
An overview of the theory of complex
dimensions and fractal zeta functions

Goran Radunović
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What is a fractal?

Figure: The middle-third Cantor set C .

Figure: The Sierpiński gasket S .



What is a fractal?

Figure: The middle-third Cantor set C .

Figure: The Sierpiński gasket S .
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Fractal dimensions

There are several definitions of fractal dimension.

e.g., similarity dimension, Hausdorff dimension, box counting
dimension, Minkowski dimension, etc.

Figure: dimH C = dimB C = log3 2

Figure: dimH S = dimB S = log2 3 > 1

Mandelbrot: A set is fractal if its fractal dimension exceeds its
topological dimension.

None of the above dimensions give a completely satisfactory
definition of a fractal.
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Some more examples

Figure: The Devil’s staircase - graph of the Cantor function

All of the known fractal dimensions are equal to 1, i.e., to its
topological dimension.
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Some more examples

Figure: Left: The 1/2-square fractal. Right: The 1/3-square fractal.

The Hausdorff and Minkowski dimensions equal to 1 which is also
their topological dimension.
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The Minkowski content and dimension

∅ 6= A ⊂ RN

δ-neighbourhood of A:

Aδ = {x ∈ RN : d(x ,A) < δ}

r-dimensional Minkowski content of A:

Mr (A) := lim
δ→0+

|Aδ|
δN−r

Minkowski dimension of A:

dimB A = inf{r ∈ R : Mr (A) = 0}
= sup{r ∈ R : Mr (A) =∞}
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The geometric zeta function and complex
dimensions

fractal string: L = (`j)j≥1 `j ↘ 0

AL := {ak :=
∑

j≥k `j : k ≥ 1}

geometric zeta function: ζL(s) :=
∞∑
j=1

`j
s

Example (The Middle-Third Cantor String)

The lengths are (1/3)k each with multiplicity 2k−1, i.e.,

ζL(s) :=
∞∑
j=1

`j
s =

∞∑
k=1

2k−1

(
1

3k

)s

=
1

3s − 2
.

The set of complex dimensions:

{
log3 2 +

2πiZ
log 3

}
.
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The Distance Zeta Function - generalization to
higher dimensions

the distance zeta function of A ⊂ RN :

ζA(s) :=

∫
Aδ

d(x ,A)s−N dx

dependence on δ is inessential

ζAL(s) =
21−s

s
ζL(s) +

2δs

s
, given a large enough δ > 0
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Holomorphicity theorem

Theorem

(a) ζA(s) is holomorphic on {Re s > dimBA}, and

(b) R 3 s < dimBA ⇒ the integral defining ζA(s) diverges

(c) If ∃D = dimB A < N and MD(A) > 0, then

ζA(x)→ +∞ when R 3 x → D+

Definition (Complex dimensions)

Assume ζA can be meromorphically extended to W ⊆ C.
The set of complex dimensions of A visible in W :

P(ζA,W ) :=
{
ω ∈W : ω is a pole of ζA

}
.
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Example (The standard ternary Cantor set)

Let C be the standard ternary Cantor set in [0, 1] and fix δ ≥ 1/6.

ζC (s) =
21−s

s(3s − 2)
+

2δs

s
, for all s ∈ C (1)

P(ζC ) = {0} ∪
(

log3 2 +
2π

log 3
iZ
)

(2)

Definition (A new proposed definition of fractality)

The set A is fractal if it has at least one nonreal complex
dimension.
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Complex dimensions of the Sierpiński gasket

Example

ζA(s; δ) =
6(
√

3)1−s2−s

s(s − 1)(2s − 3)
+ 2π

δs

s
+ 3

δs−1

s − 1

P(ζA) = {0, 1} ∪
(

log2 3 +
2π

log 2
iZ
)
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Complex dimensions of the 1/2-square fractal

Example

ζA(s) =
2−s

s(s − 1)(2s − 2)
+

4

s − 1
+

2π

s
, (3)

P(ζA) := P(ζA,C) = {0} ∪
(

1 +
2π

log 2
iZ
)
. (4)
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Complex dimensions of the 1/3-square fractal

Example
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Relative fractal drum (A,Ω)

∅ 6= A ⊂ RN , Ω ⊂ RN , Lebesgue measurable, i.e., |Ω| <∞
upper r-dimensional Minkowski content of (A,Ω):

Mr (A,Ω) := lim sup
δ→0+

|Aδ ∩ Ω|
δN−r

upper Minkowski dimension of (A,Ω):

dimB(A,Ω) = inf{r ∈ R : Mr (A,Ω) = 0}

lower Minkowski content and dimension defined via lim inf



Minkowski measurability

dimB(A,Ω) = dimB(A,Ω) ⇒ ∃ dimB(A,Ω)

if ∃D ∈ R such that

0 <MD(A,Ω) =MD(A,Ω) <∞,

we say (A,Ω) is Minkowski measurable; in that case

D = dimB(A,Ω)

if the above inequalities are not satisfied for D, we call (A,Ω)
Minkowski degenerated



The relative distance zeta function

(A,Ω) RFD in RN , s ∈ C and fix δ > 0

the distance zeta function of (A,Ω):

ζA,Ω(s; δ) :=

∫
Aδ∩Ω

d(x ,A)s−N dx

dependence on δ is not essential

the complex dimensions of (A,Ω) are defined as the poles
of ζA,Ω

take Ω to be an open neighborhood of A in order to recover
the classical ζA
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Embeddings in higher dimensions

Theorem

• (A,Ω) such that D := dimB(A,Ω) < N and fix a > 0

Then, the following functional equation is valid:

ζA×{0},Ω×[−a,a](s) =

√
π Γ
(
N−s

2

)
Γ
(
N+1−s

2

) ζA,Ω(s) + E (s; a). (7)

E (s; a) is meromorphic on C with a set of simple poles contained
in {N + 2k : k ∈ N0}.

complex dimensions of an RFD are independent of the
ambient space

determine complex dimensions of RFDs by decomposing them
into relative fractal subdrums
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Figure: The Cantor dust

Figure: C × C where C is the middle-third Cantor set.



Complex dimensions of the Cantor dust

Example

Let A := C (1/3) × C (1/3) be the Cantor dust and Ω := [0, 1]2.
Then,

ζA,Ω(s) =
8

s(3s − 4)

(
I (s)

6s
+

Γ
(

1−s
2

)
Γ
(

2−s
2

) √
π

6ss(3s − 2)
+ E (s; 6−1)

)
,

where I (s) = 2−1B1/2 (1/2, (1− s)/2) is entire.

P(ζA,Ω) ⊆
(

log3 4 +
2π

log 3
iZ
)
∪
(

log3 2 +
2π

log 3
iZ
)
∪ {0}.

Bx(a, b) =
∫ x

0 ta−1(1− t)b−1 dt ; the incomplete beta func.
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The relative tube zeta function

(A,Ω) an RFD in RN and fix δ > 0

the tube zeta function of (A,Ω):

ζ̃A,Ω(s; δ) :=

∫ δ

0
ts−N−1|At ∩ Ω| dt

dependence on δ is inessential

analogous holomorphicity theorem holds for ζ̃A,Ω(s; δ)

a functional equation connecting the two zeta functions:

ζA,Ω(s; δ) = δs−N |Aδ ∩ Ω|+ (N − s)ζ̃A,Ω(s; δ)
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Fractal tube formulas for relative fractal drums

An asymptotic formula for the tube function

t 7→ |At ∩ Ω| as t → 0+ in terms of ζA,Ω .

Theorem (Simplified pointwise formula with error term)

• α < dimB(A,Ω) < N; ζA,Ω satisfies suitable rational decay
(d-languidity) on the half-plane W := {Re s > α}, then:

|At ∩ Ω| =
∑

ω∈P(ζA,Ω,W)

res

(
tN−s

N−s
ζA,Ω(s), ω

)
+ O(tN−α).

if we allow polynomial growth of ζA,Ω, in general, we get a
tube formula in the sense of Schwartz distributions
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The Minkowski measurability criterion

Theorem (Minkowski measurability criterion)

• (A,Ω) is such that ∃D := dimB(A,Ω) and D < N
• ζA,Ω is d-languid on a suitable domain W ⊃ {Re s = D}

Then, the following is equivalent:

(a) (A,Ω) is Minkowski measurable.

(b) D is the only pole of ζA,Ω located on the critical line
{Re s = D} and it is simple.

In that case:

MD(A,Ω) =
res(ζA,Ω,D)

N − D
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The Minkowski measurability criterion

(a)⇒ (b) : from the distributional tube formula and the
Uniqueness theorem for almost periodic distributions due
to Schwartz

(b)⇒ (a) : a consequence of a Tauberian theorem due to

Wiener and Pitt (conditions can be considerably weakened)

the assumption D < N can be removed by appropriately
embedding the RFD in RN+1



Figure: The Sierpiński gasket

an example of a self-similar fractal spray with a generator
G being an open equilateral triangle and with scaling ratios

r1 = r2 = r3 = 1/2

(A,Ω) = (∂G ,G ) t
⊔3

j=1(rjA, rjΩ)



Fractal tube formula for The Sierpiński gasket

ζA(s; δ) =
6(
√

3)1−s2−s

s(s − 1)(2s − 3)
+ 2π

δs

s
+ 3

δs−1

s − 1

P(ζA) = {0, 1} ∪
(

log2 3 +
2π

log 2
iZ
)

By letting ωk := log2 3 + pki and p := 2π/ log 2 we have that

|At | =
∑

ω∈P(ζA)

res

(
t2−s

2− s
ζA(s; δ), ω

)

= t2−log2 3 6
√

3

log 2

+∞∑
k=−∞

(4
√

3)−ωk t−pki

(2− ωk)(ωk − 1)ωk
+

(
3
√

3

2
+ π

)
t2,

valid pointwise for all t ∈ (0, 1/2
√

3).
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The devil’s staircase RFD

Figure: The third step in the construction of the Cantor graph relative
fractal drum (A,Ω). One can see, in particular, the sets Bk , 4k and 4̃k

for k = 1, 2, 3.



The devil’s staircase RFD

Let A be the devil’s staircase and Ω.

ζA,Ω(s) =
2

s(3s − 2)(s − 1)
, for all s ∈ C. (8)

P(ζA,Ω) := P(ζA,Ω,C) = {0, 1} ∪
(

log3 2 +
2π

log 3
iZ
)
, (9)

|At ∩ Ω| =
∑

ω∈P(ζA,Ω)

res

(
t2−s

2− s
ζA,Ω(s), ω

)
= 2t2−DCF + t2−DCSGCF

(
log3 t

−1
)

+ t2,

(10)

where ωk := log3 2 + ikp (for each k ∈ Z),
DCF = dimB(A,Ω) = 1, DCS = log3 2 and p := 2π/ log 3.
GCF is a nonconstant 1-periodic function on R, which is bounded
away from zero and infinity.
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Gauge Minkowski content [HeLap]

If (A,Ω) is Minkowski degenerate, ∃D := dimB(A,Ω) and

|At ∩ Ω| = tN−D(F (t) + o(1)) as t → 0+, (11)

where F (t) = h(t) or F (t) = 1/h(t) for h : (0, ε0)→ (0,+∞) ,

h(t)→ +∞ as t → 0+ and h ∈ O(tβ) for ∀β < 0 .

h is called a gauge function of slow growth to +∞ at 0+

1/h is called a gauge function of slow decay to 0 at 0+

typical gauge functions:
(

log◦k t−1
)a

for a ∈ R∗, k ∈ N

h-Minkowski content: MD(A,Ω, h) = lim
t→0+

|At ∩ Ω|
tN−Dh(t)

.
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The fractal nest generated by the a-string

a > 0, aj := j−a, `j := j−a − (j + 1)−a, Ω := Ba1(0)

ζAa,Ω(s) =
22−sπ

s − 1

∞∑
j=1

`s−1
j (aj + aj+1)



Fractal tube formula for the fractal nest generated
by the a-string

Example

P(ζAa,Ω) ⊆
{

1,
2

a + 1
,

1

a + 1

}
∪
{
− m

a + 1
: m ∈ N

}
a 6= 1, D := 2

1+a ⇒
|(Aa)t ∩ Ω| =

22−DDπ

(2− D)(D − 1)
aD−1t2−D + 2π

(
2ζ(a)− 1

)
t

+ O
(
t2− 1

a+1
)
, as t → 0+

|(A1)t ∩ Ω| = res

(
t2−s

2− s
ζA1,Ω(s), 1

)
+ o(t)

= 2πt(− log t) + const · t + o(t) as t → 0+

• a pole ω of order m generates terms of type

tN−ω(− log t)k−1 for k = 1, . . . ,m in the fractal tube formula
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Fractal tube formula for the 1/2-square fractal

ζA(s) =
2−s

s(s − 1)(2s − 2)
+

4

s − 1
+

2π

s
, (12)

D(ζA) = 1, P(ζA) := P(ζA,C) = {0} ∪
(

1 +
2π

log 2
iZ
)
. (13)

|At | =
∑

ω∈P(ζA)

res

(
t2−s

2− s
ζA(s), ω

)
=

1

4 log 2
t log t−1 + t G

(
log2(4t)−1

)
+

1 + 2π

2
t2,

(14)

valid for all t ∈ (0, 1/2), where G is a nonconstant 1-periodic
function on R bounded away from zero and ∞.
The 1/2-square fractal is critically fractal in dimension 1.



Fractal tube formula for the 1/2-square fractal

ζA(s) =
2−s

s(s − 1)(2s − 2)
+

4

s − 1
+

2π

s
, (12)

D(ζA) = 1, P(ζA) := P(ζA,C) = {0} ∪
(

1 +
2π

log 2
iZ
)
. (13)

|At | =
∑

ω∈P(ζA)

res

(
t2−s

2− s
ζA(s), ω

)
=

1

4 log 2
t log t−1 + t G

(
log2(4t)−1

)
+

1 + 2π

2
t2,

(14)

valid for all t ∈ (0, 1/2), where G is a nonconstant 1-periodic
function on R bounded away from zero and ∞.
The 1/2-square fractal is critically fractal in dimension 1.



The 1/3-square fractal

Figure: Here, G is the single generator of the corresponding self-similar
spray or RFD (A,Ω), where Ω := (0, 1)2.



Fractal tube formula for the 1/3-square fractal

ζA(s) =
2

s(3s − 2)

(
6

s − 1
+ Z (s)

)
+

4

s − 1
+

2π

s
, (15)

P(ζA) := P(ζA,C) ⊆ {0} ∪
(

log3 2 +
2π

log 3
iZ
)
∪ {1}, (16)

|At | =
∑

ω∈P(ζA)

res

(
t2−s

2− s
ζA, ω

)
= 16t + t2−log3 2G

(
log3(3t)−1

)
+

12 + π

2
t2.

(17)

valid for all t ∈ (0, 1/
√

2), where G is a nonconstant 1-periodic
function on R bounded away from zero and infinity.
The 1/3-square fractal is subcritically fractal in dimension
ω = log3 2 < dimB A = 1.



The Cantor set of second order

Example

C the standard middle-third Cantor set in [0, 1], Ω := (0, 1).
G := Ω \ C ; scaling ratios r1 = r2 = 1/3.

ζC2,Ω2(s) =
3s

3s − 2
ζC ,Ω(s) =

3s

2s−1s(3s − 2)2

P(ζC2,Ω2) = {0} ∪
(

log3 2 +
2π

log 3
iZ
)

|(C2)t ∩ Ω2| = t1−log3 2
(

log t−1G (log t−1) + H(log t−1)
)

+ 2t

G ,H : R→ R nonconstant, periodic with T = log 3.

a pole ω of order m generates factors of type

tN−ω(log t−1)k−1 for k = 1, . . . ,m
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Higher order Cantor sets

Example (The Cantor set of n-th order)

Define (Cn,Ωn) as a fractal spray generated by (Cn−1,Ωn−1) and
scaling ratios r1 = r2 = 1/3 for n ≥ 2.

ζCn,Ωn(s) =
21−s · 3(n−1)s

s(3s − 2)n
.

P(ζCn,Ωn) = {0} ∪
(

log3 2 +
2π

log 3
iZ
)

|(Cn)t ∩ Ωn| = t1−log3 2
n−1∑
k=0

(log t−1)kGk(log t−1) + 2 · (−1)nt

Gk : R→ R nonconstant, periodic with T = log 3.
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The Cantor set of infinite order

Example

Let (C1,Ω1) := (C ,Ω) and

(C∞,Ω∞) :=
∞⊔
n=1

1

3n n!
(Cn,Ωn).

ζC∞,Ω∞(s) =
2

6ss

∞∑
n=1

1

(n!)s(3s − 2)n

Holomorphic on {Re s > 0} \
(

log3 2 + 2πi
log 3Z

)
.

|(C∞)t ∩ Ω∞| = t1−log3 2
∞∑
n=1

n−1∑
k=0

(log t−1)kGk,n(log t−1) + O(t)

Gk,n : R→ R nonconstant, periodic with T = log 3.
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Further research directions

Riemann surfaces generated by relative fractal drums

Extending the notion of complex dimensions to include
complicated “mixed” singularities/branching points and
connecting them with various gauge functions

Obtaining corresponding tube formulas and gauge-Minkowski
measurability criteria

Applying the theory to problems from dynamical systems
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G. Radunović, Fractal Analysis of Unbounded Sets in Euclidean
Spaces and Lapidus Zeta Functions, Ph. D. Thesis, University of
Zagreb, Croatia, 2015.


	Fractal tube formulas for relative fractal drums

