i(`)

In each step, T̂i obtained solving one differential equation:

d

dz

(
zβi T̂i(`)

)
:= zβi−1R(`),

(∗) T̂i(`) = z−βi
∫
zβi−1R(`)dz,

βi a finite combination of αi; R a rational function in `.

(∗) solvable analytically (Ti analytic on Q) as well as formally
(T̂i ∈ C[[z]]) by partial integration
→ principle of summation at limit ordinal steps: T̂i 7→ Ti
(integral sum)



Ψ̂ := Ψ∞ + R̂, where Ψ∞ contains only finitely many infinite
blocks

analytic Fatou coordinate on small sectors around R+:
iterative summation of the Abel equation along the orbit of
f/f−1, after subtracting sufficiently many blocks:

R(f(z))−R(z) = δ(z),

δ(z) of arbitrarily small order.

⇒ R(z) := −
∞∑
k=0

δ(f◦(±)k(z)), j ∈ Z.

Converges locally uniformly on small sectors around R+.

Q.E.D.



Example of blocks computation in the Fatou coordinate of
a Dulac germ

Example

f(z) = z + z2`−1 + z3 ⇒ Ψ(z + z2`−1 + z3)−Ψ(z) = 1. (∗)

Computation of the first block of Ψ by formal T. expansion of (∗):

Ψ′0(z)z2`−1 = 1 ⇒ Ψ0(z) =

∫
z−2` dz

Integration by parts: Ψ̂0(z) = z−1
∑

n∈N n!`n

(divergent series in ` in the first block!)

Analytic integration on SQD: Ψ0(z) =
∫ z
∗ y
−2`(y) dy

? appropriate sum of divergent series above ? integral sum

∑
n

n!`n 7→
∫ z
∗ y
−2`(y) dy

z−1
.



A Fatou coordinate ↔ embedding in a flow

Theorem (MRRZ2)

There exists a unique (up to an additive constant) formal Fatou
coordinate Ψ̂ for the Dulac expansion f̂ in L̂. Moreover, it is in
L̂∞2 .

Theorem (MRRZ2)

There exists an analytic Fatou coordinate Ψ ∈ C∞(0, d) (that is,
an analytic embedding {ft}t, ft ∈ C∞(0, d)) which admits the
formal Fatou coordinate Ψ̂ ∈ L̂∞2 as its ”integral asymptotic
expansion”.

Note: the analytic construction extendable to complex sectors
coresponding to attracting/repelling petals for the local dynamics
of Dulac f



The solution: the notion of sectional asymptotic
expansions [MRRZ2]

? the notion of a sectional asymptotic expansion-a section is a
linear operator attributing a particular germ to partial expansions
on intermediate limit ordinal levels

? the integral section: a canonical choice dictated by the solution
of the Abel equation!
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