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Dulac or almost regular germs

Definition [llyashenko].
Parabolic almost regular germ (Dulac germ):

m feC®0,d)
m extends to a holomorphic germ f to a standard quadratic
domain Q:

Q = ®(C4 \K(0,R)), ®(n) =n+C(n+1)2, C, R>0,

in the logarithmic chart £ = —log z.



Standard quadratic domain

z-chart

LIk
Tk = T(ng) ~ e_C %7 k — +o0,
or € ((k—1)m, (k+ 1))



m f admits the Dulac asymptotic expansion:

f(z) ~2m0 1l 24 Zzaipi(—logz),
k=1

ie. f(z)—z— Zzo‘iPi(—logz) =0(z%), neN,
i=1

m «; > 1, strictly increasing to +oo,
m o; finitely generated 2,
m P; polynomials.

m R, invariant under f (i.e. coefficients of freal!)

2There exist Bk, k= 1...n, such that: a; € NB1 + ...+ Nj,.



Motivation and history

m first return maps for polycycles with hyperbolic saddle singular
points — n saddle vertices with hyperbolicity ratios 5; > 0
(Dulac)

m |ocally at the saddle

{:t =1z + h.o.t.

y=—PBy+ho.t

0 f(s) f(s) s




Motivation and history

m Dulac’s problem: accumulation of limit cycles on a hyperbolic
polycycle possible?

m limit cycles = fixed points of the first return map

m Dulac: accumulation = trivial power-log asymptotic
expansion of the first return map = trivial germ on R4
(Dulac’s mistake)

m the problem: Dulac asymptotic expansion does not uniquely
determine f on R, (add any exponentially small term
w.r.t. z!), eg.

f(@) ~x+a’—logz, f(z)+e /" ~z+a’—logz, ©—0

m llyashenko’s solution: first return maps extendable to a SQD

m SQD sufficiently large complex domain: by a variant of
maximum modulus principle (Phragmen-Lindelof'), Dulac's
expansion uniquely determines the germ on a SQD!



Questions

* goal: theory like the standard theory of Birkhoff, Ecalle, Voronin, Kimura, Leau etc.

for parabolic analytic germs Diff(C, 0)

m formal classification of parabolic Dulac germs — by a
sequence (!!! not necesarily convergent) of formal
power-logarithmic changes of variables

Gg=p 'ofood,

]/"’\, fo Dulac expansions, fy simple 3-monomial expression
?(2) = z + h.o.t. diffeo- with power-log asymptotic expansion



m simpler question: is a Dulac germ formally embeddable as
time-one map in a flow of an analytic vector field f(z)d%
defined on a standard quadratic domain? (= describe trivial
analytic class) }

g=0"ofoop,
f. fo Dulac germs,
fo time-one map of an analytic vector field on @,



Why formal classification?

m motivated by analytic classification of parabolic Dulac germs
g=¢ lofop,

f, g Dulac germs on Q, ¢(z) = z + o(z) analytic on @
m ¢ admits ¢ as its asymptotic expansion?

m domains of analytic 'summability’ of @



Historical results - germs of parabolic analytic
diffeomorphisms

(Fatou ~ end of 19t century; Birkhoff~ 1950; Ecalle,
Voronin~ 1980, ...)

f € Diff(C,0), f(2) =2z + a1z 4 agzFt2 4+ ..., keN

e Formal embedding
= formal reduction to a time-one map of a vector field:

k+1
z d. . k+1 k10 ok
f(](Z) :EXP(W%)Id:Z+Z +(P+ T)Z +
Step-by-step elimination of monomials from f:
az, a #1, N o &
z) = & o(z)=az+ ~ ezt € Cllz
ve(2) stesd LEN P(z) > k=2 Ck [[2]]

(formal changes of variables)

= (k,p), keN, peC... (p= Reso(#(z))) formal invariants
for f.



f(z) =2+ 2%+ 2%+ ... = ;= time-one map of zQ%.

g(z) =e* —1=12z+22+ 23+ ... not a time-one map of a vector
field, formally embeddable in sz%




Historical results - germs of analytic diffeomorphisms

e Is g analytically embeddable, or just formally?
+» Does @ converge to an analytic function at 07

Leau-Fatou flower theorem (1987):
* 2k analytic conjugacies @; of f to fo, all expanding in @
* defined on 2k petals invariant under local discrete dynamics

=

. N _1 . N -
* k attracting directions: (—a1)” *; k repelling directions: a;

k=3 — 6 petals, f(z) =2+ 24+ ...

— in general, analytic embedding in a flow only on open sectors
— the analytic class of f in direct relation with this question



Formal embedding into flows for Dulac germs
(non-analytic at 0)

e elimination term-by-term by an adapted 'sequence’ of
non-analytic elementary changes of variables:

o(2) = az; pam(z) =z+czC™", meZ, a>0, (a,m) > (1,0).

Example (MRRZ, 2016)

0. f(z) =2z— 220" + 22 + 25,
1. p1(2) = z+ 128, 1 € C,
fiz) =p1to fopi(z) =2 — 2207 + a12%£ + h.oot,
2. 0o(2) = 2+ c228%, c3 €R,
fa(2) = o3l o fopa(z) = 2+ 227! + ag2*0? + h.o.t,
3. p3(z) =z + c3283, 5 € R,
f3(2) = p3to fops(z) = 2+ 22071 + 22243 + h.o.t,



The visualisation of the reduction procedure

w
L

the contral of the support!




The description of the formal change of variables

e more than just a formal series composition of changes of
variables: a transfinite composition, — produces a transseries ©:

* in the process, prove that every change has its successor change

* prove the formal convergence of composition of changes of
variables: by transfinite induction' in the formal topology”

T"a generalization of the mathematical induction from N to ordinal
numbers: existence of a successor element and a limit element,

2 i.e. in each step of composition the support remains well-ordered; the
coefficient of each monomial in the support stabilizes in the course of
composition.



A broader class closed to embeddings: the class of
power-log transseries L

...contains both the Dulac germ expansions f > fand the formal
changes of variables

C... ]?(z) = Z Z amkzaﬂk, ao i € R, Ny €7,
a€ES k=N
S C (0,00) well-ordered (here: finitely gen.)

Similarly we define Eg, 23 etc. and

~

;8 = UkeNﬁk.

(iterated logarithms admitted!)

(L. van den Dries, A. Macintyre, D. Marker, Logarithmic-exponential
series. Ann. Pure Appl. Logic 111 (2001))

0=

T logzx




Theorem (Formal embedding theorem for Dulac germs, MRRZ

2016)

f(z) =z —az*€™ + h.o.t. parabolic Dulac, a >0, a > 1, m € N_.
= formally in L conjugated to:

—er d ).id =

z) =ex dz
fo(2) p (1 —ggaigh g (EZ p)a-1gH dz

=z — 2%0™ + p227 12 L hot.

*x (a,m, p), p € R... formal invariants (p = [f]#(z)) for Dulac
germ

* fo(z) a time-one map of an analytic vector field on SQD (Q4)



Example continued

Example (continued)

2@*1 )
fo(z) = exp(— ! 723_21 oy 5)Z).ld:

=z-220 40220 + hot.,

fo=¢to fo o, PE L - a transfinite change of variables



Parallel construction: the (formal) Fatou coordinate and
Abel equation ” =7 (formal) embedding in a vector field

'Equivalent’ problems:

(formal) conjugation of f to fp (time-one map of an analytic
vector field)

A (formal) Fatou coordinate for f

(2) =1 (Abel equation)
=1 (formal Abel equation)

U=Ugop U="Uy0p
* the Fatou coordinate represents the time:

U(f'(wo)) — (o) = t.



-~

Non-uniqueness of asymptotic expansion of a germ in L

When do we say that U is the transserial asymptotic expansion of
w?

Caution! Transserial asymptotic expansion is not well-defined
(unique), if we do not prescribe a canonical summation method on
limit ordinal steps (dictated here by Abel equation)!

— ambiguity: choice of the sum in £ at limit ordinal steps



flz) = Z+z2%£ + 20
Some possible asymptotic expansions:

~

filz) =24+ 220+ 2+ +..)+2°
Fo(2) =2+ 28+ 2+ 082 +..)— 25+ 2, etc.

[ flz canonical (convergent sum) at the first limit ordinal step:

¢
L+024+03+ . — ——
HEHE o

b+ P2+ B+ e (2=

Moreover: (?7) canonical choice if series in £ was divergent (Fatou

e )



Sketch of the proof / method of summation

f(z) ~ f(z) = 24 21 Py (= log 2) + 2°2Py(—log ) + ...
m solve (formal) Abel equation by blocks

U(z+ 2P0 +..)=T(z) =1

m U(z) =Y AT (k)
m In each step, T; obtained solving one differential equation:
d

(%‘ﬁ(ﬁ)) = P1R(0),
() T;(8) = 2% /zﬂi—lR(E)dz,

(; a finite combination of «;; R a rational function in £.

m (x) solvable analytically (7; analytic on Q) as well as formally
(T; € C[[2]]) by partial integration
— principle of summation at limit ordinal steps: CIA} — T
(integral sum)



m U= U + R, where W, contains only finitely many infinite
blocks

m analytic Fatou coordinate on small sectors around R :

iterative summation of the Abel equation along the orbit of
f/f~1, after subtracting sufficiently many blocks:

d(z) of arbitrarily small order.

Z(S ), j €Z.

Converges locally un/formly on small sectors around R .

Q.E.D.



Example of blocks computation in the Fatou coordinate of
a Dulac germ

F2)=2+22071 423 = U(z+22071+2%) - T(2) = 1. (%)
Computation of the first block of ¥ by formal T. expansion of (x):

Up(2)2207 =1 = Ty(z) = /ZQEdz

= Integration by parts: Wo(z) = 2~ Y onen "
(divergent series in £ in the first bIock‘)

m Analytic integration on SQD: ¥y(z f y~20(y) dy

? appropriate sum of divergent series above 7 integral sum

S e Jey ) dy y



A Fatou coordinate <> embedding in a flow

Theorem (MRRZ2)

There exists a unique (up to an additive constant) formal Fatou
coordinate U for the Dulac expansion f in £. Moreover, it is in
Le.

Theorem (MRRZ2)

There exists an analytic Fatou coordinate W € C*°(0,d) (that is,
an analytic embedding {fi}+, fi € C°°(0,d)) which admits the
formal Fatou coordinate U € ESO as its "integral asymptotic
expansion”.

Note: the analytic construction extendable to complex sectors
coresponding to attracting/repelling petals for the local dynamics
of Dulac f



The solution: the notion of sectional asymptotic
expansions [MRRZ2]

* the notion of a sectional asymptotic expansion-a section is a
linear operator attributing a particular germ to partial expansions
on intermediate limit ordinal levels

* the integral section: a canonical choice dictated by the solution
of the Abel equation!
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